
Citation: Sharma, A.; Balasubramanian,

V.; Kamruzzaman, J. A Novel Dynamic

Software-Defined Networking

Approach to Neutralize Traffic Burst.

Computers 2023, 12, 131. https://

doi.org/10.3390/computers12070131

Academic Editor: Paolo Bellavista

Received: 12 May 2023

Revised: 16 June 2023

Accepted: 26 June 2023

Published: 27 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

A Novel Dynamic Software-Defined Networking Approach to
Neutralize Traffic Burst
Aakanksha Sharma 1,2,*, Venki Balasubramanian 1,3 and Joarder Kamruzzaman 1,3

1 Institute of Innovation, Science and Sustainability, Federation University Australia,
Ballarat, VIC 3350, Australia; v.balasubramanian@federation.edu.au (V.B.);
joarder.kamruzzaman@federation.edu.au (J.K.)

2 Melbourne Institute of Technology (MIT), Melbourne, VIC 3000, Australia
3 Centre for Smart Analytics (CSA), Federation University Australia, Ballarat, VIC 3350, Australia
* Correspondence: aakanksha.sharma2@federation.edu.au

Abstract: Software-defined networks (SDN) has a holistic view of the network. It is highly suitable
for handling dynamic loads in the traditional network with a minimal update in the network
infrastructure. However, the standard SDN architecture control plane has been designed for single or
multiple distributed SDN controllers facing severe bottleneck issues. Our initial research created a
reference model for the traditional network, using the standard SDN (referred to as SDN hereafter) in
a network simulator called NetSim. Based on the network traffic, the reference models consisted of
light, modest and heavy networks depending on the number of connected IoT devices. Furthermore,
a priority scheduling and congestion control algorithm is proposed in the standard SDN, named
extended SDN (eSDN), which minimises congestion and performs better than the standard SDN.
However, the enhancement was suitable only for the small-scale network because, in a large-scale
network, the eSDN does not support dynamic SDN controller mapping. Often, the same SDN
controller gets overloaded, leading to a single point of failure. Our literature review shows that
most proposed solutions are based on static SDN controller deployment without considering flow
fluctuations and traffic bursts that lead to a lack of load balancing among the SDN controllers in
real-time, eventually increasing the network latency. Therefore, to maintain the Quality of Service
(QoS) in the network, it becomes imperative for the static SDN controller to neutralise the on-the-
fly traffic burst. Thus, our novel dynamic controller mapping algorithm with multiple-controller
placement in the SDN is critical to solving the identified issues. In dSDN, the SDN controllers
are mapped dynamically with the load fluctuation. If any SDN controller reaches its maximum
threshold, the rest of the traffic will be diverted to another controller, significantly reducing delay and
enhancing the overall performance. Our technique considers the latency and load fluctuation in the
network and manages the situations where static mapping is ineffective in dealing with the dynamic
flow variation.

Keywords: static and dynamic controller mapping; flow fluctuation; latency minimization;
load balancing

1. Introduction

The global advancement of the Internet of Things (IoT) has poised traditional network
traffic for explosive growth. The prediction in the literature shows that in the future, tril-
lions of smart devices will connect to transfer useful information [1]. Accommodating such
proliferation of devices in the traditional network infrastructure is a significant challenge
due to the absence of centralised control, making it tedious to implement device manage-
ment and network protocol updates. Expanding the traditional infrastructure and manual
traffic control methods is not enough to cope with the exponential growth of IoT devices.

SDN technology manages the network devices and provides a complete global view
of the network to configure, monitor, and troubleshoot quickly. SDN decouples the data

Computers 2023, 12, 131. https://doi.org/10.3390/computers12070131 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers12070131
https://doi.org/10.3390/computers12070131
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0001-6686-4424
https://orcid.org/0000-0002-3748-0277
https://doi.org/10.3390/computers12070131
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers12070131?type=check_update&version=1

Computers 2023, 12, 131 2 of 25

and control plane, making the network control directly programmable as it is decoupled
from forwarding functions. Thus, SDN is programmable, while traditional networks are
non-programmable as their data and control planes are embedded in the same device.
Troubleshooting in SDN networks is easy, based on a centralised SDN controller. Still, tradi-
tional networks are challenging to troubleshoot due to the static deployment of hardware
devices and their heterogeneity issues. These SDN benefits make it capable of overcoming
the problems of traditional networks. The literature demonstrates that SDN can also handle
bandwidth starvation issues by allocating bandwidth more efficiently due to its directly
programmable, agile, and centrally managed network control. Moreover, it significantly
increases the speed and network control flexibility compared to traditional networks.

The current SDN architecture of the control plane has been designed for a single con-
troller or multiple distributed controllers; however, a large-scale network with a logically
centralised single controller faces severe bottleneck issues. Our research was initiated
by creating a reference model by placing the standard SDN in a traditional network and
analysing how it overcomes the traditional network issues that enhance network perfor-
mance. Implementing SDN in a traditional network reduces network delays and jitters
while improving the network throughput. Subsequently, overall network performance for
all network traffic types was enhanced. However, a huge network delay is still noted in
heavy network traffic. Our research identified that the gap is due to a lack of packet priority
processing, congestion control mechanisms, and an unbalanced network load when the
load increases exponentially, which increases packet loss and network delay.

To overcome the identified issues, real-time applications should be appropriately
prioritised to improve network performance. For example, reliable and timely data delivery
is necessary for critical applications such as vehicular networks and healthcare monitoring
systems. Therefore, the IoT heterogeneous network must maintain the network QoS by
enabling packet prioritisation and congestion control mechanisms.

Thus, we proposed extended SDN (eSDN) using the standard SDN’s packet priority
processing and congestion control algorithm. The standard SDN is optimised by min-
imising congestion to achieve eSDN, which can accommodate the growing number of
heterogeneous IoT devices. The simulation analyses of the reference network show that
eSDN performs better than the standard SDN for all network traffic by processing pack-
ets per their priorities, minimising packet loss and overall network delay. Therefore, a
significant improvement in network performance is achieved by implementing eSDN in
the standard SDN environment for mild and moderate traffic. However, heavy traffic
still has extensive network delays due to the static SDN controller deployment in eSDN.
When the SDN switch observes a traffic burst in eSDN, the corresponding SDN controller
might often become overloaded. A scalable and trusted platform is needed to manage the
numerous connected IoT devices and efficient network technology to support dynamic
network management. So, the flow-based dynamic controller mapping is significant for
maintaining the SDN’s optimal network management by improving the network QoS.

Our further research improves the network QoS by maintaining the network load
with dynamic mapping among SDN controllers when traffic bursts. Thus, it proposes a
multiple SDN controller placement in the network with a dynamic mapping algorithm
that minimizes the network delay and jitter. The approach maps the SDN controllers
dynamically according to the load fluctuations.

Initially, we simulated the traditional networks using the standard SDN from NetSim
Simulator to identify the delay, jitter, and throughput deficiencies for heterogeneous IoT
devices. Then, we proposed and implemented the eSDN in the standard SDN to improve
network performance. This proposed method prioritises processing urgent information,
reducing delays and improving the network’s QoS. However, it leads to only one SDN con-
troller being overloaded, thus affecting the network performance. Therefore, we proposed
dSDN for the dynamic controller mapping that minimises delay and jitter.

Computers 2023, 12, 131 3 of 25

Overall, the presented work in this paper makes the following contributions:

1. SDN-based new load balancing techniques are introduced, termed eSDN and dSDN,

(a) eSDN provides packet priority processing and supports congestion control,
which is better than the standard SDN-based solution.

(b) dSDN can deal with imbalanced network load due to flow fluctuation signifi-
cantly through the dynamic mapping of controllers.

2. The proposed solution is scalable to large-scale networks and will allow network
providers to manage heavy traffic from heterogeneous sources, such as growing
streaming and IoT applications.”

3. Extensive simulation results with varied types of network traffic demonstrate that
dSDN outperforms eSDN and traditional SDN in terms of throughput, delay, and
jitter and ensures better QoS.

The rest of the paper is organised as follows: Section 2 summarises related works
in the current literature; Section 3 introduces standard SDN in traditional networks; the
problem formulation, system model and proposed methods are mentioned in Section 4;
network setup is introduced in Section 5; and Section 6 presents the simulation of IoT
networks. The overall comparison of the results is discussed in Section 7, followed by a
conclusion in Section 8.

2. Related Works

Our literature considers several survey articles on SDN’s architecture, such as [2–9].
The studies in [5–7,10] reviewed the SDN while introducing programmable networks that
considered controllers and simulators to simulate the architecture. Karakus et al. [11] re-
vealed that SDN has emerged in response to traditional network limitations. Still, scalability
is an issue in the SDN network. The scalability problem is identified as the controller’s
scalability issues and summarised in the discussion into topology and mechanisms-based
scalability issues. The potential challenges that need to be considered for future research
include controller failure, state/policy distribution/consistency, flow rule setup latency,
and SDN controller placement problems.

SDN provides various technical benefits, particularly network traffic engineering [12],
due to SDN’s separation of data and control plane. However, separating the control and
forwarding planes in SDN results in issues such as controller placement [13] and network
management problems due to dynamic flow [14]. A single controller is insufficient for
dynamic network management in large-scale networks. Therefore, the multiple distributed
SDN controller architecture is deployed to manage the network [15–17].

