
Citation: Berihun, N.G.; Dongmo, C.;

Van der Poll, J.A. The Applicability of

Automated Testing Frameworks for

Mobile Application Testing: A

Systematic Literature Review.

Computers 2023, 12, 97.

https://doi.org/10.3390/

computers12050097

Academic Editor: Yan Liu

Received: 28 March 2023

Revised: 24 April 2023

Accepted: 28 April 2023

Published: 3 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

The Applicability of Automated Testing Frameworks for
Mobile Application Testing: A Systematic Literature Review
Natnael Gonfa Berihun 1,* , Cyrille Dongmo 1 and John Andrew Van der Poll 2

1 Department of Computer Science, School of Computing, Science Campus, University of South Africa,
Johannesburg 1709, South Africa; dongmc@unisa.ac.za

2 Digital Transformation and Innovation, Graduate School of Business Leadership (SBL), Midrand Campus,
University of South Africa, Midrand 1686, South Africa; vdpolja@unisa.ac.za

* Correspondence: 64066428@mylife.unisa.ac.za or natnaelgonfa4@gmail.com

Abstract: Mobile applications are developed and released to the market every day. Due to the intense
usage of mobile applications, their quality matters. End users’ rejection of mobile apps increases
from time to time due to their low quality and lack of proper mobile testing. This indicates that
the role of mobile application testing is crucial in the acceptance of a given software product. Test
engineers use automation frameworks for testing their mobile applications. Automated testing brings
several advantages to the development team. For example, automated checks are used for regression
testing, fast execution of test scripts, and providing quick feedback for the development team. A
systematic literature review has been used to identify and collect evidence on automated testing
frameworks for mobile application testing. A total of 56 relevant research papers were identified
that were published in prominent journals and conferences until February 2023. The results were
summarized and tabulated to provide insights into the suitability of the existing automation testing
framework for mobile application testing. We identified the major test concerns and test challenges
in performing mobile automation testing. The results showed that the keyword-driven testing
framework is the widely used approach, but recently, hybrid approaches have been adopted for
mobile test automation. On the other hand, this review indicated that the existing frameworks
need to be customized using reusable and domain-specific keywords to make them suitable for
mobile application testing. Considering this, this study proposes an architecture, the mobile-based
automation testing framework (MATF). In the future, to address the mobile application testing
challenges, the authors will work on implementing the proposed framework (MATF).

Keywords: testing; automation testing; mobile automation testing; automation testing frameworks;
systematic review

1. Introduction

For mobile apps to be successful, they must satisfy the application usability. A mobile
application should be effective and efficient. This means the application must easily and
quickly provide the user with what they are looking for. Mobile apps must pass through
several testing phases to meet the desired quality.

Testing mobile apps manually has its bottlenecks. This includes repetitiveness and its
time-consuming nature [1–3]. Nevertheless, much of mobile app testing is still performed
manually, thus prone to errors, inefficiency, and high cost. Thus, there is an urgent need for
automation testing.

Automated testing lets the computer simulate what the tester does when manually
running test cases [4]. As a result, large mobile app development companies are migrating
to automated software testing methods. Test automation for mobile applications has
increased in popularity among software developers and testers since it speeds up their
work process to achieve better and more robust results [1,5,6].

Computers 2023, 12, 97. https://doi.org/10.3390/computers12050097 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers12050097
https://doi.org/10.3390/computers12050097
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0009-0001-6081-6103
https://orcid.org/0000-0001-6557-7749
https://doi.org/10.3390/computers12050097
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers12050097?type=check_update&version=3

Computers 2023, 12, 97 2 of 33

Automated testing for mobile apps offers the possibility to test mobile apps quickly
and effectively. This enhances the reliability and acceptability of the mobile product. Using
automated testing tools, developers can develop and run test cases within a short period.
The tools assist in the playback of pre-recorded and predefined actions, compare the results
to the expected behavior, and provide the results to test engineers [2,7]. In addition, once
the test cases are created, they can readily be repeated and extended to perform similar
testing scenarios, which are hardly possible with manual testing [2].

The main contributions of this paper include:

• Analyzing the major test concerns that occurred in the mobile test automation process
and providing a taxonomy of mobile automation testing research to categorize and
summarize the research works;

• Examining the existing literature on test automation frameworks for mobile applica-
tion testing and identifying the test challenges;

• Proposing an improved mobile automation testing framework architecture that tackles
the test challenges;

• Eliciting directions for furthering the research in mobile test automation.

