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Abstract: The software industry plays a vital role in driving technological advancements. Software
projects are complex and consist of many components, so change is unavoidable in these projects.
The change in software requirements must be predicted early to preserve resources, since it can
lead to project failures. This work focuses on small-scale software systems in which requirements
are changed gradually. The work provides a probabilistic prediction model, which predicts the
probability of changes in software requirement specifications. The first part of the work considers
analyzing the changes in software requirements due to certain variables with the help of stakeholders,
developers, and experts by the questionnaire method. Then, the proposed model incorporates their
knowledge in the Bayesian network as conditional probabilities of independent and dependent
variables. The proposed approach utilizes the variable elimination method to obtain the posterior
probability of the revisions in the software requirement document. The model was evaluated by
sensitivity analysis and comparison methods. For a given dataset, the proposed model computed
the low state revisions probability to 0.42, and the high state revisions probability to 0.45. Thus, the
results proved that the proposed approach can predict the change in the requirements document
accurately by outperforming existing models.

Keywords: prediction models; software requirements; Bayesian network; variable elimination;
quality; ambiguity; completeness; consistency

1. Introduction

The software industry plays a significant role in improving human life, ranging from
businesses, communication, entertainment, education, and a lot more. Software is an
integral part of devices, applications, and systems on which people rely for various daily
tasks [1]. Besides their numerous benefits, faulty software applications also have negative
effects on human life; for example, in the case of a fault in a safety critical system, software
can create life-threatening situations. Similarly, in the case of business applications, software
faults can derail software productivity or operations resulting in an increased cost and time.
To cater to these conditions, the software industry encompasses various activities, during
software development, testing, deployment, maintenance, and support. As a result of these
activities, software is becoming technologically advanced, struggling to address the ever-
expanding business requirements, along with the preferences of various stakeholders [2].
Similarly, software engineers also face challenges in adapting to new circumstances [3]. In
order to quantify the efforts of a change in software under development, a few works have
been proposed for small-scale software systems [4,5]. Small-scale software systems have
attracted much attention recently because most of the small software companies do not
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have properly defined procedures to face these challenges, which leads to failures. As the
software requirements can change at any phase of the software development because of
a change in stakeholder needs resulting in an increased cost, tightening of the schedule,
and issues of scalability [6]. Therefore, there is a need to predict the change in software
requirements at the early stages of development. Studies have illustrated that an error
occurring in the development phase takes approximately 8 h to be resolved, whereas if it
occurs in the requirement phase, it might take only 15 min to be resolved [7,8]. In software
development, requirement gathering is the first step, where artificial intelligence (AI) tools,
along with expert judgment, can be used to predict changes in software requirements [9].
In this regard, researchers have focused on how to also incorporate human experience
into AI to predict change accurately [9,10]. Currently, most prediction models only utilize
expert knowledge and consider a limited set of software metrics that represent different
aspects of software, such as ambiguity, coupling, completeness, etc., to develop change
prediction models [10]. The core requirement metrics with the knowledge of all the domain
experts, including stakeholders and developers, are included in the prediction models.
In this case, the probability of software requirement changes can be decreased, and the
results can be improved [11]. The stakeholders describe the user requirements, use cases,
and events; thus, they can have a vital role in defining the system requirements functions
and operations. Moreover, the developers could provide a detailed system design and
implementation description [12]. In contrast, in the AI field which is based on classification,
learning, and prediction, certain authors [11,12] have proposed models for the prediction
of changes in requirements. In this regard, a probabilistic AI technique such as Bayesian
probabilistic reasoning can be used that is closely related to software engineering.

This work proposes a probabilistic prediction model to predict the probability of
changes in software requirement specifications. This work extends that of [13] by consider-
ing new features like specificity, requirement completeness, degree of revision, and degree
of commitment, etc., by using a Bayesian network to predict changes in the requirement
specification. The features have enhanced the effectiveness of the prediction of the proposed
approach. The main contributions of the work are summarized as follows.

- Performing a detailed literature review and deriving the requirement variables that
support the prediction model for acquiring the probability of changes.

- Defining the core requirement variables with the consultation of experts and weighting
techniques.

- Developing a refined dataset with the help of a questionnaire. This questionnaire was
given to stakeholders, developers, and experts to acquire their knowledge of the set of
requirements.