However, due to an imbalance of load distribution among the SDN controllers, most
controllers are underutilized [18,19]. As the network grows, its data increases; thus, if
controllers are overloaded, the response time increases. If the number of requests exceeds
the controller’s processing power, requests may get lost. Therefore, these approaches
establish a static mapping between the SDN switch and controllers, causing an imbalanced
load in the network and decreasing performance with the dynamic network traffic flow.
To ensure network QoS, networks must be programmable; for example, the flows, which
have high priority or are delay-sensitive, must be forwarded through the shortest path.
The healthcare data cannot be delayed in the case of remote patient monitoring data. Low-
sensitive flows can be forwarded using reliable paths but may be the longest paths with
minimum loss.

In recent years, increased efforts have been invested in centralised flow control meth-
ods based on SDN [20,21]. Kim et al. [22] suggested that SDN-based technologies must be
applied for network load balancing, traffic forwarding, and better bandwidth utilisation. A
centralised method for flow management using a network operating system named NOX
is presented in [23,24]. It manipulates the switches according to the management decisions.
If the incoming packet at a switch matches a flow entry, the switch applies the related
actions. A round-robin load-balancing method, which uses a circular queue to decide

Computers 2023, 12, 131 4 of 25

where to send the request of each incoming client, is proposed by [25] and responds to
DNS requests with a list of IP addresses. However, these approaches need to be revised to
handle real-time traffic fluctuation. For instance, the work in [26] is based on load shifting
for a data centre network when the flow is at its peak. However, this shifting method
is not suitable for centralised networks. Moreover, centralised rerouting decisions are
essential in most mechanisms, but the cost of rerouting negatively affects their decision-
making efficiency.

However, the present centralised SDN cannot handle the IoT dynamic requirements.
As a result, available resources are underutilized in centralised SDN due to the lack of a
dynamic rule-placement approach. Thus, an efficient approach is needed as billions more
devices will be connected in the future, generating data exponentially [27,28] mentioned
that network management is essential to managing the massive collection of information
and devices to process the generated data efficiently. The overall network performance de-
pends on resource utilisation; thus, under or over-utilising network components degrades
the network performance and minimizes the network utility. So, we need suitable technolo-
gies to control the network traffic flows for load balancing and latency minimization.

To balance the network load, better architectures must be designed to enhance the
network scalability without overloading the SDN controllers. The main aim is to reduce
the central component load without reducing the load balance efficiency. Related to this
identified issue, Neghabi et al. [29] described that few mechanisms can work to balance
the network load. For example, the SDN switch’s default controller can be changed by
sending all the requests from the switch to a new controller or associating every switch
with more than one controller. Thus, enabling the SDN switch to send some requests to one
controller and the rest of the data to another leads to flow distribution; still, this mechanism
cannot cope with heavy traffic with flow variation. For a large-scale network, an effective
load-balancing algorithm might be required to increase the flexibility of the network.

A static deployment of SDN controllers in [30] uses multiple SDN controllers where
more than one SDN controller participates and works cooperatively in the forwarding
directions to create various domains. When multiple SDN controllers are randomly placed
at different locations, they enhance the network QoS by monitoring and controlling the SDN
switches in every environment [30]. Due to this approach, overall network performance
increased significantly with effective load distribution among different controllers. Still,
controllers cannot handle real-time flow fluctuation due to their static deployment.

Li et al. [31] focused on the zoning problem, dividing the network into zones and
letting slave controllers manage the zones separately and synchronize with the master
controller for distributed network optimisation. With the help of meta-heuristic approaches,
researchers balanced the processing load. Few works implemented the dynamic approach,
but those approaches are less effective and only provide restricted customisation flexi-
bility, being not suitable for the proliferation of IoT devices because multiple controllers
do not work effectively when deployed due to the flow fluctuation in the network. A
comprehensive review of several optimised controller placement problem algorithms in
SDN is defined in [9], which raised many research challenges, such as unbalanced network
load and computing the optimal number of controllers needed in the network. Network
static load balancing is discussed in [32,33], which fails to handle real-time flow fluctuation.
Pham et al. [34] illustrate the impact of service chains on the control plane and formulate the
dynamic controller/switch mapping (DCSM) problem in Network Function Virtualization
(NFV) networks to reduce the operational cost. The experimental results show a reduction
in operational cost by up to 31.7% and 28.3% compared to K-Mean and the matching
game-based approaches, respectively.

In summary, the existing research only found better solutions for static load balancing
and targets only one or two issues related to SDN controllers. No solution exists in the
literature that satisfies the network performance, load balancing, latency minimisation,
and dynamic flow fluctuations. Therefore, it is imperative to consider dynamic traffic

Computers 2023, 12, 131 5 of 25

management in the existing network infrastructure by dynamic SDN switch-controller
mapping to avoid an unbalanced network load.

Therefore, addressing these challenges is needed to improve the network’s scalability
and robustness. We proposed a dynamic solution for an unbalanced network load due to
flow fluctuation. The dSDN considers dynamic load fluctuation with the dynamic mapping
of controllers; none of the SDN controllers goes unbalanced. It enhances the network
throughput, minimises the network latency, and enhances the overall network QoS. In this
paper, we have proposed and implemented the eSDN and dSDN.

3. Introduction to Standard SDN in Traditional Network Architecture

SDN technology manages the network devices and provides a complete global view
of the network to configure, monitor, and troubleshoot quickly. It has two main features:
decoupling the control and data planes; and control plane programmability [35]. With the
separation of the network from the hardware, policies are no longer to be executed on the
hardware itself. SDN enables dynamic and efficient network configuration and centralises
network intelligence by separating the infrastructure layer, including network packets (or
data), the control layer, and the routing process (or control planes). The control plane is
the brain of the SDN network, and it contains all the intelligence because of one or more
controllers present in it.

Figure 1 shows the SDN architecture, and its details are mentioned below:

• Infrastructure layer: The bottom layer contains various network devices such as
switches, routers, and access points. The SDN controller is responsible for managing
and accessing them.

• Application program interfaces (APIs): APIs are the central control point for every
network component. SDN controller uses northbound and southbound application
program interfaces to interact with the application and infrastructure layer. A south-
bound interface allows sending commands from a higher-level network component
to a lower level. Conversely, the northbound interface allows a lower-level network
component to establish communication with a higher level.

• Control layer: The control plane provides the control functionalities for network su-
pervision. It has a centralised SDN controller responsible for communication between
network applications and controllers. The SDN controller interacts with the upper
and lower application layers using northbound and southbound interface protocols.

• Application layer: It has one or more end-user applications, such as security, load
balancer and firewalls. It uses the northbound interface to interact with the SDN
controller, and they get an abstract network view by interacting with controllers for
internal decision-making processes.

SDN architecture uses the OpenFlow protocol (OFP), which defines the communication
among SDN controllers and network devices. The OFP works on the TCP protocol, which
establishes the IP connection among the controller and switches or any network device. It
includes three essential components defined below [36,37].

• Switches: It uses flow tables containing the action fields associated with every flow
entry 25 communication. It evaluates the incoming packet, checks the matching flow
table entry, and performs the required action. The switch communicates through the
channels initiated when it sends a hello message and some information about the
highest OpenFlow (OF) version it supports to the controller; the controller replies to
the message and its highest supported OF version. Then switch negotiates on the
highest OF level, which they both support. Adding more channels will boost the
network connection speed.

• Flow Entries: In the flow table, a flow entry is an element that is used to match and
process the packets. When a packet matches a flow entry, the OF switch updates the
action set and matches the packets in the flow table to send to the respective ports.

• Controllers: Generally, a controller manages the communication between two or more
devices. A physical/virtual device manages traffic forwarding by communicating

Computers 2023, 12, 131 6 of 25

with the network devices. It is used to modify, manage, or navigate the data flow
among entities like a video game controller that acts as an input device for playing
games. The OFP [36] used in SDN is the standard for establishing a communication
protocol among SDN controllers and networking devices. It provides various benefits,
including programmability, centralised intelligence, and abstraction.

Computers 2023, 12, x FOR PEER REVIEW 6 of 27

Figure 1. SDN Architecture.

SDN architecture uses the OpenFlow protocol (OFP), which defines the

communication among SDN controllers and network devices. The OFP works on the TCP

protocol, which establishes the IP connection among the controller and switches or any

network device. It includes three essential components defined below [36,37].

• Switches: It uses flow tables containing the action fields associated with every flow

entry 25 communication. It evaluates the incoming packet, checks the matching flow

table entry, and performs the required action. The switch communicates through the

channels initiated when it sends a hello message and some information about the

highest OpenFlow (OF) version it supports to the controller; the controller replies to

the message and its highest supported OF version. Then switch negotiates on the

highest OF level, which they both support. Adding more channels will boost the

network connection speed.

• Flow Entries: In the flow table, a flow entry is an element that is used to match and

process the packets. When a packet matches a flow entry, the OF switch updates the

action set and matches the packets in the flow table to send to the respective ports.

• Controllers: Generally, a controller manages the communication between two or

more devices. A physical/virtual device manages traffic forwarding by

communicating with the network devices. It is used to modify, manage, or navigate

the data flow among entities like a video game controller that acts as an input device

for playing games. The OFP [36] used in SDN is the standard for establishing a

communication protocol among SDN controllers and networking devices. It

provides various benefits, including programmability, centralised intelligence, and

abstraction.

Figure 1. SDN Architecture.