The rest of the paper is organized as follows: Section 2 discusses preliminary research
on mobile test automation frameworks. Section 3 describes the related work and Section 4
discusses the systematic literature review methodology. In Section 5, we present the
selected publications, along with a statistical analysis of those selected publications. It also
introduces the data extraction strategy. Section 6 introduces the result of our systematic
literature review (SLR) whereas Section 7 discusses the major findings from the review.
Section 8 enumerates threats to the validity of the research. Finally, Section 9 discusses
future works and concludes the research paper.

2. Preliminary Research on Mobile Test Automation

Mobile phones and mobile applications are incorporated into our day-to-day activities.
End users are using several mobile apps on their phones to perform their daily routines.
For mobile apps to be successful, they must satisfy the application usability. A mobile
application must be effective and efficient. This means the application must provide the
user with what they look for, easily and quickly. Mobile apps must pass through several
testing techniques to meet the desired quality.

2.1. Mobile Automation Testing

Mobile automation testing is one of the phases performed by testers to check whether
the required functionality is satisfied by the apps [7,8]. Mobile testers are now adapting
automation to achieve quality and productivity. However, the era of mobile automation
testing has its challenges. Some of the pitfalls of mobile automation testing include not
knowing or identifying which tests can and should be automated, automating inappropriate
test cases by developers, and automating tests at the wrong layer and time.

2.2. Software Quality for Mobile Apps

Successful mobile apps satisfy several quality characteristics. Some standard quali-
ties defined in ISO/IEC9126 [9] and that are also published in articles include: usability,
maintainability, reliability, security, efficiency, compatibility, and functionality [10–12].

1. Usability: It refers to how a product can be used to reach a specified goal. This shows
to what extent the application is understandable, easy to learn, easy to use, has a
minimum error rate, and overall satisfaction with the application. These are generic
factors of usability that a given mobile app should fulfill [13].

2. Maintainability: This is a characteristic that determines the probability that a failed
application is restored to its normal state within a given timeframe. A maintainable
app is reasonably easy to scale and correct.

Computers 2023, 12, 97 3 of 33

3. Reliability: It indicates the application’s ability to function in given environmental
conditions for a particular amount of time.

4. Security: It shows the application’s ability to protect itself from hacker attacks and
the techniques used to ensure the integrity and confidentiality of the data.

5. Efficiency: An efficient mobile app consumes fewer resources such as less loading
time and consuming less power and memory during usage of the application.

6. Compatibility: A compatible mobile app is one that properly works across different
mobile devices, OS platforms, and browsers.

7. Functionality: This refers to the application’s ability to perform a task that meets the
user’s expectations.

2.3. Test Automation Frameworks

Mobile test automation is performed using a testing framework that defines the
execution environment for automated tests. It is responsible for setting out the template
to express expectations. Frameworks play a major role in reducing maintenance costs,
and testing enhances automation experts’ test speed and efficiency as well as their test
accuracy. However, to achieve the quality metrics (see Section 2.2), finding a suitable mobile
automation testing framework is crucial.

As per our preliminary literature review, there are different types of test automation
frameworks. Each approach has benefits and limitations. Each of the frameworks is briefly
discussed below.

2.3.1. Linear Automation Framework

Linear automation framework includes record and playback features that enable
testers to record each testing action and then playback the script to repeat the test. This
is one of the fastest ways to generate test scripts. A limitation of this framework is that
the test scripts generated are not reusable since the test data are hardcoded into the script.
In addition, including the script developed using this framework is not maintainable and
scalable since any changes to the application induce modification and reworking of the test
scripts [2,4].

2.3.2. Modular-Based Automation Framework

Modular-based testing is built on the concept of abstraction. It involves the creation
of independent scripts by breaking down the application under test into several logical
units and isolated modules. The modules, in turn, are used hierarchically to build large
test cases. The key strategy in this framework is to build an abstraction layer so that any
changes made in the individual module would not affect the other module or component.
This benefits the automation testers to readily maintain and scale their test suites. The main
challenge with the framework is that the test data are hardcoded into the test script and
need programming skills to set up the framework [2,4].

2.3.3. Library Architecture Testing Framework

The test library architecture framework is also known as the structured scripting
framework [14]. The framework is based on the module-based testing framework with
some additional benefits. Instead of dividing the application under test into test scripts, it
divides into procedures and functions. The framework requires the creation of libraries
to store the functions which can be called by the test script whenever needed [4]. This
framework introduces a high level of modularization which makes maintenance easier
and cost-efficient. Test data are hardcoded within the scripts. More plans and technical
expertise are needed to prepare the test scripts.

