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Abstract: Optimizing water distribution both from an energy-saving perspective and from a quality
of service perspective is a challenging task since it involves a complex system with many nodes, many
hidden variables and many operational constraints. For this reason, water distribution systems need
to handle a delicate trade-off between the effectiveness and computational time of the solution. In this
paper, we propose a new computationally efficient method, named rule-based control, to optimize
water distribution networks without the need for a rigorous formulation of the optimization problem.
As a matter of fact, since it is based on a machine learning approach, the proposed method employs
only a set of historical data, where the configuration can be labeled according to a quality criterion.
Since it is a data-driven approach, it could be applied to any complex network where historical
labeled data are available. In particular, rule-based control exploits a rule-based classification method
that allows us to retrieve the rules leading to good or bad performances of the system, even without
any information about its physical laws. The evaluation of the results on some simulated scenarios
shows that the proposed approach is able to reduce energy consumption while ensuring a good
quality of the service. The proposed approach is currently used in the water distribution system of
the Milan (Italy) water main.

Keywords: rule-based control; water distribution network; classification; optimization

1. Introduction

Machine learning is a field of artificial intelligence, which deals with systems and
algorithms able to automatically detect patterns in data. These systems and algorithms try
to replicate the functioning of the human brain, which is able to learn general laws about a
given system starting from a limited number of related examples. Our contribution consists
of the proposal of a rule-based machine learning method designed to optimize a water
distribution network (WDN). More specifically, the proposed method allows us to optimize
the control of the pumps in real time. Even though we will focus on this application,
we would like to mention that, in principle, the proposed algorithm could be applied in
any other scenario involving a real-time optimization problem. The development of a
support decision tool for this application is motivated by the fact that it is very difficult
for an operator to predict the effect of status changes on a set of pumps across the whole
system over time. In fact, both the overall energy consumption and the system quality of
service must be taken into account at the same time for the optimization. We may define
quality of service according to measurements related to water quality (such as chlorine
concentration on water age) but, in the following, we will focus on a definition of quality
of service based on the compliance of pressure levels in the network with target pressure
ranges: the relevance of this element in water main operations is discussed, for example,
in [1]. Operations are usually based on simple correlations known a priori. For example, if
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the aim is to improve the quality of service (QoS ) in a specific point of the network, the
operator may switch on a pump in a nearby pumping station that is known to be related to
the pressure in that point.

It is, however, not always so easy to take other correlations into account empirically;
for example, correlations related to interactions among pumping stations, or to effects
associated with more distant pumping stations.

For this reason, a machine learning approach could help in making better predictions
by also considering more complex correlations among variables. Most machine learning
approaches provide models in the form of complex mathematical functions, which leads
to a number of significant limitations: (a) it is difficult to understand the cause–effect
relationships and therefore (b) it is difficult to understand which drivers should be changed
to improve network behavior. For this reason, a rule-based approach is proposed, leading to
a better understanding of the network behavior and its key drivers. In this paper, rule-based
control (RBC) is proposed to optimize a WDN. The two steps constituting the proposed
method are the following:

• The extraction of a rule-based model that allows us to predict the future status of the
network (e.g., pressure constraints will not be fulfilled/energy consumption will be
excessive/a good status of the network);

• The use of the extracted model to generate controls to change the status of the pumps
in order to match rules that predicted the desired status of the network.

The proposed pipeline is currently used by one of the biggest water main systems in
Italy (Milan water main). Its performance in the long term, in terms of energy saving, is
under evaluation and is being compared with other state-of-the-art techniques.

The structure of the paper is the following: Section 2 focuses on related work in
this field, Section 3.1 is dedicated to the description of the proposed modeling technique
and Section 3.2 shows how the use of this modeling technique allows us to develop and
apply the innovative rule-based control algorithm. Section 4 includes experimental results;
conclusions follow.

2. Materials and Methods

In a water supply system, the source of water is generally a lake, a river or an un-
derground aquifer. Water then flows through water treatment facilities so that it can be
purified and is finally delivered to all the demand points. This defines, especially if the
area to be covered by the water main is large, a complex network, constituted by many
interconnected elements and sub-systems with different functions.

The quality of service may be determined by different criteria and parameters; for
example, the quality of the water can be assessed. Another relevant objective of the water
main system, which will be the target of our proposed technique in experiments, is to
ensure that the water reaches every area of the network under a satisfactory pressure. In
order to assess this and to optimize it, pressure sensors are distributed in the network and
an optimal pressure range is defined for each of the monitored points.

When optimizing this, it must be taken into account that hydraulic pumps, which
allow for the reaching of the goal, require energy to work, and the cost to power them
represents a significant percentage of the overall cost of the system. Due to that, the ideal
goal, widely explored in this field of research, is to ensure that the optimal ranges for
pressure are met with the least possible energy consumption.