The significant advantage of SDN technology is that it can quickly adapt to new
policies using the software because its centralised and distributed approaches provide
better results than traditional hardware-based networks. Thus, SDN is more flexible and
takes less time to manage the network. Troubleshooting in SDN networks is easy, based on
a centralised controller. Still, traditional networks are challenging to troubleshoot due to
the static deployment of hardware devices and their heterogeneity issues.

These SDN benefits make it capable of overcoming the issues of traditional networks.
Initially, we identify how standard SDN performs compared to the traditional networks
by using a standard network simulator, NetSim, to systematically identify the traditional
network issues and overcome the issues using standard SDN. The reference models are
later used to study the performance of our contributions, eSDN and dSDN. Our simulation
results using SDN in the traditional network show that SDN accommodates the need for
growing heterogeneous IoT devices. The simulation results also revealed that apart from
unbalanced network load and controller placement problems, the SDN also suffers from
packet prioritisation and congestion control techniques leading to packet loss and delay.
If the packets are processed based on their priorities, for instance, real-time packets such
as voice and video get high priority compared to FTP packets, it can enhance the overall

Computers 2023, 12, 131 7 of 25

QoS in the network. The section below introduces the priority scheduling and congestion
control algorithm (eSDN).

4. Problem Formulation, System Model and Proposed Methods
4.1. Problem Formulation and System Model

The ‘Related Work’ section identified the traditional network issues with increased
Internet traffic. These challenges can be alleviated through the use of SDN. We created
our reference model for traditional network architecture and then used SDN to verify
the results. The results verified that SDN behaves better than traditional networks by
improving the QoS. However, for heavily crowded networks, standard SDN suffers from
severe bottleneck issues and huge network delays are noted. The identified research gap
is the lack of packet priority processing, congestion control method and multi-controller
placement. Another problem is the inability of the SDN to deal with heavy traffic and how
the flow can the distributed among the controllers to achieve load balancing.

A scalable and trusted platform is needed to manage the numerous connected IoT
devices and efficient network technology to support dynamic network management. So, the
flow-based dynamic controller mapping is significant for maintaining the SDN’s optimal
network management by improving the network QoS. Most of the literature is based on
static controller deployment. Few authors focused on the dynamic placement of controllers
without considering the dynamic load fluctuation and network latency.

Figure 2 shows an SDN system model on which we built our proposed solutions.
Below we propose two methods to address the research problem stated above.

Computers 2023, 12, x FOR PEER REVIEW 8 of 27

Figure 2. SDN-based System Model.

4.2. Introduction to Priority Scheduling and Congestion Control Algorithm (eSDN) in Standard

SDN

Effective resource allocation can enhance the network QoS by considering packet

buffering before the transmission. The packet buffering matches the data transmission

speed between two devices by managing the queuing mechanisms used for packet

transmission and dropping the packets based on bandwidth allocation and buffer space.

However, the latency or delay of a packet depends on how long a packet waits before

transmission; therefore, the queuing method affects packet latency. Thus, our proposed

solution implements packet priority processing with congestion control in standard SDN.

The proposed solution is implemented in a standard SDN controller. Figure 3 is the

block diagram of eSDN, and Table 1 is the algorithmic notations showing the commonly

used notations and variables. As per our approach, packet priority and type are initialized

based on the abovementioned priority table, and then it initializes the packet priority

functions. The ADD and GET functions are performed based on the assigned packet

priority; if ADD, all packets will be added to the buffer based on their priorities; otherwise,

packets will be retrieved per priority. It is essential in some situations where packets from

multiple directions arrive at an SDN router. The priority processing allows the SDN router

to set the priority levels for all packets from different directions and helps to deliver the

packets as per their importance. A congestion control method is introduced with packet

priority processing, which works in four phases: slow start, congestion avoidance, fast

retransmit, and fast recovery.

Figure 2. SDN-based System Model.

4.2. Introduction to Priority Scheduling and Congestion Control Algorithm (eSDN) in
Standard SDN

Effective resource allocation can enhance the network QoS by considering packet
buffering before the transmission. The packet buffering matches the data transmission
speed between two devices by managing the queuing mechanisms used for packet transmis-
sion and dropping the packets based on bandwidth allocation and buffer space. However,

Computers 2023, 12, 131 8 of 25

the latency or delay of a packet depends on how long a packet waits before transmis-
sion; therefore, the queuing method affects packet latency. Thus, our proposed solution
implements packet priority processing with congestion control in standard SDN.

The proposed solution is implemented in a standard SDN controller. Figure 3 is the
block diagram of eSDN, and Table 1 is the algorithmic notations showing the commonly
used notations and variables. As per our approach, packet priority and type are initialized
based on the abovementioned priority table, and then it initializes the packet priority
functions. The ADD and GET functions are performed based on the assigned packet
priority; if ADD, all packets will be added to the buffer based on their priorities; otherwise,
packets will be retrieved per priority. It is essential in some situations where packets from
multiple directions arrive at an SDN router. The priority processing allows the SDN router
to set the priority levels for all packets from different directions and helps to deliver the
packets as per their importance. A congestion control method is introduced with packet
priority processing, which works in four phases: slow start, congestion avoidance, fast
retransmit, and fast recovery.

Computers 2023, 12, x FOR PEER REVIEW 9 of 27

Figure 3. Block diagram for eSDN.

Table 1. Notations of Algorithmic Pseudocode for eSDN.

Notations Descriptions

Pn Priority function

Pp Packet priority

Pt Single packet

Pa All packets

Ack Packet acknowledgement

Cwnd Congestion window size

Smss Sender maximum segment size

Rmss Receiver maximum segment size

Sthresh Slow start threshold value

Dack Duplicate packet acknowledgement

Rto Retransmit timeout

Bp Packet buffer

Figure 3. Block diagram for eSDN.

The flow chart for our proposed eSDN algorithm is shown in Figure 4. The initial step
is to define the packet priorities and packet functions. The ADD and GET functions are
performed based on the assigned packet priority. The network congestion is managed by
the transmission control protocol (TCP). TCP protocol uses a congestion window and a
congestion policy that avoids congestion. The key design principle is avoiding network
congestion by adjusting the TCP receiver window of the ACK packet at the SDN controller
to reduce the sender’s transmission rate. The receiver determines the window size by
withholding the acknowledgement of packets sent by the sender.

Computers 2023, 12, 131 9 of 25

Computers 2023, 12, x FOR PEER REVIEW 10 of 27

The flow chart for our proposed eSDN algorithm is shown in Figure 4. The initial

step is to define the packet priorities and packet functions. The ADD and GET functions

are performed based on the assigned packet priority. The network congestion is managed

by the transmission control protocol (TCP). TCP protocol uses a congestion window and

a congestion policy that avoids congestion. The key design principle is avoiding network

congestion by adjusting the TCP receiver window of the ACK packet at the SDN controller

to reduce the sender’s transmission rate. The receiver determines the window size by

withholding the acknowledgement of packets sent by the sender.

Figure 4. Flowchart for eSDN. Figure 4. Flowchart for eSDN.

The initial phase is a slow start; it updates the congestion window. The congestion
window determines the number of packets the sender can send. The initial congestion
window size for data transmission is 1; thus, TCP can send one packet until it receives an
acknowledgement (ACK). When the sender receives the ACK, the congestion window size
increases to two, and the sender can send two packets. After receiving every new ACK, the
sender congestion window rises exponentially. In congestion avoidance, the TCP resumes
the slow-start phase until it reaches a certain threshold or a packet loss occurs.

Computers 2023, 12, 131 10 of 25

Table 1. Notations of Algorithmic Pseudocode for eSDN.

Notations Descriptions

Pn Priority function

Pp Packet priority

Pt Single packet

Pa All packets

Ack Packet acknowledgement

Cwnd Congestion window size

Smss Sender maximum segment size

Rmss Receiver maximum segment size

Sthresh Slow start threshold value

Dack Duplicate packet acknowledgement

Rto Retransmit timeout

Bp Packet buffer

The next phase it enters is fast retransmitting, which arises when packet loss is ob-
served in the network and invokes the fast recovery phase. The congestion window will
increase linearly from ‘k’ to ‘k + 1’ after receiving ‘k’ new ACKs. Due to the observed
packet loss, the growth rate in the congestion window slows down.

The fast retransmit improves congestion avoidance with the fast-retransmit method as
it considers that duplicate ACKs could signal packet loss in the network. After obtaining
duplicate ACKs, if it receives three Dack, the fast-retransmit phase assumes packet loss and
invokes the fast recovery phase. The fast recovery is less aggressive than fast retransmitting
in reducing congestion windows. It implements the fast recovery method; when three
duplicate acknowledgements arrive, the congestion window drops to one, meaning less
network congestion and the congestion window need not be highly reduced.

Algorithmic Pseudocode for eSDN

The proposed algorithm that accomplishes our priority scheduling and congestion
control algorithm is shown in Algorithm 1.

