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Abstract: Augmentative and alternative communication techniques (AAC) are essential to assist
individuals facing communication difficulties. (1) Background: It is acknowledged that dynamic
solutions that adjust to the changing needs of patients are necessary in the context of neuromuscular
diseases. (2) Methods: In order address this concern, a differential approach was suggested that
entailed the prior identification of the disease state. This approach employs fuzzy logic to ascertain the
disease stage by analyzing intuitive patterns; it is contrasted with two intelligent systems. (3) Results:
The results indicate that the AAC system’s adaptability enhances with the progression of the disease’s
phases, thereby ensuring its utility throughout the lifespan of the individual. Although the adaptive
AAC system exhibits signs of improvement, an expanded assessment involving a greater number
of patients is required. (4) Conclusions: Qualitative assessments of comparative studies shed light
on the difficulties associated with enhancing accuracy and adaptability. This research highlights the
significance of investigating the use of fuzzy logic or artificial intelligence methods in order to solve
the issue of symptom variability in disease staging.

Keywords: augmentative and alternative communication; computer–human interaction; fuzzy logic;
machine learning; adaptive systems

1. Introduction

Communication theory presents four basic elements: source, sender, message, and
receiver [1]. Typically, the sender emits the message, which can be transmitted orally
or textually, among other ways, and the receiver receives the message. This process is
particularly complex in individuals with conditions such as amyotrophic lateral sclerosis
(ALS). For instance, some studies indicate that 50% of patients die 18 months after diagnosis.
Additionally, they lose the ability to communicate by the fourth month post-diagnosis.
This loss of communication can lead to symptoms unrelated to ALS, such as depression
or dementia. Augmentative and Alternative Communication (AAC) is used to facilitate
communication in these cases, enabling patients to express desires, thoughts, and ideas
with their surroundings [2].

Recent studies show that up to 1% of the global population experiences some degree
of speech, language, or communication needs [3]. The loss of speech associated with severe
paralysis and other medical complications has long been a barrier between patients and the
outside world. AAC encompasses various processes that enhance, complement, or replace
speech for individuals with complex communication needs [4].

In recent years, AAC systems have proven to be invaluable tools for enhancing the
quality of life for individuals with verbal communication difficulties and, in general, “arti-
ficial intelligence tools have the capacity to transform AAC systems” [5]. These systems

Computers 2024, 13, 10. https://doi.org/10.3390/computers13010010 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers13010010
https://doi.org/10.3390/computers13010010
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0001-7598-7696
https://doi.org/10.3390/computers13010010
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers13010010?type=check_update&version=1


Computers 2024, 13, 10 2 of 17

include a wide range of technologies and strategies that enable individuals with speech
disabilities, such as neuromuscular diseases, language disorders, or traumatic injuries,
to effectively express their thoughts, emotions, and needs. As an example, the research
paper [6] introduces a virtual assistant that operates via a brain–computer interface (BCI),
thereby enhancing the interaction between the user (hands-free technology and virtual
assistants in smartphone application management) and the machine. As technology ad-
vances and our understanding of user needs evolves, significant progress has been made in
designing and developing AAC systems.

Although significant advances have been achieved in this domain, significant chal-
lenges remain. As discussed in Ju et al.’s systematic review, some researchers have proposed
prospective studies in AAC systems with the aim of enhancing communicative interaction
among speech-capable individuals. The review mentioned above [7] concludes that it is cru-
cial to develop systems that not only possess intuitive and straightforward implementation,
but also integrate efficient communication strategies. It also emphasizes the importance
of actively collaborating with speech-language pathology specialists, with a special focus
on the design of AAC systems. The ability of AAC systems to adjust as degenerative neu-
romuscular illnesses develop is one of the biggest concerns. People with these conditions
experience changes in their communication abilities as the disease progresses, requiring
solutions that dynamically adjust to their ever-changing needs.

Previous research has addressed this challenge from various perspectives. Some
approaches have focused on predicting disease progression and periodically manually
adjusting AAC systems [8,9]. Others have explored machine-learning techniques to adapt
systems based on user-collected data. For instance, the VocalID project aimed to create
personalized voices for individuals using AAC devices by combining the unique vocal
characteristics of the target person with input from voice donors, resulting in the generation
of a unique synthetic voice. The 2014 study by Mills et al. highlights the relevance
and transformative potential of this approach in the context of AAC [10]. Although these
methods have showed potential, there are still issues with accuracy, simplicity, and response
time [5].

In this study, we introduce a novel and exciting perspective to address adaptability in
AAC systems. Our approach is based on fuzzy logic, a technique that simulates uncertainty
and imprecision in data. We propose a system that identifies the disease state through
heuristic rules, allowing us to provide a unique and adaptable solution that optimally
adjusts throughout the disease progression and the user’s lifetime. Our aim is to optimize
the performance of virtual keyboards used in AAC systems to enhance communication
efficiency for users with disabilities. We will explore how fuzzy logic adapts to the context
of neuromuscular diseases, where disease stages are difficult to precisely classify due
to symptom variability over time in each individual. Within the discussion section, a
comparison is made between the proposed approach and two studies that have been
chosen from the literature and make use of virtual assistants in AAC systems for messaging
and social networking purposes.