As observed in [2], there is no single optimal choice of architecture that could be
recommended to fit any water distribution control due to the existence of site-specific
challenges. As previously mentioned, sensors shall be distributed in the network to allow
for the acquisition of field measurements, while actuators allow us to actively control
the distribution process according to the measurements and the prediction of the model
about the future status of the water main system. The control of the network can be either
supervised or entirely automatic.
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Supervised control implies the intervention of a human operator who needs to confirm
or modify the controls suggested by the model. Conversely, in an entirely automatic
scenario, control actions are applied without any human intermediation. Considering that
ensuring the correct behavior of a water main system is a very critical task, the entirely
automatic solution is hard to pursue, at least as first step. Another distinction worth
mentioning concerns the level at which the optimization of a water distribution network
can happen. For example, optimizing can be interpreted as choosing the best solution for
planning a new distribution system or for expanding an existing one: an extensive review
of the most popular approaches for addressing the problem in this way was proposed in [3].
To cite a few examples, [4] used a meta-heuristic algorithm named Shuffled Frog Leaping to
determine optimal discrete pipe sizes for new pipe networks or for network expansions.
In [5], a local search was used to find the least expensive pipe configuration that satisfies
hydraulic laws and customer requirements in a quick and transparent way.

The goal of the WDN operation optimization is to pick the best solution for pump
and/or valve control in an existing network. The WDN operation optimization generates
a schedule of pump operations either for a target time interval (e.g., a day or a week), or
continuously, checking and possibly updating controls for the current steps and possibly
for the future steps. In case the scheduling is fixed and does not change, we can also refer
to the problem as a Pump Scheduling Optimization problem.

Since the solution is static, i.e., it does not need to be updated on a regular basis, com-
putationally expensive methods can also be used to solve this kind of problem. Therefore,
once the problem has been formulated, it is possible to find an optimal or near-optimal
solution, which can then be used for scheduling the WDN. Scheduling optimization does,
however, require that some boundary conditions, such as water demand, are fixed and
known at the beginning of the scheduling period (e.g., a day) while, in a real-word scenario,
the demand presents fluctuations that are difficult to predict ahead of time. Differences
between estimated demand and the actual one can lead to bad optimization and, potentially,
to failing to satisfy constraints.

Conversely, if the optimal solution is verified and, if needed, updated at each step,
taking the input gathered at the current step into account, the problem is defined as Real Time
Pump Optimization. The solution, in this case, happens at each time step: considering that
we are speaking of a real-time application, computational efficiency in the determination of
a (near) optimal solution is crucial.

In both cases, the optimization process aims to minimize the quantity/cost of energy
consumed by pumps while ensuring that the network can meet quality of service constraints
defined by the customer. In some studies, other objectives, such as the water quality and
greenhouse gas emissions (GHGs), are also considered.

A relevant example of a controlled variable is WDN pressure. In this context, con-
trollers were proposed starting from simple physical considerations on network behavior;
for example, in [6]. As an alternative, forecast techniques estimating the future state of the
system can also be the input for the control layer. This kind of approach, for instance, was
proposed in [7,8].

In [9], a survey of methods for operation-level control of WDN pressure was reported.
The methods proposed in the literature include mixed-integer linear programming as
suggested by [10] as well as a combination of optimization methods with machine learning
approaches as in [11–13].

In real-world applications, the most used metaheuristic search methods are genetic
algorithms (GAs), which are inspired by Darwin’s theory on the biological processes of
reproduction and natural selection. Since a GA simulates a biological process, it includes
some randomness and different runs could lead to non-identical results; consequently,
there is no guarantee that the GA reaches the optimal solution and it may stop at a local
minimum. Nevertheless, some experiments have shown that, if the algorithm parameters
are chosen correctly, the use of GAs could lead to near-optimal solutions, as shown in [14].
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Basically, all the variants of GAs are based on both the iterative generation of possible
solution vectors and their evaluation based on a specific fitness score.

The method proposed in this paper allows for the real-time optimization of a network
without imposing a physical model of the network. According to the four criteria defined
by [15], this is how it relates with state-of-the-art techniques:

• Application area: The application area of RBC is “pump operation”, like the largest
portion of the paper analyzed by Mala-Jetmarova (40%).

• Optimization model: The optimization model used in this work considers a single
objective (pump energy consumption) like the vast majority of models according to
Mala-Jetmatova (84%). The test case considered 3 constraints (demand satisfied, nodes
pressure, tanks level) but RBC allows us to deal with any number of constraints by
changing the quality indicator.

• Solution methodology: The RBC solution methodology is hybrid: the rule extrac-
tion step is stochastic, whereas the control step is deterministic. (in the literature,
deterministic methods are 45.5% of the total).

• Test network: For what concerns the test network, we used a mid-size network with
approximately 400 demand nodes, whereas 80% of papers used a network with fewer
than 100 nodes.

2.1. Optimization Model

Optimization consists of selecting the best values for some variables (called decision
variables) to minimize or maximize a (set of) functions (called objectives) according to specific
constraints. If an optimization problem includes only one objective, it is called single-objective
programming; otherwise, it is called multi-objective programming.

In multi-objective optimization, it is usually impossible to find a single solution that
minimizes (maximizes) all the objectives, so the result is consequently a set of nondominated
solutions where ulterior improvements in one objective are not possible without worsening
the others. Decision makers must then select the best option from the set of solutions.