- Developing a prediction model in the Bayesian network with nodes and arcs to predict
the probability of changes in software requirements. Nodes are the core variables with
the conditional probabilities acquired by the dataset.

- The proposed algorithm includes a variable elimination method for predicting re-
quirement changes in the specification document. This algorithm takes the Bayesian
network conditional probabilities as an input and provides the probability of revisions
in the requirement document.

- Evaluation of the proposed model by comparing it with the existing models in terms
of the accuracy and validity of this model.

The paper is organized as follows: In Section 2, a review of related work is presented.
In Section 3, the proposed approach is presented. Section 4 provides the detail of the
evaluation measures and, finally, Section 5 concludes the work.

2. Related Work

This section reviews the latest approaches in which requirement change prediction
models are proposed.

According to the literature, Park et al. [14] mined the required attributes of a large
software project that can be used to obtain the requirement-relevant faults. The authors
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conducted a survey indicating that ambiguous and faulty requirements cause relevant
deficiencies. Hein et al. [15] proposed an automatic requirement prediction tool in which
the part of speech elements of the requirements statement are given as inputs. These data
are taken as relators to design relations between requirements.

Arora et al. [16] investigated the impact of changes in the requirements of natural
language processing. The developed model used the requirements of natural language
processing as inputs. The user then updates the requirement document after the system
has identified the required statement phrases and calculated the token pairwise similarity
scores. In an early stage of software development, the fault density was predicted by
Yadav et al. [17] using fuzzy logic. Three software metrics were incorporated for each
requirement design and development stage.

In the model described in [13], del Sagrado et al. merged the software engineering field
into AI techniques. The developed model used expert knowledge to predict the requirement
specification document. A Bayesian network named “requisites” was induced in a tool
that predicts the degree of modifications of the requirement document. Zhang et al. [18]
suggested an inference algorithm in Bayesian networks, which helps to trace the cause and
impacts of the variables in the system. This is also supportive of making wise decisions in
intelligent systems.

Literature studies lack a consideration of the sophisticated variables (e.g., developer
skills, stakeholder expertise, technological needs, verification, consistency, ambiguity, and
quality). These variables were collected from the literature by using weighting techniques
and shortlisted using expert opinion. The experts categorized these variables into two
groups: project estimation and management. Table 1 provides the details of the variables
and their descriptions.

The project estimation variables are less well studied in the prediction methods as
compared to the management group. There is a great need for an advanced prediction
model that should include the knowledge of experts, developers, and stakeholders to
predict the changes in requirement specifications and quantify their effects while including
all necessary variables [19].

Table 1. Core variables with descriptions.

Group Variables Description

Pr
oj

ec
t/

Es
ti

m
at

io
n

G
ro

up

Ambiguity Sometimes the requirements are not understandable and
provide double meanings that may cause changes [20].

Cost and schedule
Project cost is the money needed to complete the project [21].
The schedule is the time allocated by the project managers for
managing requirements [22].

Specificity
Specificity deals with the meanings of the requirement. It
demonstrates that all of the people have the same
interpretation of the requirement statement [23].

Quality Requirement changes affect the quality. It is necessary to
ensure that the system’s quality meets the standards [24].

Technological
needs

Sometimes the consideration of new technology for the
software development may cause changes [25].

Consistency It describes that the requirements are presented in a detailed
way and serve the intended purpose [26].

Dependencies
It interprets the unexpected relationships between
requirements. The requirement may depend on another
variable not specified in the requirements document [27].

Reusability
It interprets whether the particular requirement can be
reused. If it is reused from repository, then the number of
repetitions will be counted [28].



Computers 2023, 12, 164 4 of 17

Table 1. Cont.

Group Variables Description

M
an

ag
em

en
tG

ro
up

Completeness It describes that the requirement carry comprehensive
meanings, and no information is left behind [23].

Commitment It interprets that requirement needs further communication
for acceptance [29].

Developer skills

Developer skills play an important role in the timely
completion of software. If the developers are skilled, then
when changes occur during the development phase, they can
easily manage them [30].

Variability

Requirement changes are natural processes and can occur at
any project phase. These are necessary to manage because it
affects the complete development process, cost, schedule
design, and implementation [31].