Algorithm 1 Algorithmic Pseudocode for eSDN

1: Initialize Pn
2: if Pn is added, then
3: for each packet Pt in Pa from high to low priority, do
4: Add Pt to Buffer packet
5: end for
6: else Pn gets then
7: for each packet Pt in Bp from high to low priority, do
8: Retrieve Pt from the Buffer packet
9: end for
10: end if
11: Initialize Cwnd = 1, Smss = 1, Sthresh = 64 KB
12: Send Smss
13: while sending the segment, do
14: if Timeout, then
15: Set Sthresh = Cwnd, Cwnd = 1, Smss = 1
16: Send Smss waiting for ack
17: else Dack == 3 then
18: Invoke fast retransmit

Computers 2023, 12, 131 11 of 25

19: Invoke fast recovery
20: Sthresh = max (FlightSize, 2 ∗ Smss)
21: Cwnd = Sthresh + (3 ∗ Smss)
22: if full Acknowledgement is received, then
23: Cwnd = Sthresh
24: Exit from fast recovery
25: else partial Acknowledgement is received, then
26: Cwnd = Cwnd + Smss
27: if Rto, then
28: Initialize Cwnd = 1, Smss = 1
29: Send Smss
30: else
31: Stop
32: end if
33: end if
34: //Slow start phase
35: else Cwnd < Sthresh then
36: Cwnd = Cwnd + Smss
37: Smss = Cwnd
38: Send Smss and wait for Ack
39: //Congestion avoidance
40: else Cwnd ≥ Sthresh then
41: Cwnd+ = SmCss
42: Smss = Cwnd
43: Send Smss and wait for Ack
44: end if
45: end while

Initially, packet priority should be set with respect to the packet type. The packet
priorities are assigned based on their importance, and they are low for FTP, e-mail, and
HTTP; medium for video; and high for voice packet types. Based on the proposed priority-
processing approach, the packet with the highest priority will be executed first, followed
by the less-priority packets (lines 2 to 10). The priority scheduling algorithm’s priority
function will be initiated as given in Line (1). If the priority function is ADD, all the packets
will be added to the buffer based on their packet priority; if the priority function is GET,
the packet will be retrieved from the buffer based on the packet priority.

The Cwnd, Smss and Sthresh are initialised (lines 11–12) before the slow start phase
and then followed by sending maximum segment size (Smss). A slow start phase in the
congestion control mechanism avoids sending more packets than the network’s forwarding
capacity. It avoids network congestion. In the slow start phase, whenever the packet
receives an acknowledgement, the size of Cwnd increases by 1 Smss. The slow start phase
will continue until a certain Sthresh is achieved (lines 35 to 38). After receiving the Sthresh,
it will enter the congestion avoidance phase condition. During this phase, when a Sthresh
of 64 KB is reached, the congestion window size increases linearly after getting a new Ack
every time (Lines 40 to 43). If it receives three Dack (line 17), the congestion avoidance phase
ends, further invoking a fast-retransmit phase (line 18). After receiving three Dack, the
fast-retransmit phase assumes packet loss and invokes the fast recovery phase (line 19). The
fast recovery phase (lines 20 to 33) sets the value of Sthresh equal to the max (FlightSize/2,
2* Smss), where FlightSize is the amount of outstanding data in the network and sets the
Cwnd equals to Sthresh + (3* Smss).

After receiving an Ack for all packets, the full acknowledgement, Cwnd can be set to
Sthresh while exiting the fast recovery. Then, the algorithm enters the slow start process
again. Receiving a partial acknowledgement means another packet loss may occur, and
this retransmits the next loss packet. If Rto, it sets the recover variable equal to the highest
number of packets transmitted, exiting from the fast-recovery algorithm, invoking the slow
start algorithm and set Cwnd = 1 Smss = 1. This process is iterative between slow start,
congestion avoidance and fast recovery.

Computers 2023, 12, 131 12 of 25

4.3. Introduction to Dynamic Controller Mapping in eSDN (dSDN)

The dSDN works on the dynamic selection of SDN controllers for load balancing and
has been applied to a multi-controller distributed environment. Initially, in dSDN, all SDN
controllers listen to their nearby controller and calculate the distance from a node to the
controller, and the sensor to the controller, in a heterogeneous network. To enhance the
network performance by reducing delay in the dSDN, the algorithm selects the shortest
distance from the source node to the destination node. The load of the SDN controller is
also considered when choosing the shortest path. The overall dynamic controller mapping
procedure starts with fetching the controller id and device id, and the traversing will start
whenever there is a new entry in the SDN router. The router table gets updated, stores the
event activity, and the route is occupied. Thus, for every new entry, it fetches the associated
controller device id and checks the payload of the related controller. If the load is high,
another controller’s information will be collected. This step continues until it finds the
nearest controller with a load less than the threshold so the traffic can be redirected to
that controller.

Figure 5 shows the dynamic controller mapping approach to balance the controller’s
load with the flow fluctuation, while the flow chart for the dSDN process is presented in
Figure 6. Table 2 shows the algorithmic notations for dSDN.

Computers 2023, 12, x FOR PEER REVIEW 13 of 27

4.3. Introduction to Dynamic Controller Mapping in eSDN (dSDN)

The dSDN works on the dynamic selection of SDN controllers for load balancing and

has been applied to a multi-controller distributed environment. Initially, in dSDN, all SDN

controllers listen to their nearby controller and calculate the distance from a node to the

controller, and the sensor to the controller, in a heterogeneous network. To enhance the

network performance by reducing delay in the dSDN, the algorithm selects the shortest

distance from the source node to the destination node. The load of the SDN controller is

also considered when choosing the shortest path. The overall dynamic controller mapping

procedure starts with fetching the controller id and device id, and the traversing will start

whenever there is a new entry in the SDN router. The router table gets updated, stores the

event activity, and the route is occupied. Thus, for every new entry, it fetches the

associated controller device id and checks the payload of the related controller. If the load

is high, another controller’s information will be collected. This step continues until it finds

the nearest controller with a load less than the threshold so the traffic can be redirected to

that controller.

Figure 5 shows the dynamic controller mapping approach to balance the controller’s

load with the flow fluctuation, while the flow chart for the dSDN process is presented in

Figure 6. Table 2 shows the algorithmic notations for dSDN.

Figure 5. Block diagram for dSDN. Figure 5. Block diagram for dSDN.

Computers 2023, 12, 131 13 of 25

Table 2. Notations of Algorithmic Pseudocode for dSDN.

Notations Description

βmax Controller threshold

Cid Controller id

Sid Node source id

Did Node destination id

Dcs Distance from the controller to the source node

Ddc Distance from the destination node to the controller

Rt Routing table

Li Load in the controller i

Dall Distance table of all controllers from source to destination node

Cx Next, selected controller.

Et Event at time t

N Total number of controller devices available in the network
Computers 2023, 12, x FOR PEER REVIEW 14 of 27

Figure 6. Flowchart for dSDN.

Table 2. Notations of Algorithmic Pseudocode for dSDN.

Notations Description

βmax Controller threshold

Cid Controller id

Sid Node source id

Did Node destination id

Dcs Distance from the controller to the source node

Ddc Distance from the destination node to the controller

Rt Routing table

Li Load in the controller i

Dall Distance table of all controllers from source to destination node

Cx Next, selected controller.

Et Event at time t

N Total number of controller devices available in the network

Figure 6. Flowchart for dSDN.

Algorithm 2 shows the Pseudocode for the dynamic selection of SDN controllers for
load balancing. The procedure starts by gathering and storing all information in the local
database until propagation starts. Once communication stabilises, the information in the

Computers 2023, 12, 131 14 of 25

local database updates simultaneously along with the routing table. Critical parameters for
selecting the new route include the SDN controller load, the distance of the SDN controller
from the source node to the destination node, queue length at the controller, and waiting
time. All this information is stored in the local database corresponding to the controller id,
node id and sensor id.

Algorithm 2 Algorithmic Pseudocode for d SDN

1: if {Cid} then
2: Get Sid, Did
3: for i from 1 to N, do
4: if Li < βmax then
5: Sid allocates to Ci
6: Update Rt
7: else
8: for j from i + 1 to N do
9: Dall = Dj, s + Dd,Cj
10: end for
11: Sort (Dall)
12: for k from 1 to length (Dall) do
13: Cx← Dall[k]
14: if Li < βmax then
15: Sid allocates to Cx
16: Update Rt
17: Break
18: end if
19: end for
20: end if
21: end for
22: end if

The dSDN algorithm initiates by getting the flow’s controller id and corresponding
source id. Lines 3 to 7 in Algorithm 2 initiate the routing table, check all the available
controllers, and compare the actual controller load within its 70% threshold load. If the
load on the SDN controller is less than its threshold load, then the source node is allocated
to the given controller, and the path will be updated in the routing table. However, if the
load on the SDN controller is greater than the threshold, a new search is initiated to find
the smallest alternative route from source to destination, as seen in line 8. The distance
table stores the route from source to destination in line 9. Lines 10–17 in Algorithm 2
sort the distance table to find the shortest possible route, and then the shortest route will
be selected.

The dSDN is a load-aware distance algorithm, so next, it will check the controller load
again before allocating the source node to the controller, as given in line 14. Supposing
the controller load is less than the threshold, the source node will be allocated to the
corresponding SDN controller, and the path will be updated in the routing table, as given
in lines 15 and 16, respectively. Otherwise, another search will follow the same process to
find the alternative path.

The approach mentioned above diverts the packets after analysing the SDN con-
troller’s load to maintain the network load so that none of the SDN controllers goes under
or over-utilised, and the controller’s map automatically whenever traffic flow varies. The
approach also considers the distance between the source and SDN controller before allocat-
ing, so the source node must be allocated to the nearest available controller with less load
than its threshold.