For this reason, most of the literature on WDN operation optimization focuses on
single-objective programming. If more criteria need to be optimized by design, they are
usually combined into a single-objective function. Usually, the decision variables are the
statuses of the pumps, which could be either binary (on/off) or continuous variables, if the
pump includes some mechanism to tune the pressure of outgoing water.

Almost all the models in literature include the pump operating cost in the objectives,
while other frequently used costs are the maintenance, usually estimated from the number
of pump switches (e.g., [16]), the water age (e.g., [17]) and the GHG emissions (e.g., [18]).

The problem is called linear programming if both the objectives and the constraints can
be written as linear combinations of the decision variables; otherwise, it is called a non-linear
programming problem. The WDN optimization problem in the literature is formulated both
as a linear problem and as a non-linear problem.

A large variety of WDN operational constraints is present in the literature, and the
most common ones concern pressure at nodes and levels of tanks. For instance, a linear
regression model can be used to interpolate the relationship between pump status, tank
levels, demand, pressure and energy in order to obtain an optimization model characterized
by a linear objective and linear constraints (e.g., [19]). Of course, introducing a linear model
could induce an excessive simplification of the behavior of the system and therefore a
reduction in the performance of the control.

In the following subsections, a short description of the main optimization models and
solution methodologies is proposed.

2.2. Optimization Methods

An optimization method is a technique used to find a solution for an optimization
model. The most common approach in this field is referred to as metaheuristic optimization.
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A metaheuristic algorithm is a general-purpose algorithm that can be used to find
a (sub)optimal solution for both linear and non-linear problems. Even if metaheuristic
approaches do not guarantee that the optimal solution is retrieved, they are usually faster
than deterministic methods and, therefore, they can also be used when the optimal solution
cannot be obtained in a reasonable amount of time.

Notice that metaheuristic algorithms also aim at exploring the solution space by in-
cluding some random decisions; thus, different executions could lead to different solutions
even if they start from the same problem and set of parameters.

Exploring the solution space through metaheuristic approaches is usually combined
with a hydraulic simulator that, at each iteration of the algorithm, tests the quality of the
explored solution. The most commonly used heuristic search methods are genetic algorithms
(GAs), which are described in Section 2.3.

For real-time optimization, the use of hydraulic simulators is computationally expen-
sive as shown in [12]; consequently, a machine learning method can be used to capture
knowledge from the hydraulic simulator.

For example, in [13], a GA was combined with a multilayer perceptron (MLP), introduced
in [20]. In this approach, the MLP retrieves the status of each pump, the level of the tank
and the expected water demand at time t as inputs and returns the energy consumption, the
level of each tank and the pressure of each node at time t + ∆t, where ∆t is the time period
to be optimized. The GA then uses this information in place of the hydraulic simulator to
find the best configuration according to the consumed energy and quality of the service.

The MLP is trained by means of a training set obtained by collecting a large set of
possible behaviors from the hydraulic simulations of different realistic network situations.
The software used for simulations is EPANET 2.0, introduced by [21], one of the most
widely used hydraulic simulators, which will also be referred to in the experimental section
of the present paper.

However, MLPs are black boxes, i.e., classifiers whose behavior is difficult to explain.
Recent trends in AI tends to prefer white boxes, i.e., classifiers whose behavior can be
understood by a human: this approach is usually called explainable AI (XAI).

2.3. Genetic Algorithms

A genetic algorithm (GA) is a metaheuristic research method inspired by Darwin’s
theory on the biological processes of reproduction and natural selection.

The method allows us to find high-quality solutions for complex problems, where
traditional methods are not applicable or require excessive computational effort. Since
a GA simulates a biological process, it includes some randomness, and different runs
could lead to non-identical results; consequently, there is no guarantee that GA reaches
the optimal solution and it may stop at a local minimum. Nevertheless, some experiments
have shown that, if the algorithm parameters are chosen correctly, the use of GAs could
lead to near-optimal solutions, as shown in [14].

Different variants of GAs are used in the literature. Basically all of them are based on
the iterative generation of possible solutions by means of the combination of elementary
operations performed on the values of potential solution vectors. Borrowing the terminol-
ogy from biology, the value of a variable is a gene, which may undergo a mutation (i.e., a
random change) or a recombination with another solution, giving origin to a new offspring.
Moreover, at each iteration, only some solutions are selected to optimize a fitness score.

In most GA applications for solving WDN operation optimization problems, the
objectives and the constraints are not computed by closed-form expressions depending on
the status of pumps. Usually, objectives and constraints are either produced by a hydraulic
simulator or by a model that emulates the behavior of a simulator.
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3. Theory/Calculation
3.1. Modeling

As mentioned in Section 2, optimization methods require the management of several
closed-form differential equations dealing with the physical laws that describe the behav-
ior of the network or, alternatively, the use of hydraulic simulators that implicitly (and
approximately) handle these relations.