Verification
When requirement changes occur, it is necessary to verify
whether these changes reflect the intended purpose or
not [32].

Expert knowledge After a requirement change, experts are needed to decide on
how the changes will be integrated into the system [33].

SRS document
revisions

The SRS document provides an overall description of the
system, its purpose, revisions, and its requirement
specifications [34].

Stakeholder
expertise

Requirement changes frequently occur due to the
incompetentency of stakeholders because they provide the
system’s requirements [35].

In this work, a Bayesian network model is constructed by considering comprehen-
sive variables (limitations of existing models) along with the algorithms to measure the
probability of a change in requirements.

3. Proposed Approach

The methodology of the proposed approach is presented in Figure 1. After the de-
tailed literature review, the core factors/variables that led to the research problem were
introduced. According to the problem, the study presents a probabilistic Bayesian model
for variable change predictions. We gathered data against these variables and integrated
them into the model.

3.1. Data Collection

To evaluate the proposed system, a questionnaire was used for data collection. Certain
software requirements were framed on the questionnaire and distributed online to experts
for rating. Data were collected from the system analysts, stakeholders, quality assurance
experts, and developers. As criteria, experts must have at least two years of experience
in software engineering; likewise, developers should have at least one year of experience
in software development, and system analysts should have one year of experience in
requirement engineering.

The questionnaire’s first section describes the aims and objectives of data collection and
the variables on which the requirement probability will be measured. In the second section,
the directions about the questionnaire are given, and in the third section, requirements are
given along with the questions related to each variable. The respondents have to respond on
the scale along with each question. The scale was organized as follows: 1: very low, 2: low,
3: high, and 4: very high. The scale was used for rating the particular requirements, which
shows the probability value estimated by respondents. The dataset comprises the responses
of the system analysts, developers, and quality assurance experts on the requirements of
the online registration system. The dataset ensures a minimum of three hundred responses.
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Figure 1. Graphical representation of the proposed methodology.

After obtaining responses, the probability of each variable is calculated. We assign
weights to each person’s response according to their knowledge and expertise. As the
experts have a high experience and knowledge in the domain, we assigned a 50% weightage
to their responses. Likewise, we assigned a 30% weight to the system analysts and a 20%
weightage to the developers.

3.2. Data Analysis

The information was gathered in an Excel spreadsheet; whereas for data analysis, IBM
SPSS Statistics Version 27.0.0.0 was used to clean and analyze the data. The data’s mean,
median, mode, variance, standard deviation range, and missing values were examined
using descriptive analysis.

Table 2 presents the results of descriptive analysis. It shows the mean, median, mode,
variance, standard deviation, and missing values of the variables.

We applied a normalization test to determine whether the data were normally dis-
tributed. The findings are statistically significant since all alpha values (p-value) were less
than 0.05 (there is a less than 5% chance that the data being tested have an error). Moreover,
we also analyzed the relationship between the dependent and independent variables by
determining their correlation and regression.

Table 3 demonstrates how close the proposed model is to the regression line, as the
values are between 0 and 100%; thus, these are best fitted to the model. The table shows
that the values are significant, as they are below the alpha value (0.05). As the regression
values validate the fitness of the model and the relation between variables, we will utilize
them in calculating the conditional probabilities between variables.
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Table 2. Descriptive analysis of variables.

Variables Missing
Values Mean Median Mode Standard

Deviation Variance Range

Specificity 1 2.7061 2.8 2.45 0.62 0.387 2.45

Consistency 2 2.7595 2.9 3.27 0.70 0.501 3.00

Completion 3 2.7965 2.8 2.00 0.66 0.448 2.45

Ambiguity 3 2.6476 2.60 2.00 0.71 0.509 2.82

Commitment 1 2.727 2.70 2.73 0.50 0.374 2.09

Expertise 3 2.7993 2.95 3.00 0.62 0.448 2.36

Quality 2 2.8282 2.90 2.09 0.61 0.359 2.19

Reusability 3 2.7730 2.79 3.36 0.66 0.380 2.36

Dependency 0 2.5329 2.58 2.00 0.59 0.343 2.55

Variability 2 2.5620 2.54 2.00 0.61 0.383 2.18

Cost and schedule 4 2.6354 2.8 2.00 0.66 0.340 2.82

Verification 2 2.7694 2.74 3.00 0.69 0.486 2.82

Technological needs 2 2.7830 2.75 3.09 0.66 0.445 2.55

Table 3. Variables regression results.