2.3.4. Data-Driven Testing Framework

Data-driven testing separates the test script logic from the test data [2,4]. These help
testers store the test data in an external database. The data are stored in “key-value” pairs,

Computers 2023, 12, 97 4 of 33

so test scripts can read and populate the necessary data. The main advantage of this
framework is the reduction of the total number of scripts required to cover all possible
test scenarios. This saves testers time by executing more tests faster. It also increases
flexibility and maintainability. The disadvantage of the data-driven technique is the need
for a highly skilled programming expert who properly manages the link between test
scripts and external data sources [4,15].

2.3.5. Keyword-Driven Testing Framework

Keyword-driven testing is a system-independent framework that utilizes data-driven
testing. In this approach, sets of code called keywords, belonging to the test script, are
kept in an external data file. The keywords act as a directive that dictates the actions to
be performed on the application under test. The keywords and test data are independent
of the automation tool being used and are stored in a tabular structure. In addition to the
advantages provided by the data-driven testing framework, the keyword-driven framework
requires only minimal scripting knowledge from testers. Since a single keyword can be
used across multiple test scripts, it provides high code reusability. The main challenge with
this framework is its complexity and the need for a good automation expert [2,4,14,16].

2.3.6. Hybrid Test Automation Framework

The hybrid framework is a combination of any of the frameworks mentioned above [14].
The framework leverages the advantages and mitigates the weaknesses of the associated
frameworks. It comes up with a flexible framework that suits the application under test.

To understand more about the existing automation testing frameworks, we have
decided to conduct a systematic literature review. The focus of the systematic review
is to investigate the applicability of the existing test automation frameworks for mobile
test automation.

3. Related Work

Several surveys and systematic mapping studies have been conducted in mobile applica-
tion testing. Some of these have attempted to provide an overview of the field via empirical
studies, surveys, and systematic mapping of mobile application testing techniques.

Muccini et al. [6] indicated that testing mobile apps come with several challenges
including performance, security, reliability, and energy requirements. The paper also
mentioned that automation played an important role in testing mobile applications. How-
ever, they did not conduct a detailed investigation of the automation testing techniques
and frameworks.

Corral et al. [17] conducted a state-of-the-art survey to discuss what kind of software
assurance practices are needed for mobile apps in three levels: software development
processes, software product assurance practices, and software implementation practices.
According to the authors, they were able to find several practices for mobile systems. Even
though they identified several software assurance practices for mobile apps, we believe a
rigorous systematic literature review would further facilitate the choice of an appropriate
testing technique among the existing ones.

In another study, Sahinoglu et al. [18] performed a systematic mapping of mobile
applications. Their results indicate that the most frequently used test types for mobile
applications are functional and usability testing. The research also showed that the top
three issues addressed by the research community include test environment management,
test case automation, and test case generation. The authors recognized in their conclusion
that further work is needed in mobile application testing techniques as well as for building
a suitable framework for it.

Zein et al. [19] reported on mobile application testing and its challenges using a
systematic mapping study. The study provides comprehensive mapping to build a novel
classification scheme for mobile application testing. The authors believed that there is no
substantial work on this evolving topic and have provided a high-level categorization of the

Computers 2023, 12, 97 5 of 33

techniques into four main categories: (1) structure of the topic or evidence; (2) contribution
facets; (3) objects involved in the study; and (4) research facets. In each scheme, the authors
discussed the methods applied in each study.

Kong et al. [20] performed a systematic literature review on the automated testing of
android apps. The study identified the current trends, methodologies, and challenges faced
by the android testing approaches. The study created a taxonomy of the related research
exploring various testing dimensions. The dimensions include test objectives, test targets,
test levels, and test techniques. The study performed a trend analysis for the taxonomy
mentioned above. For instance, the trend of testing methods showed that model-based
testing has the most dominant literature from the explored literature.

Singh et al. [21] implemented a test automation framework using a model-based
testing approach using a manual test script. The framework is also open for integration
with other automation testing frameworks such as data-driven and keyword-driven testing
frameworks. The authors also emphasized that model-based testing helps in delivering
test automation at a fast rate and with minimum cost.