In this paper, a different approach is proposed that allows us to perform optimization
without the need for a physical model or a simulator. In fact, the relationships among
parameters were implicitly derived from historical data by evaluating the effectiveness
of network configurations used in the past in ensuring the quality of the WDS. Once the
drivers leading to a good quality of the network are identified from historical data, it
is possible to act on them to improve the current configuration quickly and with little
computational cost. Due to this, the proposed approach does not need the definition since
a set of solutions labeled as “good” or “bad” is sufficient to highlight the drivers that
influence the quality of the network.

Thanks to these features, RBC could be an efficient alternative to exact optimization
when it is not possible (or too computationally intensive) to predict the evolution of the
network through closed differential equations or an accurate hydraulic simulator.

RBC aims at identifying and acting on a solution leading to “good configuration”
and “bad configuration”. The definition of a “good solution” depends, of course, on the
requirements and on the boundary conditions of the network; it is, however, possible to
define the current performance of the network based on historical statistics. Consider a set
SH of historical data:

SH = {(xi, yi)}

where yi is the observed cost (e.g., the energy consumption per quantity of pumped water)
for the considered configuration. We will refer to a solution of the problem as a set of
settings of the network constituting the parameter vector xi. In particular, the solution xi
is “good” with respect to historical data SH if yi ≤ Qy(SH , q), where Qy(SH , q) is the q-th
percentile (where 0 ≤ q ≤ 1) of observed cost yi in historical data SH (the q-th percentile
is the minimum observed value in data that is greater or equal to a fraction q of all the
observed values). Otherwise, the solution is “bad”. For example, by setting q = 0.5, a
solution is considered good if its indicator is less than or equal to the median of the cost of
past solutions, and is bad otherwise.

The goal of RBC is to produce solutions with a performance indicator smaller than
Qy(SH , q). These solutions will constitute new historical data for future runs, and future
runs will aim to further decrease the performance indicator. The value of Qy(SH , q) is
then expected to decrease progressively; in other words, when iterated several times,
RBC should therefore lead to better and better solutions over time until reaching a value
Q̂y(SH , q), which cannot be further improved. Ideally, if yi does not depend on external
parameters and supposing that it is always possible to act on controllable variables, the
optimization effect of RBC will decay over time as the steps toward an optimal solution
become smaller and smaller. In a real-life situation, it may not be feasible to bring the
output under the percentile acting on controllable variables.

Supposing that no other constraints are set for the WDN, the measure y computed on
historical data, properly discretized, can be used as the output of a classification problem to
make a prediction about the performance and its correlation with the network configuration.

However, the problem usually includes some operational constraints that define the
quality of the system (i.e., pressure at nodes); therefore, a definition based only on energy
efficiency is not suitable.

More specifically, in a typical WDN optimization problem, these indicators can be con-
sidered:

• The efficiency indicator yeff that corresponds to the cost in the unconstrained case, i.e., it
is related to the energy consumption.
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• The quality indicator yqlt that represents the observed value of a penalty function
accounting for the fulfillment of constraints.

Since the quality indicator is the primary objective for reaching a good solution, the criterion
for evaluating if a solution is efficient considers yqlt as the primary objective and yeff as the
secondary objective.

yqlt
i ≤ Qyqlt(SH , q) (1)

yeff
i ≤ Qyeff(S∗H , q) (2)

where S∗H is the subset of the SH satisfying condition (1). In the first place, a solution must
have a good quality indicator, and the best solutions will also be characterized by a good
efficiency indicator.

A single discrete indicator can therefore be defined with three possible classes:

• Bad quality of the service (BadQoS) is the worst class and indicates that the constraints

are poorly respected yst
i = BadQoS if yqlt

i > Qyqlt(SH , q);
• Bad energy efficiency (BadEff) is an intermediate class corresponding to fulfilled constraints

but a high cost function yst
i = BadEff if yqlt

i ≤ Qyqlt(SH , q) and yeff
i > Qyeff(S∗H , q);

• Good energy efficiency (GoodEff) is the best class in which constraints are respected and

the efficiency indicator is low yst
i = GoodEff if yqlt

i ≤ Qyqlt(SH , q) and yeff
i ≤ Qyeff .

The dataset produced by this output definition phase is made of N examples S =
{(xi, yst

i )}
N
i=1 and can be used as a training set for the learning phase of a rule-based

classification model. In this context, the use of the XAI method is crucial because it allows
us to not only make predictions, but also to have a clear insight about the cause–effect
relationships.

This learning phase consists of using historical data to generate the model that de-
scribes the relationship between inputs (parameters of the WDN) and the output (perfor-
mance of the WDN).

For the rule extraction step, the use of the logic learning machine (LLM) method is
suggested. Notice that it is possible to perform the rule generation phase periodically
(e.g., every day) so that changes in the behavior of the system are included in the created
models.

The LLM is a clear box method based on the switching neural network (SNN) model,
introduced by [22], which generates a set of intelligible rules through Boolean function
synthesis. Briefly, the LLM transforms the data into a Boolean domain where some Boolean
functions (namely one for each output value) are reconstructed starting from a portion
of their truth table with the method described in [23]. The Boolean functions are then
converted back into intelligible rules involving the original variables:

IF < premise > THEN < consequence >

where < premise > is the conjunction of a set of conditions on the input variables (e.g., the
pressure, the time of the day, etc.) and < consequence > contains the output value (i.e., the
performance of the network) corresponding to < premise >.