Independent
Variables

Dependent
Variables R Square Adjusted R

Square Co-Variance Significant
Value

Specificity Commitment 0.037 0.022 0.006 0.001

Expertise Consistency 0.097 0.084 0.006 0.001

Completeness Quality 0.067 0.054 0.010 0.001

Ambiguity Quality 0.018 0.003 0.010 0.001

Verification Quality 0.098 0.085 0.010 0.001

Dependency Variability 0.010 0.014 0.016 0.001

Technology Variability 0.016 0.001 0.024 0.001

Expertise Cost and schedule 0.075 0.061 0.012 0.004

Expertise Completeness 0.462 0.454 0.009 0.013

3.3. Bayesian Network Construction with Netica

Data collected from experts, stakeholders, and developers aided in developing the
Bayesian network. In a Bayesian network, each node represents a separate variable (v1,
v2, . . ., vn), and the graph itself is a directed acyclic graph. Relationships between these
variables are represented by the arcs that connect them. The joint probability distribution is
found by multiplying the individual conditional probabilities associated with each variable.

In a Bayesian network, the posterior probability of a particular variable is calcu-
lated using the inference process. The conditional probability of variables was obtained
from experts, stakeholders, and developers by defining the probability scale and taking
the averages.

The proposed Bayesian network is constructed using the Netica tool. The Netica tool
develops the considered Bayesian network by incorporating expert knowledge to obtain
the conditional probabilities. By inputting the variables’ prior probabilities and running
the tool, Netica determines the variables’ posterior probabilities. The model can learn the
Excel data file to perform the inference in Netica. Figure 2 presents the construction of the
Bayesian network over Netica.
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In this network, the dependent variables are commitment, cost and schedule, quality,
consistency, variability, and revisions. Furthermore, the independent variables are speci-
ficity, dependencies, technological needs, expertise, verifiable, ambiguity, completion, and
reusability. The initial probability values of nodes are set to low, and high. By selecting the
states, the dialog box is settled to discrete variables. The probability is measured in percent-
age for each variable. To perform the inference, the model is made capable of learning. For
this purpose, an Excel data sheet is incorporated into Netica, which has the same name as
the nodes and the frequency associated with the nodes. When the file is added into Netica,
it will set the conditional probabilities in tables by reading the file. The data of the high
and low states of the node variables are incorporated from the case file. Compiling and
incorporating the different case files will provide the results for different states.

3.4. Proposed Prediction Model

Referencing the literature, algorithm-based research works are more effective in re-
quirement change prediction. Thus, we measured the existing algorithm performance by
incorporating our proposed dataset. Certain case studies have used a variable elimination
algorithm to determine the variables’ posterior probabilities. For example, Zhang et al. [36]
proposed this method to calculate the posterior marginal probabilities of the variables. As
the Bayesian network comprises the factorization of joint probability into a product set of
conditional probabilities, they convert the independence relation to or sum and or max by
variable elimination. This algorithm provides the probability values of the queried variable.

Variable Elimination Algorithm

The variable elimination algorithm takes the joint probability of all of the variables
and sums out all of the variables to obtain the marginal probability of a single queried
variable. In this method, two procedures are used: describing the order of variables and
eliminating a single variable from the group.

The first procedure is to describe the order of variables. At this stage, the variables
present in the Bayesian network are listed in order of elimination.

The second procedure eliminates a single variable from the group of factors and
returns a single factor. All algebraic operations are performed in the second phase to
eliminate the variables. Algorithm 1 presents the pseudocode of the variable elimination.
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Algorithm 1 Variable elimination algorithm

Input data:
ϕ: Set of factors.
F: Stack having an active list of factors.
Z: Set of variables to be eliminated.
K: Number of selected routes.

Step 1.

Zi to Zk shows the order of variables.
For (i = 1; i ≤ k; i++)
F←Sum-Product Eliminate Var (F, Zi);
End for

Step 2.