Our assumptions are based on the idea that the design and interaction provided to
the user will be contingent upon the state of the disease. Consequently, by dynamically
adapting to the condition or progression of the user’s disease, AAC systems can experience
substantial enhancements. During the process of revising existing AAC systems, we
proposed that they be optimized through early identification of the disease’s stage, thereby
permitting customization to the particular attributes of the user. This adaptability would
hold the potential to effectively facilitate the target user’s communication. This article
also highlights the importance of AAC systems in the context of neuromuscular diseases
and how these systems can significantly improve patients’ quality of life by providing
an effective means of communication. By analyzing different neuromuscular diseases, it
demonstrates how these conditions affect communication and presents some compensatory
strategies used to enhance it.
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The current study is specifically concerned with the lack of adaptability exhibited
by AAC systems that are predefined for users. We are in search of systems that are more
adaptable and capable of adjusting to changes as a disease develops. Hence, we suggest
the implementation of fuzzy logic techniques for the early detection of the patient’s disease
stage (initial, middle, or advanced). This would enable the system to adjust in response to
the unique circumstances of the patient.

It is important to mention and clarify that advanced machine learning techniques
have been used in AAC systems, with promising results in terms of direct prediction and
improvement of interfaces [5]. In contrast, our approach does not emphasize intricate
techniques for processing patterns or images. Instead, we present a proposal that stands
out for the application of fuzzy logic methods, aiming to identify the stage or state of
the patient's illness (initial, middle, or advanced) at an early stage. This allows for the
adaptation of the system in a specific manner to the individual's situation.

This article is structured as follows: In Section 2, the materials, methodologies, and
associated research are detailed. The results are presented in Section 3. The discussion and
prospective directions of research are elaborated in Section 4, while the conclusions are
presented in detail in Section 5.

2. Materials and Methods

Neuromuscular diseases encompass a range of conditions characterized by muscle loss
of control and atrophy. Notable among these conditions are amyotrophic lateral sclerosis
(ALS), Duchenne muscular dystrophy, myotonic muscular dystrophy, and spinal muscular
atrophy [2,11–13].

For example, Duchenne muscular dystrophy, an X-linked degenerative disease, arises
due to the absence of the dystrophin protein, critical for muscle fiber stability and protection.
This condition impacts speech and respiration, often requiring compensatory approaches,
voice amplification, and AAC systems as communication becomes more restricted [14–16].

On the other hand, myotonic muscular dystrophy, an autosomal dominant disease,
can manifest at birth or later stages. Myotonia, a characteristic symptom, refers to slow
muscle relaxation after voluntary contraction. As it progresses, this disease can impact
communication due to muscle weakness and reduced motor control [17–19].

Similarly, spinal muscular atrophy is a recessive hereditary disease involving the
degeneration of motor neurons in the spinal cord, resulting in progressive muscle weakness.
Severity varies considerably, and different phenotypes are defined based on heterogeneous
clinical features. SMA can impact communication due to muscle weakness, poor head
control, and respiratory impairment [20,21].

In the literature, research has explored the development of adaptive AAC systems
to enhance communication in individuals with neuromuscular diseases. Some relevant
works focus on adaptable keywords and design multimodal systems that allow choosing
between different interaction methods, such as buttons, head movement, and eye tracking.
However, the challenge of determining the most suitable hardware combination for each
individual persists [11,16,22–24].

Compared to physical keyboards, virtual keyboards exhibit lower efficiency in typing,
even for users without disabilities. The lack of tactile feedback and the reduced size of
virtual keys negatively affect performance. This reduction is more noticeable in people with
disabilities due to motor restrictions. Techniques such as keyboard and letter sequence de-
sign, as well as complex text predictions, have been applied to enhance efficiency. However,
virtual keyboards still prove to be less efficient than physical ones [19,25,26].

Fuzzy logic emerges as a promising tool to tackle the complexity and uncertainty of
neuromuscular diseases. Given the diversity in symptoms and progression of these condi-
tions, traditional classification techniques may be insufficient. Fuzzy logic addresses the im-
precision of these diseases by representing concepts like “initial”, “middle” and “advanced”
stages through functions that reflect uncertainty. It provides accurate and adaptable stage
classification based on the knowledge of neurological experts. Furthermore, fuzzy logic
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is applicable in designing adaptive AAC systems. By considering motor skills and prefer-
ences, it determines optimal and personalized systems, thereby enhancing communication
and interaction, contributing to patients’ quality of life and autonomy [16,22,23].

2.1. Related Works

Machine learning (ML) has emerged as a revolutionary field in different areas. In
this study, we emphasize the potential for transforming personalized adaptation in AAC
systems. These systems, originally designed to assist individuals with communication
disabilities in communicating, have experienced significant progress [5] as a result of the
implementation of ML. By enabling AAC systems to dynamically adapt to the unique
requirements and capabilities of users, this strategy has not only brought about significant
efficiency improvements, but also enhanced the communicative experience.

Our study focused on two tools that leverage virtual assistants for social network-
ing and messaging in pre-existing AAC systems designed for individuals with motor
disabilities. We meticulously emphasized the ways in which these tools converge to of-
fer innovative solutions that empower those who encounter diverse limitations in their
communication capabilities.