5. NetSim Setup

The NetSim Simulator is used as a network simulator. It allows the creation of network
scenarios, traffic modelling, protocol design, and performance analysis. Many networking

Computers 2023, 12, 131 15 of 25

devices, such as switches, routers, and nodes, can be connected to design a network using
network links. The various IoT components are used to establish a network. IoT is a network
of various objects such as computing devices, vehicles, smart gadgets, and buildings
equipped with electronic sensors or actuators using network connectivity. These objects
with embedded technologies use Internet Protocol addresses for communication without
human intervention. This Internet Protocol enables objects to assemble and exchange data.

Various IoT components used for IoT heterogeneous network setup are as follows [38]:

• Sensors: The sensors collect and exchange data and establish communication among
the devices, leading to reliable and efficient infrastructure.

• LoWPAN gateway: It bridges the internal network with the external internet. Its
role is to gather all the data from the sensors and pass the collected data to the
Internet infrastructure. It has two interfaces: ZigBee connecting with sensors and
WAN connecting to routers.

• Router: Connects to the cloud.
• Switch: Acts as the connecting device (used to interconnect with the server).
• Wired/wireless link: Used to establish the connection between the components.

5.1. List of Applications

The need for packet priority processing is based on the application types. Various
applications are assigned different priorities based on their importance. We have mainly
considered the five widely used application types: e-mail, HTTP, FTP, voice, and video.
These applications and their properties are mentioned in Table 3.

Table 3. List of Application Types.

Application Type Priorities

Email Email applications are considered low-priority applications with an
assigned priority value is 2. Email is classified under BE QoS
class.

HTTP HTTP applications are considered low-priority applications with an
assigned priority value is 2. HTTP is classified under BE QoS class.

FTP FTP applications are considered low-priority applications with an
assigned priority value is 2. FTP is classified under BE QoS class.

Voice Voice applications are considered high-priority applications with an
assigned priority value is 8. Voice is classified under both rtPS
and UGS QoS classes.

Video Video applications are considered medium-priority applications with
an assigned priority value is 6. Video is classified under the nrtPS
QoS class.

5.2. Network Device Count

Three reference network scenarios were considered to compare and reflect on how
performance degrades with the increased load on the network. The three reference networks
start from a mild network consisting of a very low number of devices on the network, a
moderate network comprised of the normal or standard number of devices on the network,
and a heavy network consisting of a highly crowded network device. The three reference
network scenarios are created by configuring the devices using various traffic generator
applications. In these networks, five types of traffic were generated: File Transfer Protocol
(FTP), Hypertext Transfer Protocol (HTTP), e-mail, voice, and video. Overall, two types of
traffic are configured: data traffic (FTP, HTTP, and e-mail) and real-time traffic (voice and
video). Table 4 shows the list of devices and applications configured.

The section below describes the design and modelling of the network topologies to
support the selected scenarios for the reference network.

Computers 2023, 12, 131 16 of 25

Table 4. Device count.

Network Type Wireless Nodes Applications Wireless Sensors

Mild 30 5 3

Moderate 85 10 10

Heavy 192 20 20

5.3. Network Design and Modelling

The three network scenarios mentioned above are distinguished based on the number
of connected devices, configured applications, and sensor device count. These networks
work differently and provide varying results according to the generated traffic. The mild
network with few connected devices can relate to previous generations when only a few
smart devices were used to transfer data. The moderate network using more connected
devices can be associated with the present time as many devices are connected for data
transfer. The heavy network generated using many more intelligent devices represents
the futuristic network with crowded IoT. The traditional networks and standard SDN in a
traditional network are simulated to verify the enhancement in network performance that
demonstrated better QoS. The three network topologies or scenarios for mild, moderate,
and heavy traffic loads are created, configured and modelled. The network topologies for
the mild, moderate, and heavy traffic scenarios are shown in Figure 7. Once the networks
are modelled, the simulation is conducted to analyse the results. The following section
introduces the eSDN.

Computers 2023, 12, x FOR PEER REVIEW 17 of 27

5.2. Network Device Count
Three reference network scenarios were considered to compare and reflect on how

performance degrades with the increased load on the network. The three reference
networks start from a mild network consisting of a very low number of devices on the
network, a moderate network comprised of the normal or standard number of devices on
the network, and a heavy network consisting of a highly crowded network device. The
three reference network scenarios are created by configuring the devices using various
traffic generator applications. In these networks, five types of traffic were generated: File
Transfer Protocol (FTP), Hypertext Transfer Protocol (HTTP), e-mail, voice, and video.
Overall, two types of traffic are configured: data traffic (FTP, HTTP, and e-mail) and real-
time traffic (voice and video). Table 4 shows the list of devices and applications
configured.

(a)

(b)

Figure 7. Cont.

Computers 2023, 12, 131 17 of 25Computers 2023, 12, x FOR PEER REVIEW 18 of 27

(c)

Figure 7. Network topology deployment of (a) mild network traffic, (b) moderate network traffic,
and (c) heavy network traffic.

6. Simulation of IoT Networks
The network simulation tool enables creating the network scenarios, modelling the

traffic, designing the protocols, and performing analysis. It is not feasible to develop a
prototype with many IoT devices; thus, this motivates us to use the simulation for our
work, allowing us to capture the diversity of IoT devices to create heterogeneous traffic. In
this sense, these devices are highly heterogeneous because the networks of intelligent
machines exhibit different capabilities and are manufactured by diverse vendors [39].
During the simulation, the devices start communicating, and the network performance is
identified in terms of delay, jitter, and throughput. It is a great challenge to provide
bandwidth to all the connected devices in the existing traditional networks [40] due to the
heterogeneous nature of the devices. The bandwidth usage also varies invariably when
many devices are connected. We used the NetSim simulator to create and simulate
the network infrastructures.

6.1. Mild Network Traffic
The mild network is the least crowded, with few connected devices. The findings

demonstrate that SDN can enhance network performance by reducing delay and jitter
without affecting the network throughput compared to traditional networks that can
handle a small number of connected devices. However, connectivity issues arise when the
number of devices grows, and it is still a challenge to maintain the network QoS due to
increased real-time IoT. The eSDN enhances network performance by increasing
throughput and decreasing delay and jitter. The improvement is due to processing packets
per their priorities and congestion control mechanism. Thus, the network overcomes most
bottlenecks and congestion issues using SDN and eSDN, enhancing the network QoS.
Therefore, dSDN could not improve much throughput as the scope of improvement is
minimal because the mild network is enhanced with previous contributions. However, a
significant reduction in delay and jitter is noted. The results are summarised in Table 5.

Table 5. Network performance for mild network traffic.

Network Type Throughput (Gbps) Delay (μs) Jitter (μs)
Traditional 0.086 98.384 16.225

Figure 7. Network topology deployment of (a) mild network traffic, (b) moderate network traffic,
and (c) heavy network traffic.

6. Simulation of IoT Networks

The network simulation tool enables creating the network scenarios, modelling the
traffic, designing the protocols, and performing analysis. It is not feasible to develop a
prototype with many IoT devices; thus, this motivates us to use the simulation for our
work, allowing us to capture the diversity of IoT devices to create heterogeneous traffic.
In this sense, these devices are highly heterogeneous because the networks of intelligent
machines exhibit different capabilities and are manufactured by diverse vendors [39].
During the simulation, the devices start communicating, and the network performance
is identified in terms of delay, jitter, and throughput. It is a great challenge to provide
bandwidth to all the connected devices in the existing traditional networks [40] due to the
heterogeneous nature of the devices. The bandwidth usage also varies invariably when
many devices are connected. We used the NetSim simulator to create and simulate the
network infrastructures.

6.1. Mild Network Traffic

The mild network is the least crowded, with few connected devices. The findings
demonstrate that SDN can enhance network performance by reducing delay and jitter
without affecting the network throughput compared to traditional networks that can
handle a small number of connected devices. However, connectivity issues arise when
the number of devices grows, and it is still a challenge to maintain the network QoS
due to increased real-time IoT. The eSDN enhances network performance by increasing
throughput and decreasing delay and jitter. The improvement is due to processing packets
per their priorities and congestion control mechanism. Thus, the network overcomes most
bottlenecks and congestion issues using SDN and eSDN, enhancing the network QoS.
Therefore, dSDN could not improve much throughput as the scope of improvement is
minimal because the mild network is enhanced with previous contributions. However, a
significant reduction in delay and jitter is noted. The results are summarised in Table 5.

Table 5. Network performance for mild network traffic.

Network Type Throughput (Gbps) Delay (µs) Jitter (µs)

Traditional 0.086 98.384 16.225

SDN 0.086 71.817 14.123

eSDN 0.100 58.92 10.86

dSDN 0.100 41.45 8.79

Computers 2023, 12, 131 18 of 25

As shown in Figure 8, using SDN in a mild network does not impact throughput;
for both the traditional and standard SDN, the throughput is 0.086 Gbps. In comparison,
the delay in the traditional network is 98.384 µs, which is reduced to 71.817 µs with SDN.
Similarly, with SDN, the jitter is also reduced from 16.225 µs to 14.123 µs. The overall
delay decreased by 27%, while the jitter was reduced by 12.95% compared to the traditional
network, which implies that SDN can enhance real-time traffic. The eSDN improves the
network throughput from 0.086 Gbps to 0.100 Gbps; the delay and jitter are substantially
reduced compared to the SDN. In addition, there is a considerable reduction in the collided
packets with the congestion control algorithm, enhancing the overall network QoS. Here, we
notice that in traditional networks and SDN, the network throughput is the same, as devices
are less in mild traffic, and it can be handled by the traditional network by providing the
same network throughput. However, eSDN in mild network traffic significantly improves
throughput. The throughput using dSDN increased by 0.16%. The delay and jitter are
reduced significantly compared to eSDN. The overall delay decreased from 58.92 µs to
41.45 µs, and jitter was reduced from 10.86 µs to 8.79 µs using dSDN. The result shows
that dSDN can improve network performance by removing unnecessary delays and jitter.
However, the enhancement in network QoS is minimal as the scope is significantly less in a
mild network.