Subroutine sum over the product of all variable factors to eliminate and return the new factor.
ϕ *← ∏ ϕ ∈ F (ϕ)
Return ϕ *
Procedure Sum-product eliminate Var ()

F′ = define all terms having argument Zi (variable to be eliminated)
F′ ← {ϕ ∈ F: Z ∈ scope[ϕ]}
F′′ = remaining stack elements
F′′ = F-F’

Step 3. Take the product of all factors in F′.
ψ← ∏ϕ ∈ F′ ϕ

Step 4.
Take the sum of products by eliminating Z.

T = new factor
T← ∑Z ψ

Step 5. Join the T with the remaining stack F′′.
return F′′ ∪ {T}

Step 6. End.

The algorithm takes conditional probabilities as an input and then performs the
factorization process. The second step includes the multiplication and marginalization of
the factors, and in the next phase, the sum-out operation is performed to eliminate the
variables from the set of factors. In the sum-out operation, the algorithm first marginalizes
the variables by multiplying all factors, then draws a variable from a factor group and
returns the factor with the remaining variables. We have incorporated the Bayesian network
variables into the variable elimination algorithm to determine the posterior probability
of revisions in the Bayesian network. We have taken the online registration system’s
requirements and the defined variables reflecting the requirements’ nature. The Bayesian
network is integrated into the algorithm by adding the conditional probabilities of each
variable node with its parent. The algorithm takes the values and performs all of the
necessary operations.

3.5. Proposed Prediction Algorithm

The proposed algorithm for predicting queried variables is introduced in Algorithm 2.
The proposed prediction model utilizes the variable elimination method.

All elements’ probabilities are obtained by merging and taking averages of the stake-
holders’, experts’, and developers’ data values. The first while loop takes all elements
in the algorithm and calculates the conditional probability values. It checks whether
the variable belongs to a stakeholder, developer, or expert, and it checks the regres-
sion R square value between the data. If the values are between 1 and 100, then it
calculates the final value of conditional probability by multiplying it with the regres-
sion values and the weights assigned to each person. We assigned a 30% weightage to
stakeholders’ data, 20% to developers’ data, and 50% to experts’ data. The second loop
takes the conditional probability values of all of the variables and builds factors, and
the variable elimination code returns the final probability value for the goal variable.
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Algorithm 2 Proposed prediction algorithm

Step 1. Def Proposed Algorithm (cond_Prob)
{

Vi = initial variable
Vn = Total number of variables
While (Vi ≤ Vn)

{

Step 2.

If (Vi € Stakeholder. Dataset & Vi. RSquare Value > 1 & ≤100)
Cond_Prob1 = VI. Data*0.3*RSquare Value

Else
if (Vi € Developer. Dataset & Vi. RSquare Value >1 & ≤100)

Cond_Prob2= Vi. Data*0.2*RSquare Value
Else (Vi € Expert. Dataset & Vi. RSquare Value >1 & ≤100)

Cond_Prob3= Vi. Data*0.5*RSquare Value
FinalCond_Prob = merge (Cond_Prob1, Cond_Prob2, Cond_Prob3)

Step 3.

While (FinalCond_Probi ≤ FinalCond_Prob n)
{

F = Make Factors (FinalCond_Probi)
{

Step 4. Variable Elimination (F, Vi);
Step 5. Return cond_Prob;
Step 6. End.

3.6. Process Model

The requirements for the student’s management software were gathered and docu-
mented. The Software Requirement Specification (SRS) document should be complete and
defined so that the actual requirements of the software can be fulfilled. The biggest issue
in software development is a change in the SRS document and, to tackle this problem, we
performed certain processes on each module. A complete process model of the proposed
approach is presented in Figure 3.
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Requirements are repeatedly passed from the complete cycle to measure the change
in the requirement specification document. First, the requirements were gathered and
explored for students’ management software. The requirements were listed in a document
called the SRS document. After that, we identified the variables for analyzing the require-
ments. We analyzed the variables that support change predictions in the requirements
document from the literature. We derived the core productive variables from experts’ sug-
gestions and requirements engineers from relevant variables. The selected core variables
measure the probability of change as follows.

• Measuring the posterior probability of target variables, e.g., revisions upon the effect
of all of the core variables in the network.

• Measuring the posterior probability of the target variable in different scenarios, e.g.,
by making the individual variable evidence value high or low.