Currently, virtual assistance tools use intelligent systems and ML, for example, in the
study by [6], a BCI designed to restore communication skills in patients with severe motor
disabilities is described. The BCI system controls four messaging applications. “Control
of the BCI is achieved through the well-known visual P300 row-column (RCP) paradigm,
which allows the user to select control commands and typing characters” [6]. In that
study, they evaluated the system based on software usability performance standards, with
experts and subjective surveys to healthy individuals who used the system. The process
begins when the user sends a synthetic voice command generated by the BCI system
and is recognized by the smartphone’s virtual assistant. This generates the use of the
messaging application and, consequently, communication with another user. It is important
to note that BCI systems when evaluated in people with some kind of disability often
have difficulties to achieve sufficient accuracy when using visual P300 CPR paradigms
as mentioned in studies [27,28]; these studies did not find a clear correlation between the
degree of disability and BCI performance [6]. The results obtained in this study, assessed
through the implementation of usability questionnaires utilizing the System Usability
Scale (SUS) [29], yielded positive scores for the tool, with an overall usability rating of
82.5. This score exceeds the threshold of 70, which is considered as a reliable indicator
of an optimal level of usability for patients. Individual scores on subdimensions were
successful, indicating that the application was easy to use and intuitive. Regarding the
Raw NASA-TLX questionnaire [30], the average workload was 31.55, which is considered
reasonably low. The subdimensions showed similar results to previous studies. The ad hoc
questionnaire items provided indications of areas for improvement, such as the interface
aesthetics. Overall, the subjective questionnaires suggest that the system was easy to
control and pleasant for most participants, but they can be used to improve the system.
We recommend evaluating the application’s utility within this particular context through
testing it on patients who have motor disabilities.

Furthermore, “different interpretations of the same input” is referred to in the study,
which implies the fact that the way in which an individual speaks (the generation of
the synthetic voice) can be understood differently depending on the context in which it
occurs. As for those such as “time limit for replying to an incoming message, use of a
similar name for different contacts and confusion between the subject and the body of the
message”; related to the interaction of the system with the virtual assistant, they refer to
specific problems when using voice commands to control the smartphone. In some cases,
the assistant had difficulty understanding and requested more information from the user,
but since only predefined commands were available, appropriate responses could not be
provided, preventing the task from being completed [6].
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The second chosen tool was developed by [31]. This research paper describes a spe-
cialized system that employs a BCI system to enable users to control social networks on
a smartphone. Unlike the previous study, this research included assessments of patients
with motor disabilities of some nature. By developing a system that captures signals from
the brain, individuals are now capable of transmitting commands to applications such as
Twitter and Telegram without the need to physically move. Throughout the assessment,
various components of the brain control system were evaluated. It was evaluated with the
participation of 10 healthy volunteers and 18 individuals with motor disabilities. Results
demonstrated that the system achieved an accuracy rate of 92.3% among individuals in
good health and 80.6% among those with motor impairments. The proposal may prove
advantageous in homes, rehabilitation centers, and businesses, enhancing the lives of indi-
viduals through the offering of greater autonomy and independence. The aforementioned
assessment utilized both quantitative and qualitative metrics; for the former, the time
taken to complete each task, the number of correct selections, errors, and sequences were
documented. In addition to calculating accuracy and output characters per minute (OCM),
users were requested to fill out a questionnaire regarding the latter at the end of the ses-
sion. The questionnaire comprised 20 items that were to be evaluated using a seven-point
Likert scale [32]. Subjective opinions were collected regarding, among other things, session
duration, user motivation, expectations, and application speed. An open-ended question
was incorporated in order to gather recommendations [31]. It is crucial to note that the
researchers employed the aforementioned qualitative evaluation technique in our study
through the careful selection of ad hoc items.

2.2. Methodology

To conduct this study, a four-step methodology was implemented, as shown in Figure 1.
In the initial stage (construction stage), three representative participants with different
neuromuscular disease conditions were selected: individuals diagnosed with amyotrophic
lateral sclerosis (ALS), muscular dystrophy, and spinal cord injury. In stage 2, we proceeded
to the extraction and rigorous identification of the symptoms of each disease in collaboration
with expert neurologists specialized in movement disorders (see Figure 1).
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Following this, in the third stage of the system’s development, a fuzzy logic approach
was implemented to classify the disease states as initial, middle, and advanced. Throughout
the assessment phases, three distinct modes of interaction were employed: visual, tactile,
and mechanical. An adaptive AAC system was implemented, which was designed specifi-
cally to dynamically adapt to the evolving motor skills and communication preferences of
the participants as the disease progressed.

A longitudinal design was employed for each case study, wherein the adaptability
of the AAC system was assessed in both simulated and real-life scenarios. The precise
diagnosis of the disease state and the determination of the system’s efficacy were both
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significantly influenced by the evaluation of proficient neurologists. Finally, in stage fourth,
a quantitative and qualitative evaluation was performed, recording time metrics, errors
and using specific questionnaires to assess the efficiency, effectiveness, ease of learning,
satisfaction, and overall usability of the system.