Linares-vásquez et al. [22] conducted a survey to show the key challenges that make
automated solutions ineffective. To this end, the authors defined a testing framework based
on the continuous, evolutionary and large-scale principle (CEL). To enable fully automated
solutions, the framework also incorporates a research agenda that describes six major topics
that need to be addressed in the future: (1) improved model-based representations of mobile
apps; (2) flexible open source solutions for large-scale and crowdsourced testing; (3) goal-
oriented automated test case generation; (4) derivation of scalable, precise automated
oracles; (5) derivation of methods to provide useful feedback for developers; and (6) mining
software repositories and user reviews to drive testing.

An empirical study together with a systematic literature review was performed to
investigate mobile development challenges [23]. The authors discussed the challenges
involved in native, web, and hybrid mobile applications. Fragmentation, compatibility, and
testing are the most reported challenges for native, web, and hybrid mobile applications,
respectively. Other challenges reported include lack of expertise and tool support, change
management, reuse of code, security, lack of training, and knowledge management.

Junmei et al. [24] performed research on mobile automation testing using Appium
as a testing tool. The research aimed to improve the quality of mobile applications and
conducted an experiment to evaluate the proposed method. The result indicates that
the Appium testing tool is more efficient in the realization of mobile automation testing.
The study also indicates that regression testing is more convenient and accelerates the
development of mobile applications.

A more recent state-of-the-art survey conducted by Luo et al. [25] looks into context
simulation methods for testing context-aware mobile applications. The authors performed
an in-depth comparison of the key technical details of relevant context simulation tech-
niques including both data-driven and model-based approaches. They concluded that
testing mobile context-aware applications is costly and time-consuming. The findings of
this study are in agreement with the Amalfitano research [7], who suggested that only a few
research works have been conducted on context-aware systems and further work needs to
be done on context-aware approaches to assist testers in different testing activities.

To summarize, most of the related work discussed above focuses on mobile application
testing techniques and challenges and does not embrace the applicability of the automation
testing framework for mobile application testing. Further, the studies did not propose
a suitable testing framework that will address the test challenges. A summary of the
limitations of the related work is shown in Table 1.

Computers 2023, 12, 97 6 of 33

Table 1. The limitations of the related work.

Title of Paper Limitations

Software testing of mobile applications: challenges and future
research directions [6]

Did not perform a detailed investigation on automation testing
techniques and frameworks.

Software assurance practices for mobile applications [17] A rigorous systematic literature review is not conducted that aid
testers to choose an appropriate testing framework.

Mobile application verification: a systematic mapping
study [18]

Mobile application testing is not reviewed in detail and a suitable
framework needs to be developed.

A systematic mapping study of mobile application testing
techniques [19]

The authors did not propose an improved architecture for solving
mobile application test challenges.

Automated testing of android apps: a systematic literature
review [20]

The authors did not propose an improved architecture for solving
mobile application test challenges.

Implementing test automation framework using model-based
testing approach [21]

The implemented framework is not associated with the test
challenges.

Continuous, evolutionary and large-scale: a new perspective
for automated mobile app testing [22]

A detailed investigation on the current test frameworks is not
conducted and the test challenges addressed by the framework
are not discussed.

Research on mobile application automation testing technology
based on Appium [24]

The study is limited to the Appium testing tool and other testing
tools are not incorporated.

A survey of context simulation for testing mobile
context-aware applications [25]

The study conducts a survey on testing context-aware mobile
systems and did not suggest a solution for it.

4. Methodology of This Review

This work has adopted the SLR approach proposed by Kitchenham et al. [26] and can
be summarized into three main phases: planning the review, conducting the review, and
reporting the review.

In the planning phase, a review protocol is developed, which consists of the following
elements: the research questions that the review is intended to answer, identification of the
search string, and primary studies’ selection criteria. Conducting the review phase involves
primary studies’ identification, selection, and evaluation according to the inclusion and
exclusion criteria set in the review protocol. The final phase involves reporting the review
findings which includes specifying dissemination mechanisms and formatting the main
report [26]. Figure 1 depicts the process of SLR.

Computers 2023, 12, 97 6 of 32

automation testing framework for mobile application testing. Further, the studies did not
propose a suitable testing framework that will address the test challenges. A summary of
the limitations of the related work is shown in Table 1.

Table 1. The limitations of the related work.

Title of Paper Limitations
Software testing of mobile applications: chal-
lenges and future research directions [6]

Did not perform a detailed investigation on automation testing
techniques and frameworks.