Competing techniques, such as decision trees, introduced by [24], usually produce
complex rulesets (i.e., with many splits) that are too dependent on the initial splits. More-
over, the effectiveness of rule-based optimization depends on the “completeness” of the
set of rules. In other words, as the next sections will clarify, optimization is searching for
conditions leading to good configurations; thus, it is important that (almost) all the possible
correlations are retrieved by the classification algorithms in order to increase the chance
of having at least one available and attainable good configuration. On the contrary, due
to the divide-and-conquer approach of DT, even if they are more complex, the number of
rules is usually reduced and each vector x satisfies only one rule; for this reason, in several
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situations, it is possible that no good configurations can be achieved from the current
situation. A random forest (RF) model, proposed by [25], would produce a larger ruleset
containing redundant rules, where it is also more complex for the RF to apply changes in
order to improve a solution. In addition, since it is not constrained to a tree structure, the
LLM is able to integrate intelligible rules based on WDN expert knowledge, increasing the
level of customization of the solution. However, if a DT or RF are used, the RBC approach
can be applied after having converted the tree (or the ensemble of trees) into a set of rules.

Whatever the rule generation method used, the rules can be evaluated, introducing
some quality measures related to their ability to describe the available data.

A generic rule r ∈ R can be seen as a couple (κ(r), O(r)), where κ(r) is a vector of
conditions and O(r) is the output in its consequence. Let A(κ) be the attribute associated
with a condition κ . An example x is said to be covered by r (denoted by x ≤ r) if it satisfies
all the conditions in κ(r). Vice versa, x 6≤ r means that x is not covered by κ(r). The covering
χ(r) of r is the fraction of cases (xi, yi) in the training set having yi = O(r) and input xi
covered by r:

χ(r) =
NO(r),κ(r)

NO(r))

where NO(r),κ(r) is the number of cases in the training set having output O(r) and satisfying
all the conditions in κ(r) and NO(r) is the number of cases having output O(r), while the
error ε(r) of r is the fraction of the example in the training set having output yi 6= O(r)
covered by r.

ε(r) =
NO(r),κ(r)

NO(r)

where NO(r),κ(r) is the number of cases in the training set having an output different from
O(r) and covered by r and NO(r) is the number of cases where the output is not O(r).

Combining the covering and error, we can define the relevance of a rule as:

R(r) = χ(r)(1− ε(r))

Since a new configuration x being described by rules of distinct classes may occur, the
relevance of the rules can be used to determine the output associated with x by computing
a score for each output class c:

S(x, c) = ∑
r∈Rc

x

R(r) (3)

whereRc
x is the subset of rules covering x with an output of O(r) = c. The input vector x

will then be associated with the class c scoring the highest value of S(x, c).

3.2. Control

The control phase consists of continuously applying the rule-based model, taking the
current solution as the input and providing a new solution that improves the quality of the
network. Notice that the new solution becomes part of the historical data, thus improving
the average performance of past configurations.

In general, the rationale behind RBC consists of searching for all the rules that x could
match and then changing some values in x so that more good rules cover the modified
version of x. It is important that RBC is configured so that only changes in controllable
variables are admitted. For example, if a variable representing the time of the day exists,
that cannot be changed: it is not controllable.

The search for rules and solution edits is repeated until a termination condition is
met and the produced solution becomes part of the historical data. Notice that the output
definition and rule extraction steps are not performed at every iteration but only when
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the changes applied in the Rule Based Control step no longer lead to improvements or the
classification model performance drops on average over a specific time period.

The description of the proposed method assumes that the classification model has
been generated by means of the LLM algorithm.

Before applying RBC, a weight value should be associated with each output class so that
the higher the weight, the higher the cost of the class. In particular, negative weights should
be associated with target classes, whereas positive weights should be assigned to unwanted
outputs. Moreover, weights should be chosen so that wBadQoS ≥ wBadEff ≥ wGoodEff.

The goal of the optimization procedure is to find the vector x that corresponds to the
minimum of the probabilities P(BadQoS | x) and P(BadEff | x) and to the maximum of the
probability P(GoodEff | x) for each WDN configuration x. Since the probabilities P(c | x)
are usually unknown a priori, they can be estimated using the rules derived from the LLM.
The generic probabilities P(c | x) derived from an LLM model can be obtained as a function
of the rules covering x relative to c and the rules covering x relative to classes other than c.

P(c | x) =
S(x, c)

∑k∈C S(x, k)
(4)

where C = {BadQoS, BadEff, GoodEff} is the set of all possible output classes. Then, the
cost function g(x) that RBC must try to minimize is introduced:

g(x) = ∑
c∈C

wcP(c | x) = ∑c∈C wc · S(x, c)
∑k∈C S(x, k)

(5)

which, if the score of the class S(x, c) is computed by using Equation (3), can be written as:

g(x) =
∑c∈C

(
wc ·∑r∈Rc

x
R(r)

)
∑k∈C ∑r∈Rk

x
R(r)

(6)

Equation (6) highlights that wc < 0 leads to a negative contribution to the cost function
and therefore the corresponding class c is preferred if possible; otherwise, classes where
wc > 0 are discouraged since they increase the cost function g. A class with wc = 0 does
not contribute to the cost, so the associated score is not relevant. Each P(c | xi) can be
increased (or reduced) by making changes to x in order to add (or remove) rules to Rc

x.
RBC aims to change x so that more rules for the good class and fewer rules for the bad
classes are matched.