2.3. Experimental Design

Three fundamental phases comprise the design for assessing the implementation
of the AAC system in patients with neuromuscular disorders. Initial phase: calibration,
during which the system is tailored to each participant by collecting data and administering
specialized tests. Subsequently, an experimental phase is conducted to document both
qualitative and quantitative data in real time while observing the interaction in simulated
and real-world scenarios. Finally, the assessment gathers data over time by evaluating the
system’s adaptability throughout various phases of the disease via performance metrics
including response times and error count as well as questionnaires.

2.3.1. Calibration Stage

Acquire user-specific parameters in order to adapt and customize the AAC system. The
next four steps are: Conduct an initial session with each participant. Capture pertinent bio-
metric information, including eye movements, motor abilities, and interaction preferences.
Determine the precision and velocity of system interaction by conducting specific tests.
Adapt the AAC system according to calibration results to ensure a customized experience.

2.3.2. Experimental Stage

To observe the interaction of the participants with the system in simulated and real
scenarios. The next four steps are: Design simulated situations that represent common
communication contexts. Introduce controlled scenarios (interaction modalities: mechani-
cal, tactile, and visual) to evaluate the effectiveness and efficiency of the system. Record
the interaction in real time, capturing quantitative data (response times, number of errors)
and qualitative data (user comments, facial expressions). Provide immediate feedback to
participants to adjust the system as needed.

2.3.3. Assessment Stage

Collect data on system adaptability as disease stages progress. The next five steps are:
Perform regular assessments over time, reflecting different stages of the disease. Implement
specific measures for each phase of the disease identified in Phase 2. Use questionnaires to
assess the adaptability of the system at each stage. Document and analyze changes in user
interaction and performance as the disease progresses. Integrate feedback from participants
to make continuous adjustments and improve the adaptability of the system.

2.4. Virtual Keyboard Assessment

The AAC system implementation performed a sequential scan from left to right at
regular intervals, identifying user interaction events with the characters displayed on the
screen. These events were detected using three interaction modalities: mechanical, tactile,
and visual. The metrics used were response times and number of errors detected during
the interaction, complemented with a questionnaire for qualitative evaluation.

2.5. State of the Disease Classification

In order to address the categorization of neuromuscular disease states, we imple-
mented fuzzy logic across three levels: initial, middle, and advanced. The primary objective
was to anticipate the progression of the disease so that the AAC system could be modified
in accordance with the particular stage or condition of the disease. This is achieved by ap-
plying triangular functions to the linguistic variables “initial”, “middle”, and “advanced”.
This approach leverages the expertise of movement disorder-specialized neurologists in
order to delineate the stages of progression.
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2.6. Performance Measures

For each writing test, time metrics and error counts were documented, in addition
to a questionnaire utilized for qualitative assessment. The examiner was an expert on
usability. Utilizing the heuristic method suggested by [33], the expert proceeded. Every
metric (including satisfaction, general usability, efficiency, efficacy, and ease of learning)
was evaluated in accordance with predetermined criteria and standards. The effectiveness
and velocity with which users can complete the writing task were assessed in terms of
efficiency. The effectiveness of the software was assessed by examining its capacity to
produce the desired results without encountering any errors. The error rate was calculated
by number of errors × 100)/total number of characters. Ease of learning: evaluated the
speed with which users can learn to use the software, considering the user’s opinion and
intuitiveness. Satisfaction: evaluated the opinion of satisfaction when interacting with
the software, through a simple survey. Usability: considered the overall user experience,
integrating the previous metrics to obtain an overall view of the usability of the software.
These evaluations were carried out systematically and with the participation of three real
users to obtain practical feedback. In addition, the experts compared the results with
standards in the field of usability and user experience.

2.7. Ethical Considerations

Within the framework of the current research, a university scientific ethics committee
approved and supervised this study. This measure was taken to guarantee the implemen-
tation of fundamental ethical principles, including the promotion of equity in participant
selection and the safeguarding of self-determination. Additionally, confidentiality and
privacy of personal data were guaranteed, in accordance with established ethical stan-
dards, while protecting the rights and welfare of the individuals involved, through consent
protocols and robust security measures.

3. Results

The AAC system was implemented using the C# programming language. Its design
was inspired by a classic mobile phone keyboard and is based on an indirect access approach
called “scanning”. In this system, a periodic left-to-right scanning is performed at regular
intervals. The user must generate an event when the system reaches the group of characters
where the desired character is located. Similarly, another event must be produced when
the system reaches the specific desired character.

Detection of these events is achieved through three distinct interaction methods:
mechanical, tactile, and visual (see Table 1). The choice of the appropriate method is
determined through an adaptation analysis. Additionally, the time intervals between the
scans range from 1 s to 12 s (see Figure 2).
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Table 1. Interaction methods table. Source: Authors.

Visual Method Mechanical Method Touch Method

Visual perception approaches,
including gaze observation,
eye movement tracking, and
head motion-based indication
technologies, have been
extensively documented in
academic literature [34].
Technological solutions based
on gaze tracking are premised
on monitoring a user’s eye
movements to infer the
direction of their gaze [35]. In
the specific context of AAC,
non-invasive methods of eye
tracking are presented as the
most relevant option to
address the everyday
demands of users with motor
skill limitations.