The initial probability was calculated by collecting data with the questionnaire method,
as discussed above. In this regard, a Bayesian tool (Netica) was utilized, in which the net-
work is constructed according to the variables’ dependencies, and measured the target
variable’s posterior probability. The posterior probability was also measured by an al-
gorithmic method utilizing the variable elimination method. The initial probability was
calculated by multiplying the probabilities by the regression value of the variables and
by the opinion weights of the developers, stakeholders, and experts discussed in the data
collection section. After measuring the posterior probability, if there is a high probability of
change, the revision in the requirements document will be high, and it is again fed back to
the requirement-gathering phase.

4. Evaluation Measures

For the evaluation of the proposed methodology, we have used different evaluation
measures. Detail is given in the following subsections.

4.1. Performance Evaluation

To measure the performance of the proposed work, algorithms were implemented in
the Python language. Where all major functions were performed in the Net and Factor
classes inherited in the main class. To compute the joint probability of all variables, a
Bayesian network was constructed. Conditional probability values were given as a dataset
in the form of a Jason file and on the run time. High and low evidence values were
queried to compute the results of the desired variables along with the computation of the
posterior probability.

4.1.1. Bayesian Network of Proposed Work

The variables represent the network’s degree of revisions; therefore, the posterior
probability of each variable was computed in different cases and each time, and the results
were recorded. The final form of the Bayesian network is presented in Figure 4. In this
network, the proposed algorithm calculates the conditional probabilities of all of the
variables and the posterior probability of revisions.

4.1.2. Bayesian Network of del Sagrado et al. [13]

To compare the results of the proposed model with a state-of-the-art method, the network
model of del Sagrado et al. [13] was also constructed. In this regard, we compared the results
of both models by incorporating the same dataset values. The del Sagrado et al. [13] model is
described in Figure 5.
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The results demonstrate a clear difference in the results of both networks. The del
Sagrado et al. [13] network produced a 0.48 probability for the “high” state and a 0.53
probability for the “low” state regarding the data gathered from experts. Likewise, the
results of the proposed network were a 0.39 probability for the “high” state and a 0.42
probability for the “low” state using the same dataset.

4.1.3. Sensitivity Analysis

We calculated the posterior probability of the target variable by increasing the values
of the prior probabilities of the variables in the network. We increased the conditional
probabilities of the variables dependent on the target node and analyzed the value of the
target variable. The formula for the sensitivity analysis is given as:

D (Pr, Pr’) = ln min (Pr’x/v)/(Pr x/v) − ln max (Pr’x/v)/(Pr x/v) (1)
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where D (Pr, Pr’) is the distance between the old and new conditional probability values.
While ln min(Pr’x/v)/(Prx/v) is a ratio of the old and new conditional probabilities of the
low state probability, ln max(Pr’x/v)/(Prx/v) is the ratio of the old and new conditional
probabilities of the high state probability.

Peˆ(−d)/Peˆ(−d) − P + 1 <= Pr’(ą/ß) <= Peˆ(d)/Peˆ(d) − P + 1 (2)

Equation (2) shows the range of new probabilities of revisions where Pr’(ą/ß) is a new
probability of revisions after changing the conditional probability values of the variable
in the network. Peˆ(−d)/Peˆ(−d) − P + 1 is the low probability state of revisions and d
is the distance calculated by Equation (1). Similarly, Peˆ(−d)/Peˆ(−d) − P + 1 is the low
probability state of revisions, and d is the distance calculated by Equation (1).

The probabilities (before and after the increase) of variables (quality, reusability, vari-
ability, and consistency) are presented in Table 4. The distance between the old probability
values of the variables is calculated by Equation (1) and the new probability of revision is
calculated by Equation (2).

Table 4. Posterior probability of revisions with respect to the sensitivity analysis.

Variables

Low State Old
Conditional

Probability of
Revisions

Low State New
Conditional

Probability of
Revisions

High State Old
Conditional-

Probability of
Revisions

High State New
Conditional

Probability of
Revisions

Quality 0.42 0.41 0.45 0.45

Reusability 0.42 0.41 0.45 0.46

Consistency 0.42 0.41 0.45 0.45

Variability 0.42 0.38 0.45 0.62

The revisions in the Bayesian network are dependent on the quality, reusability, vari-
ability, and consistency. To analyze the effect of the revisions, the conditional probabilities
were increased by 5% (suggested by experts). Table 4 shows the results of the posterior
probability of revisions as a result of increasing the probability of the given variables. The
results demonstrate that there is little effect on the posterior probability, except in the
variability values of 0.38 for the low state and 0.62 for the high state.