Given the set E of modifiable attributes, RBC (see Algorithm 1) builds the setRx,E of
rules that could potentially cover x after some changes in attributes belonging to E.

RBC scansR+
x,E starting from the class with the lowest weight (i.e., the most desirable

class if there is more than one class with wc < 0), detecting candidate rules to cover the
current configuration. The rule belonging to the best class or, in the case of a tie, that with
the highest relevance, is selected. In other words, the selection is performed by finding
the maximum of

(
−wO(r), R(r)

)
according to lexicographic ordering. Starting from the

selected rule, the algorithm makes the minimum changes in x (creating a modified vector
xM) so that r covers xM. In principle, this change should improve the value of the cost
function; nonetheless, due to the strong interdependency among rules, it is possible that
the performed changes make other undesired rules to cover xM. For this reason, the value
of g(xM) is computed and, if it is smaller than g(x), the changes are maintained; otherwise,
they are dropped.

If there are only two possible output values (e.g., good and bad), then it is sufficient to
choose any wGood < 0 and wBad > 0 to achieve the expected result for any starting solution
xi with RBC, since, in all cases, good is the desirable class and bad is the undesirable class.

On the other hand, if the possible values of the output are more than two, then the
choice of weights is not trivial.
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Since three classes have been defined with an increasing level of performance, two
different approaches could be applied aiming at (a) maximizing the probability of GoodEff
or (b) minimizing the probability of BadQoS. In many situations, the two approaches
would lead to the same result, but when the probability (according to the ruleset) associated
with GoodEff is null, approaches (a) and (b) may produce different solution vectors. In
other words, if approach (a) is adopted, a weight vector with wGoodEff < 0, wBadEff > 0
and wBadQoS > 0 can be chosen. Nevertheless, if GoodEff cannot be reached (i.e., if the
associated probability is null), this choice is not able to avoid class BadQoS. In order to
change the performance of the configuration from BadQoS to BadEff, the weight function
should be defined so that wGoodEff < 0, wBadEff < 0 and wBadQoS > 0. In this way, RBC tries
to increase the probability of both class GoodEff and BadEff.

Algorithm 1: Function RuleBasedControl that implements the control strategy
based on rules.

Data: x,Rx,E, w, E
Result: xM

R+
x,E = {r | r ∈ Rx,E and wO(r) < 0};

whileR+
x,E 6= ∅ do

r∗ = arg maxr∈Rx,E

(
−wO(r), R(r)

)
;

κ̂(r∗) = {κ | κ ∈ κ(r∗) and A(κ) ∈ E};
xM = x;
for κ ∈ κ̂(r∗) do

j = A(κ);
if xj 6≤ κ then

xM
j = arg minv{‖ xj − v ‖| v ≤ κ};

end
end
if g(xM) < g(x) then

x = xM;
end
R+

x = R+
x \ {r}

end

It is worth noting that, since it is possible that the optimum cannot be reached, Algo-
rithm 1 is not the best approach. In this situation, deciding to avoid the worst configuration
(i.e., BadQoS) rather than looking for the best one (i.e., GoodEff) could bring better results.
This can be achieved by applying RBC in a hierarchical way, leading to the hierarchical Rule
Based Control (HRBC) algorithm. In particular, in the first application, only the top class
(i.e., GoodEff) has a negative weight; at the subsequent step, if the best output cannot be
reached, then a new class (i.e., BadEff) is set with a negative weight.

Even if here it is applied to a three-class problem, the algorithm is easily generalized:
the goal of the first application of RBC is to maximize the probability for the best class.
If the goal is not achieved, the goal becomes less ambitious and consequently consists
of moving the considered solution toward an acceptable class; at every step, the set of
acceptable classes is enriched and the goal is less restrictive.

Each step of the algorithm consists of applying RBC; then, only if the predicted output
does not reach the target classes at the last step, the weights are updated and the step is
repeated. The score update consists of setting the minimum positive weight equal to the
maximum between the current negative weights. In addition, all the negative weights are
decreased, as shown in Algorithm 2.

The effectiveness of the different versions of RBC is tested in the next section using a
synthetic network whose evolution is simulated via a hydraulic model.
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Algorithm 2: Hierarchical Rule Based Control that iteratively implements RBC
changing the target class.