Mechanical and
electromechanical devices
used in AAC have
applications in both direct and
indirect access methods. In
direct selection methods,
users are presented with sets
of options, requiring them to
manually choose desired
messages through voluntary
input. This typically involves
coordinating voluntary
controls utilizing a specific
body part, such as hands or
fingers, or even a pointing
device, to select a particular
message [36].

With the constant evolution of
touchscreen technology, AAC
applications incorporating
touch activation have become
a common presence in AAC
direct selection systems.
Several types of touchscreen
technologies can be identified,
such as resistive, capacitive,
surface acoustic wave, and
optical/infrared. Specifically,
resistive and capacitive
touchscreens are
predominantly used in smart
devices [19]. Resistive
touchscreens operate by
applying force or pressure
from the user’s fingers,
whereas capacitive
touchscreens are activated by
the electrical charge present in
the user’s finger.

The classification of stages in the progression of neuromuscular diseases becomes
complex due to the variability in symptoms over time between two individuals affected by
the same disease. In practical terms, determining the evolution of stages over time through
conventional approaches entails substantial difficulties.

In this context, fuzzy logic emerges as an appropriate approach to address the clas-
sification of stages in neuromuscular diseases. A use case for fuzzy logic arises when
it becomes necessary to classify imprecise phenomena based on expert knowledge and
experience [37]. In this scenario, linguistic variables and their interpretations are provided
by a neurologist specialized in movement disorders. The stages of progression in neu-
romuscular diseases are defined using three triangular functions corresponding to the
linguistic variables “initial”, “middle”, and “advanced” (see Figure 3).
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The membership functions are given based on the linguistic variables defined as follows:

M(initial) = triangular(x, 6, 3) (1)

M(middle) = triangular(x, 9, 12) (2)

M(advanced) = triangular(x, 15, 24) (3)

The fundamental realm is defined by an average lifetime reaching the precise value of
(n). In this context, (n) symbolizes the uppermost age since the disease’s onset, a value that
notably differs among individuals.

Three overlapping regions inside the fuzzy sets give rise to two fuzzy sets. The
important and difficult thing to determine is where these sets intersect. The diagnosis
is done based on the symptoms and under the direction of a professional, preferably a
neurologist who specializes in movement disorders.

3.1. Heuristic Rules for Determining Disease Stage in the System

When starting the system, the users are required to complete a set of four tests,
conducted only once, aimed at classifying their disease stage (refer to Table 2). This series
of tests allows to establish the optimal combination between the interaction method and
the timing of the event.

Table 2. Captions for tables should be placed above the tables. Source: Authors.

Tasks Task Description

Task 1: Press the “H” key

Task 2: Perform a tap in the upper-left corner of a touchscreen.

Task 3: Produce a sound with the mouth (snap).

Task 4: Perform two winks within a one-second interval.

The user is evaluated based on two main metrics:
Execution time: The time the user takes to complete a specific task designated by

the system.
User error: Referring to one or several mistakes made unintentionally by the user

during their interaction with the system.
The system’s inference process was devised through a conditional structure, which

utilizes the aforementioned metrics to determine the fuzzy set that best fits the user’s char-
acteristics (see Table 3). The four tests conducted are averaged based on these independent
metrics. In situations where the metrics do not align across the four tests, the intermediate
linguistic variable is employed to make a decision (see Table 4).

Table 3. Metrics for system inference. Source: Authors.

Errors Time Interval Linguistic Variable

0–1 0.5 s–1 s Initial

2–3 1.1 s–2 s Initial and middle

3–5 2.1 s–4 s Middle

6–8 4.1 s–6 s Middle and advanced

9–12 6.1 s–10 s Advanced
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Table 4. Interaction methods for fuzzy sets. Source: Authors.

Stage Interaction Methods

Initial Mechanical, touch

Touch

Initial and middle Mechanical, touch

Touch

Middle Mechanical, touch

Touch

Visual

Touch

Middle and advanced Touch

EGG

Visual

Advanced EGG

Visual

Fuzzy sets are specified in Table 4.
To project these rules into the form of fuzzy logic equations, we will use triangu-

lar membership functions for each of the stages (initial, middle, and advanced). The
membership functions have been previously: Equations (1)–(3).

Where “x” represents the variable corresponding to the value of error or time.
Now, we can write the fuzzy logic equations for each of the stages based on the

provided metrics:

3.1.1. Stage “Initial”

Initial(x) = min(M(initial)(x), M(initial)(y)) (4)

where “x” represents the error and “y” represents the time. min(M(initial)(x) and M(initial)(y)
are the triangular membership functions for the “Initial” stage based on the error and time
ranges provided in Table 4.

3.1.2. Stage “Initial and Middle”

Initial_Middle(x) = min(M(initial)(x), M(middle)(y)) (5)

where “x” represents the error and “y” represents the time. min(M(initial)(x) and M(middle)(y)
are the triangular membership functions for the “Initial” and “Middle” stages, respectively.

3.1.3. Stage “Middle”

Middle(x) = min(M(middle)(x), M(middle)(y)) (6)

where “x” represents the error and “y” represents the time. min(M(middle)(x) and M(middle)(y)
are the triangular membership functions for the “Middle” stage based on the error and time
ranges provided in Table 4.