4.2. Accuracy Measurement

In this section, the accuracy values of the del Sagrado et al. [13] model and the proposed
model are computed by the mean magnitude error (Equation (3)) and root mean square
error (Equation (4)).

MRE = 1/n |∑Actual Revisions − Estimated Revision/Actual Revisions|= 1/n | ∑
yi − yi’/yi|

(3)

where n is the sample size, yi represents the actual results, and yi’ represents the estimated
results.

MSE = 1/n
√

(Actual Revisions − Estimated Revision)ˆ2 (4)

The computed values are presented in Table 5 for comparison.
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Table 5. Results comparison between the proposed model and the del Sagrado et al. [13] model.

Models Mean Values of
Estimated Results

Mean Magnitude
Relative Error

(MMRE)

Root Mean Square
Error (RMSE)

Proposed model 0.465 0.0042 0.026

del Sagrado et al. [13]
model 0.435 0.0052 0.032

Low values of the root mean square error and mean magnitude relative error mean
a higher accuracy of predictions. The lower the number of revisions, the higher the
reliability of the requirement specification document. The values of the MMRE and RMSE
of the proposed model are 0.0042 and 0.0026, while the MMRE and RMSE values of
del Sagrado et al. [13] are 0.0052 and 0.0032. As the proposed model MMRE and RMSE
values are lower than the del Sagrado et al. [13] model, the proposed model achieved a
higher performance than the existing model.

4.3. Experimental Results and Discussion

In this section, the results of the experiment are listed in Table 6. These results
are obtained by the variable elimination algorithm which takes the Bayesian network
conditional probability values as its input. The Bayesian network is constructed to predict
the revisions in the requirement specification document. Thus, the output results show the
probability value of revisions. It has two values: “high” and “low”. Thus, it calculates the
total probability on the basis of the conditional probabilities of the variables in the network.
We also have shown the effects of the queried variables’ results on the individual variable
values. Table 6 provides the results of the proposed approach.

Table 6. Results of the proposed model of individual variable effects on revisions.

Variables Probability
Value

Probability
(Revisions)

Probability
Value

Probability
(Revisions)

Specificity High 0.44 Low 0.45

Expertise High 0.44 Low 0.45

Verifiable High 0.44 Low 0.45

Ambiguity High 0.45 Low 0.44

Dependency High 0.45 Low 0.44

Technology High 0.44 Low 0.45

Completeness High 0.44 Low 0.45

Reusability High 0.44 Low 0.45

Commitment High 0.45 Low 0.44

Cost and schedule High 0.45 Low 0.44

Consistency High 0.44 Low 0.45

Quality High 0.43 Low 0.44

Variability High 0.42 Low 0.45

We also analyzed the effects on the revision probability by varying the values of
individual variables. We also applied this method to the del Sagrado et al. [13] prediction
model and analyzed the results by comparing them with our proposed model results. We
derived the results from the proposed model by making each variable probability high and
low. The main purpose was to analyze the effect on the probability of revisions by varying
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each variable probability value. The results of the del Sagrado et al. [13] model on their
proposed variables and acquired data are presented in Table 7.

Table 7. Results of the del Sagrado et al. [13] model individual variable effects on revisions.

Variables Probability
Value

Probability
(Revision)

Probability
Value

Probability
(Revisions)

Specificity High 0.49 Low 0.52

Stakeholder expertise High 0.49 Low 0.52

Unexpected dependencies High 0.52 Low 0.49

Requirement
completeness High 0.49 Low 0.52

Reused requisite High 0.49 Low 0.52

Degree of commitment High 0.52 Low 0.49

Unclear cost and benefits High 0.52 Low 0.49

Homogeneity High 0.49 Low 0.52

Requirement variability High 0.43 Low 0.49

The results obtained from both models by varying the values of each variable depict
that the probability of revisions remains low in the proposed model as compared to the del
Sagrado et al. [13] model. We also proposed two scenarios with experts’ suggestions for
the prediction of revisions in the SRS document and recorded the results. The scenarios are
as follows:

• Scenario 1: Specificity = High, Expertise = High, Verification = High, Ambiguity =
Low, Dependency = Low, Technology = High, Completeness = High, Reusability =
High, Commitment = High, Cost and Schedule = Low, Consistency = High, Quality =
High, Variability = Low, Revisions = Low.