Data: x,Rx,E, w, E
Result: xM,
C− = {c ∈ C | wc > 0};
C+ = C \ C−

while C− 6= ∅ do
x =RuleBasedControl (x,Rx,E, w, E);
ỹ = arg maxc{P(c | x) | c ∈ C};
if ỹ ∈ C− then

c∗ = arg minc{wc | c ∈ C−};
wc∗ = max{wc | c ∈ C+};
for c ∈ C+ do

wc = wc − 1;
end
C− = C− \ {c∗} ;
C+ = C+ ∪ {c∗}

else
C− = ∅ ;

end
end

4. Results

The validity of the RBC method was demonstrated by optimizing the control of a
D-town network. This network was presented for the Battle of the Water Networks II,
discussed by [26], whose objective was to define the best design improvement given a
population’s growing demand for water. The hydraulic model of D-town is available in the
benchmark problems hosted by the Centre for Water Systems of the University of Exeter,
which collects examples of water distribution networks used by various researchers in their
studies related to water modeling and optimization (https://engineering.exeter.ac.uk/
research/cws/resources/benchmarks/, accessed on 8 May 2023). The D-town hydraulic
model consists of 399 junctions, 7 storage tanks, 443 pipes and 11 pumps divided into
5 pumping stations. The schema of the D-town network is presented in Figure 1.

Figure 1. Schema of the D-town network.

https://engineering.exeter.ac.uk/research/cws/resources/benchmarks/
https://engineering.exeter.ac.uk/research/cws/resources/benchmarks/


Computers 2023, 12, 123 12 of 17

The training dataset was generated by performing several EPANET simulations and
collecting information on the elements of the network at each time step utilizing EPANET
TOOLS 1.0.0, a package enabling the user to call all the EPANET programmer’s toolkit
functions within Python scripts. For each simulation, the input file was modified to
simulate different water demands for each node and different initial states for tanks and
pumps, leading to a different efficiency and quality of the service. The resulting dataset is a
collection of 67K samples representing different network states. As described in Section 3.1,
each sample was labeled with BadQoS, BadEff and GoodEff according to its efficiency
(Eff) and quality (QoS) indicator. In particular, the efficiency indicator was computed
by quantifying the energy consumed by pumping stations and the quality indicator was
computed by observing whether the pressure of each node is in its optimal pressure range
or measuring how much lower it is than its lower limit or greater it is than its higher
extreme. More specifically, if the constraint violation for a pattern is greater than the
median constraint violation in the training set, its output is set to BadQoS. If it is lower
but the energy efficiency for the pattern is worse than the median energy efficiency in the
training set, its output is set to BadEff. Finally, if both indicators are better than the median,
the output is set to GoodEff. Afterwards, a three-fold cross-validation procedure was used
to select the optimal LLM parameters for generating the rule-based model. The parameter
set leading to the higher average Cohen’s K in the validations sets was used to extract rules
predicting the output value based on the level of the tanks and the number of active pumps
in each pumping station.

To enhance the robustness of the evaluation, a separate set (named test set) of 30K
simulated patterns was generated, and will be used for evaluation and comparison. In
other words, RBC was applied, on top of the rules generated by the LLM in the training
step, to drive the controls of the system (i.e., to turn on/off some pumps) in such a way
that the QoS (firstly) and the efficiency (secondly) of the network are improved. The model
trained by the LLM obtains an accuracy of 0.84 and a Cohen’s K of 0.76 on the test set.

The QoS and efficiency measured after the control actions provided by the RBC
approach were compared with the same indicators in two different scenarios. Firstly, the
system indicators after applying RBC controls were compared with the system indicators if
no actions had been taken. We will refer to this as the no action case. In the second scenario,
RBC was compared with one of the most used control approach, where suggestions were
generated by applying the genetic algorithm. The used genetic representation is the binary
one, where each gene is a pump status; the fitness is a combination of efficiency and quality
indicators, where their weight parameters were set in order to favor the former one; the
selection method is the proportional selection; the crossover method is the single-point
crossover with a probability equal to 0.9 and a mutation probability equal to 0.1. The
population size was set to 100; the best solution was maintained without any change in
each generation; and the termination conditions were: 40 generations were explored; 5 steps
were performed without improving the best solution.

In all cases, the system indicators were evaluated by the EPANET simulator 15 min
after the controls application.

It is noteworthy that the RBC approach only needs a pre-training rule-based model
to generate the control suggestions. The genetic algorithms procedure, on the other hand,
requires hydraulic simulations to compute the fitness used to select the best suggestions.
For this reason, genetic algorithms can be used only after the formulation of a physical
model representing, with some degree of approximation, the functioning of the water
distribution network.

To set up the comparison, EPANET was used as a support for genetic algorithms. All
the comparisons were made using 30K samples that are different from the training set
but generated with the same approach. Each sample was given as an input to the control
method and the effect of the control output was checked 15 min after the application
through EPANET simulations. EPANET allows us to insert a demand profile as a factor
that is multiplied by a standard water demand value. Since EPANET was used both to
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select and to evaluate the solution generated by the genetic algorithms, Gaussian noise with
an average equal to zero and standard deviation equal to 0.05 was added to the EPANET
multiplier of the water demand in order to also take into account the approximation that
characterizes the physical model of the system. To avoid excessive variances, the expected
water demand profile used for GA optimization was simulated to differ 20% at most from
the real demand.