3.1.4. Stage “Middle and Advanced”

Middle_Advanced(x) = min(M(middle)(x), M(advanced)(y)) (7)

where “x” represents the error and “y” represents the time. min(M(middle)(x) and M(advanced)(y)
are the triangular membership functions for the “Middle” and “Advanced” stages, respectively.
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3.1.5. Stage “Advanced”

Advanced(x) = min(M(advanced)(x), M(advanced)(y)) (8)

where “x” represents the error and “y” represents the time. min(M(advanced)(x) and
M(advanced)(y) are the triangular membership functions for the “Advanced” stage based on
the error and time ranges provided in Table 4.

The timeframe for categorizing the user under the linguistic variable remains open
until they attain the “advanced” status, aligning with the interaction method recommended
by the system. It is important to note that users have the option to disable the adaptability
system at their discretion.

3.2. Machine Learning in ACC

In addition to the Fuzzy System, machine-learning techniques were integrated into
the virtual keyboard, which in contrast to a conventional static design- evolves and adapts
iteratively. This keyboard is characterized by the implementation of a machine learning-
based system that constantly monitors and analyzes the lexical selections made by the user
during communication. As the user interacts with the keyboard, the system records word
preferences and their frequencies of use.

The essence of the process lies in the analysis stage, where machine learning comes
into play. Through highly complex algorithms, the system identifies intrinsic patterns in
lexical choices and groups them into semantically coherent categories. As these categories
emerge, the keyboard begins to adapt in real time. Selecting a word or phrase becomes
an extremely fluid act, as the keyboard anticipates and suggests the most plausible words
based on the communicative context.

However, the uniqueness of this approach is further accentuated. The keyboard is not
limited solely to contextual word prediction. Additionally, it generates a new row of words
at the top of the keyboard, which houses the words most frequently used by the user. This
personalized row is a dynamic entity, altering in accordance with the user’s continuous
interaction with the keyboard.

Consider a user who has a preference for words that are particularly relevant to their
line of work or personal interests. As the user persists in interacting with the keyboard, these
specific words gain priority and conveniently emerge in the new personalized row. This not
only boosts communicative efficiency but also incites a feeling of empowerment and control
in the user, as they observe how the keyboard adjusts to their idiosyncratic requirements.

4. Discussion

In this section, three case studies and usability assessment will be presented out of the
ten included in the trial. For confidentiality reasons, the names have been altered. Addi-
tionally, before conducting the study, participants were asked to read and sign an informed
consent form. Followed by a usability evaluation of the proposed software. In retrospect to
this process, when analyzing the overall results of the case studies presented, a common
pattern emerges of significant improvement in efficiency and communication satisfaction
for the participants. The AAC system’s adaptability was crucial, as it successfully adapted
to the evolving requirements of users throughout different stages of the disease.

This final consideration emphasizes the importance of prior identification of the
disease state of every participant, thereby highlighting the specific nature of the support
tools utilized in each case. The initial scenario involved the utilization of an eye tracker,
which emphasized the visual sensory modality. A speech generator was implemented as
an assistive device in the second instance, whereas a head-mounted pointing device was
employed in the third instance. Consequently, observations were carried out in adherence
to these predetermined parameters, in order to assess the responsiveness of fuzzy logic
components to the evolution of each pathological entity in conjunction with a variety
of features.
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4.1. Case Study 1: Study_subject_1—ALS Patient

Study_subject_1, a 45-year-old individual diagnosed with amyotrophic lateral scle-
rosis, volunteered to participate in the evaluation of our adaptive AAC system. As ALS
progressed, Study_subject_1’s ability to communicate verbally rapidly declined. We im-
plemented our system on a tablet device equipped with eye-tracking technology, enabling
Study_subject_1 to select symbols and phrases using eye movements.

Over a six-month period, we regularly assessed Study_subject_1’s communication
patterns and needs. The adaptive AAC system continuously analyzed his input, updating
its predictive model to adapt to his changing motor abilities and communication prefer-
ences. As a result, the system provided Study_subject_1 with a personalized and dynamic
communication interface.

The case study demonstrated that the adaptive AAC system successfully enhanced
Study_subject_1’s communication efficiency and overall satisfaction. Despite the progres-
sion of his condition, Study_subject_1 could maintain effective communication with his
family, caregivers, and friends, accurately expressing his thoughts and emotions.

4.2. Case Study 2: Study_subject_2—Muscular Dystrophy Patient

Study_subject_2, a 32-year-old woman diagnosed with muscular dystrophy, took part in
a longitudinal study involving the utilization of the adaptive AAC system. Study_subject_2’s
condition involved a gradual weakening of muscles and speech difficulties. To cater to her spe-
cific needs, we integrated the system into a voice-generating device accessible through switches.

The adaptive AAC system, employing a fuzzy logic-based approach, continuously
learned from Study_subject_2’s interactions and detected changes in her communication
patterns. The system automatically adjusted its design and predictive capabilities to align
with Study_subject_2’s abilities at each stage of her condition.