Software assurance practices for mobile appli-
cations [17]

A rigorous systematic literature review is not conducted that aid
testers to choose an appropriate testing framework.

Mobile application verification: a systematic
mapping study [18]

Mobile application testing is not reviewed in detail and a suitable
framework needs to be developed.

A systematic mapping study of mobile applica-
tion testing techniques [19]

The authors did not propose an improved architecture for solving
mobile application test challenges.

Automated testing of android apps: a system-
atic literature review [20]

The authors did not propose an improved architecture for solving
mobile application test challenges.

Implementing test automation framework us-
ing model-based testing approach [21]

The implemented framework is not associated with the test chal-
lenges.

Continuous, evolutionary and large-scale: a
new perspective for automated mobile app
testing [22]

A detailed investigation on the current test frameworks is not con-
ducted and the test challenges addressed by the framework are not
discussed.

Research on mobile application automation
testing technology based on Appium [24]

The study is limited to the Appium testing tool and other testing
tools are not incorporated.

A survey of context simulation for testing mo-
bile context-aware applications [25]

The study conducts a survey on testing context-aware mobile sys-
tems and did not suggest a solution for it.

4. Methodology of This Review
This work has adopted the SLR approach proposed by Kitchenham et al. [26] and can

be summarized into three main phases: planning the review, conducting the review, and
reporting the review.

In the planning phase, a review protocol is developed, which consists of the following
elements: the research questions that the review is intended to answer, identification of
the search string, and primary studies’ selection criteria. Conducting the review phase
involves primary studies’ identification, selection, and evaluation according to the inclu-
sion and exclusion criteria set in the review protocol. The final phase involves reporting
the review findings which includes specifying dissemination mechanisms and formatting
the main report [26]. Figure 1 depicts the process of SLR.

Figure 1. A systematic review process. Figure 1. A systematic review process.

4.1. Definition of Research Scope

We defined two research objectives and two specific research questions that support
the investigation of the research work.

Computers 2023, 12, 97 7 of 33

I. Research Objectives

The current research focuses on examining the existing automation testing frame-
works’ suitability for mobile application testing and suggest an improved mobile testing
architecture that addresses the gaps in automation testing frameworks. To this end, we
identified two research objectives that guide the research work.

RO1: To assess the existing automation testing framework strength and weaknesses in
testing mobile applications.

RO2: To propose an improved mobile automation testing framework that addresses
the test challenges.

II. Research Questions

Following the research objectives, there are two research questions formulated in
this review.

RQ1: What is the applicability of automation testing frameworks in mobile appli-
cation testing?

With this research question, we intend to uncover the popularity of the existing test
automation frameworks in mobile test automation with a focus on library, data-driven,
keyword-driven, and hybrid frameworks. We look more in detail at how existing frame-
works are adopted in mobile application testing and see which one is most popular and
reliable. Concerning the applicability of the frameworks, we also look into the architecture
of the frameworks, which consists of the components of the framework [2,27].

RQ2: What are the challenges of the existing automation testing frameworks for
mobile application testing?

With this research question, we investigate the strength and weaknesses of the current
automation frameworks. We will answer the research question by identifying the relevant
test concerns or challenges in testing mobile applications.

4.2. The Search String

To form the search string, the main terms that compose the research question were
identified. The terms “mobile application”, “automation testing framework”, “challenges”,
and “applicability” represented the main terms (see Table 2).

Table 2. Search keywords.

Group Keywords

Mobile Mobile, android, iOS

Automation testing Automation testing, mobile automation testing,
automated testing

Automation testing framework Testing framework, automation testing framework, mobile
automation testing framework

Challenge Challenge, limitation, constraint, drawback

Framework Frameworks, tool, model

A search by the keywords was chosen as the study selection methodology. The search
terms used were constructed as suggested by Kitchenham and Charters [26]; most of the
terms were generated from the research questions, and we used Monkey Learn, a keyword
extractor tool, to identify the major group of keywords, then alternative terms similar to
those generated from the research question were added. The final search string is created
as a combination of the keywords by linking each group (search_string = group1 & group2
& group3 & group4 & group5), where each group is represented as a disjunction of its
keywords (group = kw1|kw2|kw3|kw4|kw5).

The systematic review focuses on two key aspects: mobile automation testing chal-
lenges and the applicability of mobile automation testing frameworks. Since a variety of

Computers 2023, 12, 97 8 of 33

terms may be used by authors to indicate any of these aspects, we rely on the extended set
of keywords identified in Table 2.