Computers 2023, 12, x FOR PEER REVIEW 20 of 27

delays and jitter. However, the enhancement in network QoS is minimal as the scope is

significantly less in a mild network.

Figure 8. Simulation results for mild network traffic (overall comparison).

6.2. Moderate Network Traffic

The network with moderate traffic is more crowded than the mild one but still less

crowded than the network with heavy traffic. This network has more connectivity issues,

such as bandwidth starvation and QoS. It is essential to deliver packets on time to maintain

the network QoS; however, due to congestion and packet loss, it becomes challenging to

deliver the packets before or on time, which reduces the overall QoS of the network. Thus,

eSDN improved this network’s QoS by reducing network packet loss, which reduces the

network delay. The moderate network has more connectivity issues than the mild, as we

have analysed that the packet loss and network congestion increase as the traffic grows.

The moderate network reaches its saturation point using eSDN, and dSDN can only

make minor improvements. Approximately 99.83% of network delays are already

eliminated from the network by processing packets based on their priorities and using a

congestion avoidance algorithm. Therefore, the eSDN is ideal for small and moderate

traffic but ineffective in large-scale networks when real-time traffic varies. The results for

traditional, SDN, eSDN and dSDN are summarised in Table 6.

Table 6. Network performance for moderate network traffic.

Network Type
Throughput

(Gbps)

Delay

(ms)
Jitter (ms)

Traditional 0.078 84.25 0.20

SDN 0.087 68.25 0.15

eSDN 0.094 0.12 0.02

dSDN 0.094 0.12 0.02

Figure 8. Simulation results for mild network traffic (overall comparison).

6.2. Moderate Network Traffic

The network with moderate traffic is more crowded than the mild one but still less
crowded than the network with heavy traffic. This network has more connectivity issues,
such as bandwidth starvation and QoS. It is essential to deliver packets on time to maintain
the network QoS; however, due to congestion and packet loss, it becomes challenging to
deliver the packets before or on time, which reduces the overall QoS of the network. Thus,
eSDN improved this network’s QoS by reducing network packet loss, which reduces the
network delay. The moderate network has more connectivity issues than the mild, as we
have analysed that the packet loss and network congestion increase as the traffic grows.

The moderate network reaches its saturation point using eSDN, and dSDN can only
make minor improvements. Approximately 99.83% of network delays are already elim-
inated from the network by processing packets based on their priorities and using a
congestion avoidance algorithm. Therefore, the eSDN is ideal for small and moderate

Computers 2023, 12, 131 19 of 25

traffic but ineffective in large-scale networks when real-time traffic varies. The results for
traditional, SDN, eSDN and dSDN are summarised in Table 6.

Table 6. Network performance for moderate network traffic.

Network Type Throughput
(Gbps)

Delay
(ms) Jitter (ms)

Traditional 0.078 84.25 0.20

SDN 0.087 68.25 0.15

eSDN 0.094 0.12 0.02

dSDN 0.094 0.12 0.02

The findings illustrated in Figure 9 prove that SDN improves the network throughput
and reduces delay and jitter. The throughput for the traditional network and SDN is
0.078 Gbps and 0.087 Gbps, respectively. Along with the increase in throughput, the SDN
also reduces the packet delay from 84.25 µs to 68.25 µs, and the jitter is also reduced from
0.20 ms to 0.15 ms. Overall, with SDN, throughput increased by 11.66%, delay decreased
by 18.99%, and jitter was reduced by 25.32% when the traffic increased; SDN enhanced
QoS for real-time traffic and the data traffic.

Computers 2023, 12, x FOR PEER REVIEW 21 of 27

The findings illustrated in Figure 9 prove that SDN improves the network

t h r o u g h p u t and reduces delay and jitter. The throughput for the traditional network

and SDN is 0.078 Gbps and 0.087 Gbps, respectively. Along with the increase in

throughput, the SDN also reduces the packet delay from 84.25 μs to 68.25 μs, and the

jitter is also reduced from 0.20 ms to 0.15 ms. Overall, with SDN, throughput increased

by 11.66%, delay decreased by 18.99%, and jitter was reduced by 25.32% when the traffic

increased; SDN enhanced QoS for real-time traffic and the data traffic.

Figure 9. Simulation results for moderate network traffic (overall comparison).

The eSDN increases the network throughput from 0.087 Gbps to 0.094 Gbps, a delay

is decreased from 68.25 ms to 0.12 ms, and the jitter is reduced from 0.15 ms to 0.02 ms.

Thus, there is a massive reduction in delays and jitters. It is observed that eSDN most

impacts this network traffic because it is a moderately crowded network, and eSDN can

solve network congestion issues by lowering the packet loss with a congestion control

mechanism and directing the packets as per their importance. It is subsequently

enhancing the network QoS by improving the network throughput.

In dSDN, the throughput increases, and the delay and jitter are reduced. With eSDN,

a significant reduction in delay and jitter has already been achieved, so there is little scope

for enhancing network QoS using dSDN.

6.3. Heavy Network Traffic

The heavy network is modelled to represent the future of IoT, where the number of

connected devices is increasing, and better methods are required to establish better

network connectivity. For heavy traffic, the network QoS is improved with eSDN as this

network is the most crowded and has larger network delays, packet loss and congestion.

However, eSDN is not ideal for heavy networks due to a lack of dynamic adjusting of the

SDN controller load. The dSDN enhances eSDN by adjusting the network load

dynamically whenever the load fluctuates. The simulation results for traditional

networks, SDN, eSDN and dSDN are shown in Table 7.

Figure 9. Simulation results for moderate network traffic (overall comparison).

The eSDN increases the network throughput from 0.087 Gbps to 0.094 Gbps, a delay is
decreased from 68.25 ms to 0.12 ms, and the jitter is reduced from 0.15 ms to 0.02 ms. Thus,
there is a massive reduction in delays and jitters. It is observed that eSDN most impacts this
network traffic because it is a moderately crowded network, and eSDN can solve network
congestion issues by lowering the packet loss with a congestion control mechanism and
directing the packets as per their importance. It is subsequently enhancing the network
QoS by improving the network throughput.

In dSDN, the throughput increases, and the delay and jitter are reduced. With eSDN,
a significant reduction in delay and jitter has already been achieved, so there is little scope
for enhancing network QoS using dSDN.

6.3. Heavy Network Traffic

The heavy network is modelled to represent the future of IoT, where the number of
connected devices is increasing, and better methods are required to establish better network

Computers 2023, 12, 131 20 of 25

connectivity. For heavy traffic, the network QoS is improved with eSDN as this network is
the most crowded and has larger network delays, packet loss and congestion. However,
eSDN is not ideal for heavy networks due to a lack of dynamic adjusting of the SDN
controller load. The dSDN enhances eSDN by adjusting the network load dynamically
whenever the load fluctuates. The simulation results for traditional networks, SDN, eSDN
and dSDN are shown in Table 7.

Table 7. Network performance for heavy network traffic.

Network Type Throughput (Gbps) Delay (ms) Jitter (ms)

Traditional 0.048 235.32 5.56

SDN 0.048 230.95 4.31

eSDN 0.051 222.95 1.31

dSDN 0.059 36.08 0.68

The results conclude that SDN can slightly enhance the network performance by
reducing the delay and jitter; however, it does not affect the network throughput, as shown
in Figure 10. The throughput for the traditional network and standard SDN is the same and
equals 0.048 Gbps. On the other hand, with SDN, the delay is reduced from 235.32 ms to
230.95 ms, and the jitter is also reduced from 5.56 ms to 4.31 ms. The findings indicate that
SDN improves the throughput marginally by 0.27%, while the delay and jitter are notably
reduced compared to the traditional network. Using SDN, the overall delay decreased
by 1.86%, while jitter was reduced by 22.56% compared to the traditional network. These
results demonstrated that SDN outperforms the traditional network; the best improvement
in network performance is noted in the moderate network. SDN reduces mild network
delay without affecting its throughput. An insignificant enhancement in network QoS is
observed for heavy network traffic.

Computers 2023, 12, x FOR PEER REVIEW 22 of 27

Table 7. Network performance for heavy network traffic.

Network Type Throughput (Gbps) Delay (ms) Jitter (ms)

Traditional 0.048 235.32 5.56

SDN 0.048 230.95 4.31

eSDN 0.051 222.95 1.31

dSDN 0.059 36.08 0.68

The results conclude that SDN can slightly enhance the network performance by

reducing the delay and jitter; however, it does not affect the network throughput, as shown

in Figure 10. The throughput for the traditional network and standard SDN is the same

and equals 0.048 Gbps. On the other hand, with SDN, the delay is reduced from 235.32 ms

to 230.95 ms, and the jitter is also reduced from 5.56 ms to 4.31 ms. The findings indicate

that SDN improves the throughput marginally by 0.27%, while the delay and jitter are

notably reduced compared to the traditional network. Using SDN, the overall delay

decreased by 1.86%, while jitter was reduced by 22.56% compared to the traditional

network. These results demonstrated that SDN outperforms the traditional network; the

best improvement in network performance is noted in the moderate network. SDN

reduces mild network delay without affecting its throughput. An insignificant

enhancement in network QoS is observed for heavy network traffic.