The first comparison regards the different behaviors in terms of QoS . As shown in
Figure 2, when RBC is applied, the occurrence of the BadQoS output in the next 15 min is
avoided in 67% of cases. If no action is applied, the BadQoS is avoided in 59% of cases,
whereas only 55% of patterns prevent the BadQoS output if genetic algorithms are applied.

Figure 2. The performances of the three approaches concerning the quality of the system indicator.

Figure 3 reports the results of experiments when considering energy efficiency and
puts the QoS in a broader perspective. As illustrated, genetic algorithms result in an
improved level of consumption compared to the median in 96% of cases. If no controls are
applied, this only happens in 52% of cases, whereas the RBC approach achieves 78% of
good cases if energy efficiency alone is considered.

Figure 3. The performance of the different approaches regarding energy optimization.

Combining the two elements, it is possible to see (in Figure 4) that, referring to the
BadQoS, BadEff and GoodEff possible output values, RBC obtains the lowest percentage
of cases in the worst class (BadQoS) and the highest percentage of cases in the best class
(GoodEff). Table 1 resumes the output distribution in the three cases.
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Table 1. Comparison: output classes in test set.

BadQoS BadEff GoodEff

No Action 40.73% 29.84% 29.43%
Genetic Algorithms 44.82% 1.77% 53.41%
Rule Based Control 32.91% 4.39% 62.70%

Figure 4. The performance of the three approaches considering the indicator that takes into account
both quality of the service and energy optimization.

It is also worth considering that turning pumps on and off at a high rate in such a
complex and critical system as a water main may not be desirable for stability reasons. To
take this aspect into account, Figure 5 shows a comparison in terms of the average number
of changes that are suggested to improve the performance. In this case, only RBC and GA
can be compared because, in the no action case, by definition, the number of changes is
0. From the histogram, it can be seen that more than 60% of cases RBC suggest 0, 1 or 2
switches, while the frequency of a higher number of switches decreases quickly.

Figure 5. The number of switches performed by the two approaches at each iteration.

On the contrary, in more than 60% of cases, GAs propose more than 3 changes, almost
never suggest 0 changes and suggest 1 switch in less than 5% of cases. The average number
of changes per iteration for RBC is 2.25, compared to 4.24 for GAs. This means that,
considering all the set of pumps during one day (i.e., 96 iterations of the control algorithm
since it runs every 15 min), approximately 216 switches are expected for RBC whereas, on
average, GAs suggest 407 switches.

As far as the computation time is concerned, on average, RBC requires 0.04 s for a
single run, whereas a single run for the GAs requires 56 s.
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The time needed for computation depends on the complexity of the network to be
controlled. For this reason, the behavior of time needed for computation as a function of
the complexity of the network (measured as the ratio of the number of nodes with respect
to the original network) is shown in Figure 6. From this plot, it is evident that RBC is able to
perform far quicker than GAs, even when the complexity of the network increases. This is
not surprising as the model used by RBC is much more simple than the hydraulic simulator
used by GAs. To better evaluate the time performance of RBC, we also plotted the time
needed by the novel approach separately in Figure 7. For example, it takes less than 50 s to
optimize a network that is 20 times more complex than the original with approximately
8000 demand nodes. This also allows for application where new control rules should be
generated with a high frequency. Moreover, opposite to other approaches (such as linear
programming or genetic algorithms), RBC allows us to (sub)optimize the network by also
considering a portion of it, thus reducing the computational burden further.

Figure 6. The time needed by RBC and GAs as a function of the complexity of the network (logarith-
mic scale).

Figure 7. The time needed by RBC as a function of the complexity of the network.

Computational efficiency, combined with the fact that RBC does not require a math-
ematical model of the network, makes it particularly well-suited for a reactive, on-line
control application.

5. Discussion

The present work introduced and described the rule-based control method, a new
rule-based machine learning technique that can be used for the optimization of complex
systems. Specifically, in this paper, we applied this method to a water distribution network
to optimize pump controls, saving energy and ensuring a good quality of service, but it
is worth noting that the rule-based control approach can be used to optimize the control
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of other systems. It only requires the availability of training data so that the underlying
classification algorithm can learn the behavior of the system under study. This is also a
limitation, as it cannot be used to optimize a network if it does not have historical data
and cannot be simulated. In order to measure how this method can improve the network
quality, a test was performed on a separate test set using a hydraulic simulator. Our results
suggest that rule-based control is able to not only improve the quality of service but also
the energy efficiency of the network system. Furthermore, to demonstrate the effectiveness
of the rule-based control methodology, it was compared with a more traditional method
based on genetic algorithms. First of all, this comparison revealed that our approach allows
for higher levels of network improvement; secondly, it reduces the number of switches in
the pumps, which should imply lower maintenance costs for the water main; and, finally, it
reduces the calculation time, thus enabling real-time implementations.

Future studies will focus on the application of RBC for network optimization, in-
cluding rule extraction and the evaluation of results. New implementations of RBC will
be investigated, where not just the next step time but also the subsequent steps will be
considered. In this case, other factors, such as the cost of energy and demand forecasting,
could also be considered. The application of RBC in optimizing the control of other types
of systems will also be investigated.
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