Throughout the study, Study_subject_2 reported increased confidence in communica-
tion and a decrease in frustration compared to her prior experiences with non-adaptive
AAC systems. The system’s personalized nature allowed her to engage in conversations
more effectively, preserving her autonomy and social interactions.

4.3. Case Study 3: Study_subject_3—Spinal Cord Injury Patient

Study_subject_3, a 28-year-old man with a spinal cord injury, participated in a home
trial of the adaptive AAC system. His injury resulted in partial paralysis, affecting the
motor functions of his upper limbs. To meet his needs, we integrated the system with a
head-mounted pointer device.

During the trial, Study_subject_3 employed the adaptive AAC system in various real-
life scenarios, such as communicating with family members, placing orders at restaurants,
and engaging in leisure activities. The system’s capacity to adapt to his motor abilities and
preferences enabled Study_subject_3 to communicate effectively and independently across
diverse environments.

The case study underscored how the adaptive AAC system positively impacted
Study_subject_3’s daily life, fostering social engagement and reducing barriers stemming
from his physical condition.

The software evaluation followed the heuristic method proposed by [33]. The ap-
proach involves assessing usability based on four characteristics (efficiency, effectiveness,
learnability, and satisfaction) and relying on experts to conduct the assessment. The cur-
rent evaluation conducted on the proposed software yielded highly favourable outcomes,
particularly in the following aspects: efficiency 90%; effectiveness 100%; learnability 90%;
satisfaction 80%; overall usability 88%).

Proposed in the study [6] was a BCI system designed to assist individuals with severe
motor disabilities with their communication abilities. The assessment included usability
performance standards, subjective questionnaires, and observations on the interaction
of the system with the virtual assistant. The results indicate a high degree of usability,
exceeding the threshold set in advance. Nevertheless, concerns pertaining to the fluctuating
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interpretations of voice commands and problems during interactions with the virtual
assistant were recognized as obstacles. Furthermore, certain studies lacked a distinct
correlation between the degree of disability and BCI performance, according to the research
cited in [6].

A brain–computer interface (BCI) system was suggested by Martínez-Cagigal et al. for
operating social networks on mobile phones. The system was evaluated in both healthy
individuals and those who had motor disabilities. The findings demonstrate a precision
rate of 92.3% among individuals in good health, and 80.6% among those with motor
impairments. The evaluation encompassed both qualitative and quantitative metrics, such
as output characters per minute (OCM), accuracy, and subjective questionnaires. The
proposal is regarded as beneficial since it aims to increase individuals’ independence and
autonomy in their daily lives.

In our study, we present an AAC system that classifies stages of progression in neuro-
muscular diseases through the use of tactile, visual, and mechanical interaction methods
with an emphasis on fuzzy logic. The intricacy of stage classification is demonstrated by
the variability of symptoms exhibited by neuromuscular disease patients. Fuzzy logic
is proposed as a potential solution for this fluctuation. Furthermore, the importance of
incorporating visual, tactile, and mechanical perception methods into the system’s imple-
mentation is emphasized.

Utilizing cutting-edge technologies including BCI and fuzzy logic, all three studies
showcased substantial progress in the evolution of AAC systems. While research study
1 and 2 focus on communication via brain commands, the current research addressed
staging in neuromuscular diseases. Qualitative assessment, which frequently employs
subjective questionnaires for measuring usability and user satisfaction, is widely acknowl-
edged. In light of the limitations identified in studies 1 and 2, including inconsistent
interpretations of voice commands and difficulties in engaging with virtual assistants,
the authors emphasized the need to enhance the systems’ accuracy and adaptability. The
latter can be enhanced by the research presented in this article, which analyzes its input
continuously and updates its model to account for the user’s evolving motor skills and
communication preferences while pre-identifying the disease stage. On the other hand,
the complexity in classifying disease stages in research study 3 highlights the need for
further experimentation with fuzzy logic or other artificial intelligence methods to address
symptom variability.

As per the literature review, Bircanin et al. [38] examine a number of challenges and op-
portunities associated with inherent characteristics of AAC systems, which are also relevant
to the approach proposed in this research. In general terms, certain limitations are associ-
ated with the particular characteristics of each type of disability. For example, the research
did not explicitly address individuals with significant sensory restrictions, constituting a
gap in the comprehensive understanding of the system’s capabilities Individuals who have
hearing or vision impairments may encounter restrictions in the operation of systems that
rely on these particular senses. An additional limitation that has been identified pertains
to resistance to change, a phenomenon that is additionally influenced by the users’ social
circles and surroundings. The aforementioned resistance could potentially be observed in
the degree of readiness with which certain patients adopt and adapt to the AAC system,
thereby influencing their acceptability and performance. The thorough and individualized
assessment of each patient is essential, as it enables the determination of the AAC system’s
relevance and permits adjustments that respond optimally to individual needs.

4.4. Limitations and Future Work
4.4.1. Limitations

The effectiveness of the system is linked to the technology employed, which may rise
to challenges concerning hardware limitations or technical malfunctions (e.g., processing
capacity of the devices). However, it may require time and effort to customize the system
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to the unique requirements of each user, and certain patients might experience a more
pronounced learning curve.