The search keywords defined in Table 2 are applied to online databases to identify
appropriate research papers. It took several tries to construct the right search strings since
adding more keywords and synonyms makes the returned result irrelevant. We considered
five widely used repositories for the review: IEEE Xplore, ACM Digital Library, Google
Scholar, Web of Science, and Scopus. The “advanced” search functionality of the five
selected online databases did not provide us with more relevant articles. The search was
run on the digital repositories many times iteratively. In each iteration, the articles were
filtered based on their content, which included the abstract, the methodology, and the
conclusion part of the article.

Most of the relevant search strings were found in Scopus, hence it was used to pilot
the search strings. Table 3 shows the piloted search strings, returned results, and relevant
studies from Scopus. The returned results showed that Try5 yields precise and relevant
articles, so it is selected as a search string.

Table 3. Search strings piloted on Scopus.

#Try Search String Returned Results #Relevant
Articles

Try1 ((“automation test *”) AND (mobile * OR android OR ios) AND (applicable
* OR appropriate * OR suitable *)) 3 1

Try2 ((“automation test *”) AND (mobile * OR android OR ios)) 45 18

Try3 ((“automation test *”) AND (mobile application *)) 29 12

Try4 ((“automation test *”) AND (mobile *) AND (framework * OR model *)
AND (challenge *)) 4 1

Try5 ((“automation test *”) AND (mobile application test *)) 29 13

The asterisk (*) is used as a wildcard symbol in a search to find content with the same prefix.

In order not to miss the relevant papers and to discard the irrelevant ones, we con-
sidered an offline searching approach for the research papers produced from the database
repositories above, i.e., checking the content of the papers with relevant keywords defined
in the search string. For instance, if a given research paper did not include any of the
keywords mentioned in Table 2; it will be excluded from the candidate list. Furthermore,
a backward snowballing technique was applied to the filtered articles to identify more
relevant articles to include in the review.

4.3. Inclusion and Exclusion Criteria

The inclusion and exclusion criteria are:
Inclusion criteria:
I1: The study must be directly related to mobile automation testing, automation testing

frameworks, or challenges of automation testing frameworks.
I2: Papers must provide empirical evidence to support their results (i.e., it should

provide empirical qualitative or quantitative data).
I3: If more than one paper reports the same study, only the latest or mature paper is

included. A mature paper is a recent high-quality paper with substantial results for the
problem under study.

I4: Publications from January 2008 to February 2023 are included in the review.
Exclusion criteria:
E1: Studies related to automation testing frameworks for web applications are excluded.
E2: Research papers that are not related to mobile automation frameworks for testing

mobile apps are excluded. Our search keywords indeed include broad terms such as
automation testing, mobile application testing, and testing frameworks, as the aim is

Computers 2023, 12, 97 9 of 33

to include all relevant papers that focus on mobile application testing using the current
existing automation testing frameworks.

E3: Short papers/posters are excluded, mainly because such papers are often idea
papers or works-in-progress, and they are not mature enough to be included in the review.
In this study, papers that are explicitly stated as posters and idea papers without proper
methodology are classified as short ones.

In addition to that, we have applied two filter criteria.
F1: Papers that are not written in the English language are filtered out.
F2: Secondary studies were also excluded from the review.
The inclusion and exclusion criteria are applied in the following manner:

1. E1, E2, and E3 are applied in turn to the search result to exclude irrelevant articles.
2. I1 and I2 are applied to each remaining study to include the research papers that

satisfy the criteria.
3. I3 is applied to duplicate articles to include mature studies.
4. I4 is applied to include the most recent articles.

5. Primary Publication Selection

First, we conducted an abstract review and a quick full paper scan to filter out un-
related papers based on the exclusion criteria defined above. At the end of this stage, a
collection of the primary publication is known. Secondly, a full evaluation of each primary
publication is performed to extract all the important information from the publication that
helps to answer the research questions. The extracted data are further checked to ensure
their validity and consistency. Table 4 summarizes the statistics of the collected papers in
the search stage.

Table 4. Summary of the selection of primary publications.