Figure 10. Simulation results for heavy network traffic (overall comparison).

The eSDN can reduce the network delay minimally compared to SDN, but only a

marginal reduction in the delay is noted. The improvement with eSDN is noted in the

throughput, with an increase of 7.60%, while the jitter is substantially reduced. The

delay decreased by 3.46%, while the jitter was reduced by 69.70%. These findings show

that although eSDN can manage the network traffic better than SDN, in large-scale

networks, eSDN is less effective in improving the network QoS because eSDN is based on

the static deployment of SDN controllers. Subsequently, the network controller gets

unbalanced when traffic varies. Hence, we need dynamic controllers for real-time

networks that must map themselves when flow varies to adjust their loads, improving

network QoS.

Figure 10. Simulation results for heavy network traffic (overall comparison).

The eSDN can reduce the network delay minimally compared to SDN, but only a
marginal reduction in the delay is noted. The improvement with eSDN is noted in the
throughput, with an increase of 7.60%, while the jitter is substantially reduced. The delay
decreased by 3.46%, while the jitter was reduced by 69.70%. These findings show that
although eSDN can manage the network traffic better than SDN, in large-scale networks,
eSDN is less effective in improving the network QoS because eSDN is based on the static

Computers 2023, 12, 131 21 of 25

deployment of SDN controllers. Subsequently, the network controller gets unbalanced
when traffic varies. Hence, we need dynamic controllers for real-time networks that must
map themselves when flow varies to adjust their loads, improving network QoS.

Thus, the proposed dSDN improves the heavy network performance by increasing
throughput and reducing delay and jitter. Compared to eSDN, it reduces delay from
222.95 ms to 36.08 ms using dSDN, and jitter is reduced from 1.31 ms to 0.68 ms using
dSDN while improving throughput from 0.051 Gbps to 0.059 Gbps using dSDN. Therefore,
the dSDN outperforms the eSDN, which is most suitable for growing IoT devices.

We further applied dSDN for 300 devices to confirm the enhancement. Our results in
Table 8 conclude dSDN is the best fit for growing IoT devices. It has improved the network
performance by increasing network throughput and reducing the network delay and jitter.

Table 8. Network performance for 300 devices.

Network Type Throughput (Gbps) Delay (ms) Jitter (ms)

Traditional 0.38 256.35 10.89

SDN 0.39 238.89 6.85

eSDN 0.48 202.75 4.32

dSDN 0.53 45.95 1.15

7. Comparison of Results

The overall network performance is compared with the number of connected devices
in terms of (a) throughput, (b) delay, and (c) jitter. Note that in this section, for comparison
of the results, we have taken the average value of mild, moderate, and heavy scenarios for
each network performance matrix.

The discussion aims to observe how different approaches without SDN, with standard,
eSDN and dSDN behave under similar network setups and to analyse the performance of
the proposed contributions. The network is set up for 200 heterogeneous devices to analyse
the system performance when the traffic is high. The proposed contributions are tested
under similar network loads. Thus, we found that the traditional network without SDN is
congested with bottleneck issues, and minimum throughput is noted for this network. With
standard SDN, network performance is raised as it overcomes most traditional network
issues such as bottleneck, mobility, and scalability. With eSDN, the network performance
is enhanced further with reduced packet loss, high-priority packets reached on time, and
improved overall network QoS. The dSDN supports the dynamic mapping of controllers in
real-time networks and is most effective for dynamic traffic in large-scale networks.

The minimum network throughput is noted for traditional networks and the maximum
for dSDN, as shown in Figure 11a. On the other hand, network QoS is progressively
enhanced with the proposed approaches.

The maximum delay is noted for traditional networks, and the minimum for dSDN is
shown in Figure 11b. It proves that the network congestion is reduced, and the network is
scalable enough to adjust to growing connected devices.

The traditional networks have the highest jitter, which is reduced progressively using
the standard SDN, eSDN and dSDN, as shown in Figure 11c. The eSDN almost eliminated
the network jitter; thus, dSDN could not considerably improve it. The discussion shows
that network performance gradually improves by eliminating the identified issues; for
example, SDN overcomes traditional network issues. The eSDN further raised the through-
put by reducing delay and jitter, showing significant improvements. Still, this was not
an ideal approach for heavy traffic. The dSDN overcame the identified issues in static
SDN controller deployment by proposing dynamic controller mapping. Eventually, each
proposed contribution identified the limitations of previous contributions and provided
the relevant solutions to overcome those limitations.

Computers 2023, 12, 131 22 of 25
Computers 2023, 12, x FOR PEER REVIEW 24 of 27

Figure 11. Network types (Traditional, SDN, eSDN and dSDN) versus connected devices: (a)

throughput, (b) delay, and (c) jitter.

Figure 11. Network types (Traditional, SDN, eSDN and dSDN) versus connected devices: (a) through-
put, (b) delay, and (c) jitter.

Computers 2023, 12, 131 23 of 25

8. Conclusions

To overcome the limitations of traditional SDN in handling dynamic fluctuation in
traffic, in this paper, we have introduced two models—eSDN and dSDN. The performance
of these models has been tested in a simulation environment using three different types
of network traffic: mild, moderate and heavy. First, simulation results for traditional
and standard SDN are compared, demonstrating that standard SDN overcomes most of
the identified traditional network issues. For moderate network traffic, SDN exhibits a
performance enhancement in throughput by 11.66% and a reduction in delay and jitter by
18.99% and 25.32%, respectively. eSDN increases overall network QoS for all three network
scenarios, but the most significant improvement is observed in moderate network traffic
with a 7.88% increase in throughput, 99.83% decrease in delay, and 85.48% reduction in
jitter compared to standard SDN. However, the deployment of SDN controllers in eSDN is
static, which fails to accommodate the growing devices by adjusting their loads in real-time.

Consequently, it leads to a lack of load balancing among the controllers. Our proposed
dSDN maintains the network load with dynamic flow fluctuation. The dynamic controller
mapping in dSDN improves the overall network QoS in the heavy traffic network that
emulates the futuristic network. Under heavy traffic, dSDN shows better performance with
an increase in throughput by 13.63%, an 83.82% decrement in delay, and a 47.90% reduction
in jitter compared to eSDN. Our future work will focus on further enhancement of dSDN
by using some agent-based approach to handle the dynamic load more efficiently for the
next-generation Internet.

Author Contributions: Conceptualization, A.S., V.B. and J.K.; methodology, A.S., V.B. and J.K.; soft-
ware, A.S.; validation, A.S., V.B. and J.K.; formal analysis, A.S., V.B. and J.K.; investigation V.B. and
J.K.; resources, A.S.; data curation, A.S.; writing—original draft preparation, A.S.; writing—review
and editing, V.B. and J.K.; visualization, A.S., V.B. and J.K.; supervision V.B. and J.K.; project adminis-
tration, V.B. and J.K.; funding acquisition, A.S., V.B. and J.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data was generated in NetSim by configuring various networks.

Acknowledgments: The document was proofread by external services to make it grammar free.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bera, S.; Misra, S.; Vasilakos, A.V. Software-defined networking for Internet of Things: A survey. IEEE Internet Things J. 2017, 6,

1994–2008. [CrossRef]
2. Benzekki, K.; El, F.A.; Elbelrhiti, E.A. Software-defined networking (SDN): A survey. Secur. Commun. Netw. 2016, 18, 5803–5833.

[CrossRef]
3. Caraguay, A.L.V.; Peral, A.B.; López, L.I.B.; Villalba, L.J.G. SDN: Evolution and opportunities in the development of IoT

applications. Int. J. Distrib. Sens. Netw. 2014, 5, 10.
4. Coughlin, M. A Survey of SDN Security Research; University of Colorado Boulder: Boulder, CO, USA, 2013.
5. Gong, Y.; Huang, W.; Wang, W.; Lei, Y. A survey on software-defined networking and its applications. Front. Comput. Sci. 2015, 6,

827–845. [CrossRef]
6. Nunes, B.A.A.; Mendonca, M.; Nguyen, X.N.; Obraczka, K.; Turletti, T. A survey of software-defined networking: Past, present,

and future of programmable networks. IEEE Commun. Surv. Tutor. 2014, 3, 1617–1634. [CrossRef]
7. Rowshanrad, S.; Namvarasl, S.; Abdi, V.; Hajizadeh, M.; Keshtgary, M. A survey on SDN, the future of networking. J. Adv.

Comput. Sci. Technol. 2014, 2, 232. [CrossRef]
8. Scott-Hayward, S.; Natarajan, S.; Sezer, S. A survey of security in software-defined networks. IEEE Commun. Surv. Tutor. 2016, 1,

623–654. [CrossRef]
9. Yoon, C.; Park, T.; Lee, S.; Kang, H.; Shin, S.; Zhang, Z. Enabling security functions with SDN: A feasibility study. Comput. Netw.