On the other hand, the periodic scanning approach may not be fully customizable to
suit individual user preferences. Adaptation is carried out through user-generated events,
but this may be complex for those with very limited or too advanced motor skills. In
addition, depending on the user’s ability to generate events at specific times, there may
be variability in the effectiveness of the system. Individual differences in the ability to
generate events could affect the accuracy and speed of communication.

Additionally, the neurological specialists noted that individuals with the same disease
might develop distinctive variations in symptoms or characteristics over time, which would
pose an enormous barrier to staging. The system’s capacity to accurately adapt to disease
progression may be compromised by this factor. While fuzzy logic is employed to handle the
staging of neuromuscular diseases, the inherent variability of symptoms can compromise
classification accuracy, particularly in middle cases. Furthermore, the assessment of the
three scenarios, which incorporates the utilization of visual, mechanical, and tactile methods
for detecting events, could potentially impede accessibility for individuals with particular
limitations on their capacity to employ said methods. There may be user populations
for whom these methods are not optimal. In conclusion, with regard to technological
democratization, the accessibility of specific users may be constrained by the device’s
functionality and technology.

4.4.2. Future Works

Several aspects emerge as possible lines of future research. The first is to explore
the comparative efficacy of the support tools used (eye tracker, speech generator, pointer
device) in a larger and more diverse sample of participants with different disease states.
This could provide additional information on the adaptability and relative efficacy of each
tool in different clinical settings. In general, to explore ways to improve the customization
of the system to suit a broader spectrum of motor skills and individual preferences.

Furthermore, conducting a comparative analysis between the response of each sup-
port tool to disease evolution and the interaction between particular characteristics of
fuzzy logic and machine learning algorithms would be of great value. By adopting this
approach, a more profound comprehension of the fundamental mechanisms that contribute
to the effectiveness of such tools in the management of various pathological states could
be achieved.

Another line relates to the applicability of the system to other forms of motor disabil-
ities and communication challenges. This raises the following inquiry: How could the
system be adapted to address a more extensive spectrum of neuromuscular conditions?
Subsequently, an investigation into alternative assistive systems designed for individuals
afflicted with diverse neuromuscular disorders could be carried out. Furthermore, col-
laboration with neurologists who specialize in the field could take place to enhance and
optimize the fuzzy logic functions, thereby guaranteeing a more accurate classification of
the progression stages of neuromuscular diseases.

5. Conclusions

The key factor in the success of the adaptive AAC system was its customization capa-
bility. By continuously learning and adapting to changing motor skills and communication
preferences of each individual, the system was able to meet the specific needs of each par-
ticipant, maximizing their communication efficiency and overall satisfaction. The decision
to utilize fuzzy logic was based on its inbuilt capability to accommodate the imprecision
and uncertainty inherent in the data. Fuzzy logic is an ideal tool in the context of neuro-
muscular diseases, where stages of progression may lack accuracy. By capitalizing on the
expertise and knowledge of professionals, this approach yields an adaptable, rule-driven
depiction. Fuzzy logic demonstrated its suitability in capturing the inherent imprecision
that characterizes the progression stages of these diseases.
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Longitudinal studies proved to be beneficial in evaluating the effectiveness of the adap-
tive AAC system, as observed in the cases of Study_subject_1 and Study_subject_2. Assessing
communication patterns and needs over time allowed researchers to observe the ongoing
improvement of the system and gain a better understanding of its long-term impact on partic-
ipants. The system’s ability to integrate with various devices, such as eye-tracking technology,
voice-generating devices with switch access, and head-mounted pointers, demonstrated its
versatility. This adaptability enabled individuals with diverse motor disabilities to find a
communication solution tailored to their specific needs.

The adaptive AAC system had a positive impact on the autonomy and social in-
teractions of participants. By facilitating effective communication, it helped individuals
engage in conversations with their families, caregivers, friends, and the community at large,
thereby reducing frustration and promoting social participation. The system significantly
contributed to enhancing the quality of life for individuals with motor disabilities, allow-
ing them to express their thoughts and emotions accurately and to participate in real-life
situations with greater independence and efficiency. While the studies focused on specific
conditions (ALS, muscular dystrophy, and spinal cord injury), the positive results suggest
that the adaptive AAC system could potentially be applied to other motor disabilities and
communication challenges.

Case studies provide a strong foundation for future research and developments in
the field of adaptive AAC systems. As technology advances and more user information is
collected, continuous improvements can be made to enhance predictive capabilities and
personalized communication features of the system. Furthermore, it should be evaluated
whether the findings of this study can be extrapolated to other types of assistance systems
for individuals with various forms of neuromuscular diseases.

Finally, the adaptive AAC system demonstrated promising results in enhancing com-
munication efficiency and overall satisfaction for individuals with motor disabilities. Its
ability to adapt and customize communication interfaces according to the needs of each
user highlights its potential to positively impact the lives of many individuals facing com-
munication challenges due to various conditions and disabilities. The synergy between
machine learning and personalized adaptation in a virtual keyboard represents a significant
milestone in communication technology aimed at individuals with motor limitations. This
approach not only enhances communicative fluency and efficiency but also emphasizes the
importance of autonomy and uniqueness in the expression process.
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