• Scenario 2: Specificity = Low, Expertise = Low, verification = Low, Ambiguity = High,
Dependency = High, Technology = Low, completeness = Low, Reusability = Low,
Commitment = Low, Cost and Schedule = High, Consistency = High, Quality = High,
Variability = High, Revisions = High.

The results of the proposed model and the del Sagrado et al. [13] model after applying
both scenarios are presented in Table 8.

Table 8. Scenario results of the proposed model and the del Sagrado et al. [13] model.

Scenario No Revisions Probability of
Proposed Model

Revisions Probability of
del Sagrado et al. [13]

Scenario 1 0.42 0.44

Scenario 2 0.45 0.51

After comparing the results of both tables, we concluded that when the variability
value is high, our proposed model calculated a 0.42 and 0.45 probability of revisions for
both scenarios. Likewise, in the del Sagrado et al. [13] model results table, when the
requirement variability is high, it calculated a 0.51 probability of revisions; when it is low,
it calculated a 0.44 probability of revisions. From the results, it is observed that there is
a minor difference in the values of both models. However, the proposed model’s results
are lower in each scenario, which means that the proposed model is better than that of
del Sagrado et al. [13].

In this section, the proposed model is evaluated by (i) comparing results, (ii) sensitivity
analysis, and (iii) accuracy calculation. We performed a sensitivity analysis by using four
variables to measure the effects on the posterior probability of revisions. The accuracy of
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the proposed model is calculated through two methods: (i) mean magnitude relative error
and (ii) root mean square error. The MMRE and RMSE values of the proposed model are
0.0042 and 0.0026, while the MMRE and RMSE values of del Sagrado et al. [13] are 0.0052
and 0.0032, respectively. As lower values are better, it is concluded that the proposed model
has a better accuracy.

5. Conclusions and Future Work

Requirement change is a big challenge in the software industry. The change in require-
ments document at the design and implementation level is a major cause of increases in
the project cost and time, and low quality which leads to software failures. Thus, this issue
should be resolved in the early stages. In this work, we have focused on predicting the
change in the requirement specification document. We performed a detailed systematic
literature review to find the variables that can be used for the accurate prediction of changes
in requirements. We observed that existing approaches use a few variables for change
predictions resulting in compromised accuracy, whereas relatively few approaches consider
expert knowledge and requirements matrices. Thus, in this work, we discovered the core
factors from the literature that are the most influential on the revision of requirement
specifications and utilized them in the construction of the Bayesian network. We incor-
porated artificial intelligent techniques into software engineering for making decisions
based upon stakeholders’, developers’, and experts’ knowledge in the Bayesian network.
We collected data by the questionnaire method to take the responses of all of the persons
concerned. Their responses were compiled in an Excel file. After that, the dataset was used
to perform a detailed quantitative analysis. We constructed a Bayesian network with the
help of the Netica tool and examined the posterior probability of revisions by a variable
elimination algorithm. Later on, the Bayesian network was incorporated into the variable
elimination algorithm. The Bayesian network contains the conditional probabilities of
the independent and dependent variables. We evaluated the Bayesian network by the
comparison method, sensitivity analysis, and accuracy calculation. The results show that
the del Sagrado et al. [13] model obtained a 0.44 probability for low-state revisions and
a 0.51 probability value for high-state revisions, whereas the proposed model’s low-state
revisions probability is decreased to 0.42, and the high-state revisions probability decreased
to 0.45. This means, that the proposed method has computed significant results. Hence,
we can conclude that if the proposed method is applied to the requirement specification
document, the requirement change can be predicted, which may direct the project man-
ager to take corrective or preventive measures. In the future, we want to repeat the same
experiment using a consistent dataset. Presently, we utilized one algorithm for obtaining
the posterior probability. In the future, we will use other methods and algorithms for
computing the change probability and analyzing the performance. Finally, we also want to
test the proposed model in a real scenario.
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