2015, 85, 19–35. [CrossRef]

https://doi.org/10.1109/JIOT.2017.2746186
https://doi.org/10.1002/sec.1737
https://doi.org/10.1007/s11704-015-3448-z
https://doi.org/10.1109/SURV.2014.012214.00180
https://doi.org/10.14419/jacst.v3i2.3754
https://doi.org/10.1109/COMST.2015.2453114
https://doi.org/10.1016/j.comnet.2015.05.005

Computers 2023, 12, 131 24 of 25

10. Kreutz, D.; Ramos, F.M.V.; Veríssimo, P.E.; Rothenberg, C.E.; Azodolmolky, S.; Uhlig, S. Software-defined networking: A
comprehensive survey. Proc. IEEE 2015, 1, 14–76. [CrossRef]

11. Karakus, M.; Durresi, A. A survey: Control plane scalability issues and approaches in software-defined networking (SDN).
Comput. Netw. 2017, 112, 279–293. [CrossRef]

12. Jain, S.; Kumar, A.; Mandal, S.; Ong, J.; Poutievski, L.; Singh, A.; Vahdat, A. B4: Experience with a globally-deployed software
defined WAN. In Proceedings of the ACM SIGCOMM’12, Hong Kong, China, 12–16 August 2013; pp. 3–14.

13. Cheng, T.Y.; Wang, M.; Jia, X. QoS-guaranteed controller placement in sdn. In Proceedings of the IEEE Global Communications
Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015; pp. 1–6.

14. Dixit, A.; Hao, F.; Mukherjee, S.; Kompella, R. Towards an elastic distributed sdn controller. In Proceedings of the ACM SIGC
OMM HoTSDN’13, Hong Kong, China, 12–16 August 2013; pp. 7–12.

15. Curtis, A.R.; Mogul, J.C.; Tourrilhes, J.; Yalagandula, P.; Sharma, P.; Banerjee, S. Devoflow: Scaling flow management for
high-performance networks. SIGCOMM Comput. Commun. Revolut. 2011, 4, 254–265. [CrossRef]

16. Koponen, T.; Casado, M.; Gude, N.; Stribling, J.; Poutievski, L.; Zhu, M.; Ramanathan, R.; Iwata, Y.; Inoue, H.; Hama, T.; et al.
Onix: A distributed control platform for large-scale production networks. In Proceedings of the OSDI’10, Vancouver, BC, Canada,
4–6 October 2010; pp. 1–6.

17. Tootoonchian, A.; Ganjali, Y. HyperFlow: A distributed control plane for OpenFlow. In Proceedings of the Internet Network
Management Conference on Research on Enterprise Networking, USENIX Association, San Jose, CA, USA, 27 April 2010; pp. 1–6.

18. Fisher, W.; Suchara, M.; Rexford, J. Greening backbone networks: Reducing energy consumption by shutting off cables in bundled
links. In Proceedings of the 1st ACM SIGCOMM Workshop Green Networks, New Delhi, India, 30 August 2010; pp. 29–34.

19. Mahadevan, P.; Sharma, P.; Banerjee, S.; Ranganathan, P. A power benchmarking framework for network devices. In Proceedings
of the 8th International Conference Residential Networking, Aachen, Germany, 11–15 May 2009; pp. 795–808.

20. Mckeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J. OpenFlow: Enabling innovation in campus
networks. ACM SIGCOMM Comput. Commun. Rev. 2008, 2, 69–74. [CrossRef]

21. Yan, J.; Zhang, H.; Shuai, Q.; Liu, B.; Guo, X. HiQoS: An SDN-based multipath QoS solution. China Commun. 2015, 5, 123–133.
[CrossRef]

22. Kim, H.; Feamster, N. Improving network management with software defined networking. IEEE Commun. Mag. 2013, 2, 114–119.
[CrossRef]

23. Gude, N.; Koponen, T.; JPettit, J.; Pfa, B.; Casado, M.; McKeown, N.; Shenker, S. NOX: Towards an operating system for networks.
ACM SIGCOMM Comput. Commun. Rev. 2008, 3, 105–110. [CrossRef]

24. Gupta, R. ABC of Internet of Things: Advancements, Benefits, Challenges, Enablers and Facilities of IoT. In Proceedings of the
2016 Symposium on Colossal Data Analysis and Networking (CDAN), Indore, India, 18–19 March 2016.

25. Kaur, S.; Singh, J.; Kumar, K.; Ghumman, N.S. Round-robin based load balancing in software defined networking. In Proceedings
of the Computing for Sustainable Global Develop (INDIACom), 2015 2nd International Conference, New Delhi, India, 11–13
March 2015; pp. 2136–2139.

26. Hong, C.Y.; Kandula, S.; Mahajan, R.; Zhang, M.; Gill, V.; Nanduri, M.; Wattenhofer, R. Achieving high utilisation with
software-driven WAN. ACM SIGCOMM Comput. Commun. Rev. 2013, 4, 15–26. [CrossRef]

27. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions.
Future Gener. Comput. Syst. 2013, 7, 1645–1660. [CrossRef]

28. Oteafy, S.M.A.; Hassanein, H.S. Towards a global IoT: Resource re-utilisation in WSNs. In Proceedings of the International
conference on Computing, Networking and Communications (ICNC), Maui, HI, USA, 30 January–2 February 2012; pp. 617–622.

29. Neghabi, A.A.; Jafari Navimipour, N.; Hosseinzadeh, M.; Rezaee, A. Load balancing mechanisms in the software defined
networks: A systematic and comprehensive review of the literature. IEEE Access 2018, 6, 14159–14178. [CrossRef]

30. Isong, B.; Molose, R.R.S.; Abu-Mahfouz, A.M.; Dladlu, N. Comprehensive review of SDN controller placement strategies. IEEE
Access 2020, 8, 170070–170092. [CrossRef]

31. Li, X.; Djukic, P.; Zhang, H. Zoning for hierarchical network optimisation in software defined networks. In Proceedings of the
2014 IEEE Network Operations and Management Symposium (NOMS), Krakow, Poland, 5–9 May 2014; pp. 1–8.

32. Hu, Y.; Luo, T.; Wang, W.; Deng, C. On the load balanced controller placement problem in software defined networks. In
Proceedings of the 2016 2nd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 14–17
October 2016; pp. 2430–2434.

33. Sanner, J.; Hadjadj-Aoufi, Y.; Ouzzif, M.; Rubino, G. Hierarchical clustering for an efficient controllers’ placement in software
defined networks. In Proceedings of the 2016 Global Information Infrastructure and Networking Symposium (GIIS), Porto,
Portugal, 19–21 October 2016; pp. 1–7.

34. Pham, C.; Nguyen, D.T.; Tran, N.H.; Nguyen, K.K.; Cheriet, M. Dynamic Controller/Switch Mapping: A Service Oriented
Assignment Approach. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 2482–2495. [CrossRef]

35. Sabitha, N.; Jayasree, H.; Parsad, A.V.K. Virtualization of Traditional Networks using SDN. Int. J. Interdiscip. Res. Innov. 2019,
7, 1–6.

36. Stiti, O.; Braham, O.; Pujolle, G. Virtual openflow-based SDN Wi-Fi access point. In Proceedings of the 2015 Global Information
Infrastructure and Networking Symposium (GIIS), Guadalajara, Mexico, 28–30 October 2015.

https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1016/j.comnet.2016.11.017
https://doi.org/10.1145/2043164.2018466
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1109/CC.2015.7112035
https://doi.org/10.1109/MCOM.2013.6461195
https://doi.org/10.1145/1384609.1384625
https://doi.org/10.1145/2534169.2486012
https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.1109/ACCESS.2018.2805842
https://doi.org/10.1109/ACCESS.2020.3023974
https://doi.org/10.1109/TPDS.2022.3144116

Computers 2023, 12, 131 25 of 25

37. Theodorou, T.; Mamatas, L. CORAL-SDN: A software-defined networking solution for the Internet of Things. In Proceedings of
the 2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV SDN), Berlin, Germany, 6–8
November 2017.

38. Tetcos, NetSim User Manual. Available online: https://www.tetcos.com/downloads/v12.1/NetSim_User_Manual.pdf (accessed
on 25 June 2023).

39. Dai, H.; Wong, R.C.; Wang, H.; Zheng, Z.; Vasilakos, A.V. Big data analytics for large-scale wireless networks: Challenges and
opportunities. ACM Comput. Surv. 2019, 5, 99:1–99:36. [CrossRef]

40. Samie, F.; Tsoutsouras, V.; Bauer, L.; Xydis, S.; Soudris, D.; Henkel, J. Computation offloading and resource allocation for
low-power IoT edge devices. In Proceedings of the Paper Presented at the 2016 IEEE 3rd World Forum on Internet of Things
(WF-IoT), Reston, VA, USA, 12–14 December 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.tetcos.com/downloads/v12.1/NetSim_User_Manual.pdf
https://doi.org/10.1145/3337065

	Introduction
	Related Works
	Introduction to Standard SDN in Traditional Network Architecture
	Problem Formulation, System Model and Proposed Methods
	Problem Formulation and System Model
	Introduction to Priority Scheduling and Congestion Control Algorithm (eSDN) in Standard SDN
	Introduction to Dynamic Controller Mapping in eSDN (dSDN)

	NetSim Setup
	List of Applications
	Network Device Count
	Network Design and Modelling

	Simulation of IoT Networks
	Mild Network Traffic
	Moderate Network Traffic
	Heavy Network Traffic

	Comparison of Results
	Conclusions
	References