Step Count

Repository (subject database) search without restriction 4917
After performing a manual walkthrough of the papers 345

After an in-depth review of titles/abstracts 251
After skimming/scanning full paper 61

After removing duplicate papers 56

The repository search gave us a total of 4917 research papers without restriction. Then,
a manual walkthrough was conducted on the title and abstract of each publication to
exclude those that correspond with the exclusion criteria. After filtering out using the
exclusion criteria, the papers that satisfied the matching requirements dropped from 4917 to
345. After this step, we performed a second iteration on the abstract and introduction part
of the remaining paper, leading to the exclusion of 94 papers, which made the remaining
set of papers 251. Subsequently, we went through a full scan of the remaining papers to
exclude 190 papers. Lastly, duplicate papers were removed to obtain 56 articles considered
as relevant primary publications. The full list of investigated publications is shown in
Appendix A section.

As illustrated in Figure 2, almost 50% of the selected publications are found in IEEE
Xplore and Google Scholar. The rest of the papers are from ACM, Web of Science, and Scopus.

As shown in Figure 3, 30% of the 56 selected publications are journals, 63% are
conference papers, and the rest 7% are symposium publications.

We have also shown the distribution of selected articles by year. As shown in Figure 4,
45% of the 56 selected articles are published from 2014–2017, early publications before
2014 account for 35%, whereas recent publications from 2018 onwards account 20% of the
total publications.

Computers 2023, 12, 97 10 of 33

Computers 2023, 12, 97 10 of 32

remaining set of papers 251. Subsequently, we went through a full scan of the remaining
papers to exclude 190 papers. Lastly, duplicate papers were removed to obtain 56 articles
considered as relevant primary publications. The full list of investigated publications is
shown in Appendix A section.

As illustrated in Figure 2, almost 50% of the selected publications are found in IEEE
Xplore and Google Scholar. The rest of the papers are from ACM, Web of Science, and
Scopus.

Figure 2. Frequency of selected publications from database repositories.

As shown in Figure 3, 30% of the 56 selected publications are journals, 63% are con-
ference papers, and the rest 7% are symposium publications.

Figure 3. Distribution of primary publication venue types.

We have also shown the distribution of selected articles by year. As shown in Figure
4, 45% of the 56 selected articles are published from 2014–2017, early publications before
2014 account for 35%, whereas recent publications from 2018 onwards account 20% of the
total publications.

We examined the frequency of the test automation frameworks categorized under
four-time intervals. Figure 5 illustrates the use of test automation frameworks in selected
articles.

As illustrated in Figure 5, keyword-driven testing framework was investigated or
used in the articles as a testing approach as compared with other automation testing
frameworks. However, from 2016 onwards, researchers were looking for other

152

1053
1310

93 29
60 150

242
50 20

17 15
15

12
13

13 12 13 8 10
0

500

1000

1500

IEEE ACM Google Scholar Web of Science Scopus

Selected publication
Database searched Screening abstracts

Screenig fulltext After removing duplicates

30%

63%

7%

Venue Types

Journal Conference Symposium

Figure 2. Frequency of selected publications from database repositories.

Computers 2023, 12, 97 10 of 32

remaining set of papers 251. Subsequently, we went through a full scan of the remaining
papers to exclude 190 papers. Lastly, duplicate papers were removed to obtain 56 articles
considered as relevant primary publications. The full list of investigated publications is
shown in Appendix A section.

As illustrated in Figure 2, almost 50% of the selected publications are found in IEEE
Xplore and Google Scholar. The rest of the papers are from ACM, Web of Science, and
Scopus.

Figure 2. Frequency of selected publications from database repositories.

As shown in Figure 3, 30% of the 56 selected publications are journals, 63% are con-
ference papers, and the rest 7% are symposium publications.

Figure 3. Distribution of primary publication venue types.

We have also shown the distribution of selected articles by year. As shown in Figure
4, 45% of the 56 selected articles are published from 2014–2017, early publications before
2014 account for 35%, whereas recent publications from 2018 onwards account 20% of the
total publications.

We examined the frequency of the test automation frameworks categorized under
four-time intervals. Figure 5 illustrates the use of test automation frameworks in selected
articles.

As illustrated in Figure 5, keyword-driven testing framework was investigated or
used in the articles as a testing approach as compared with other automation testing
frameworks. However, from 2016 onwards, researchers were looking for other

152

1053
1310

93 29
60 150

242
50 20

17 15
15

12
13

13 12 13 8 10
0

500

1000

1500

IEEE ACM Google Scholar Web of Science Scopus

Selected publication
Database searched Screening abstracts

Screenig fulltext After removing duplicates

30%

63%

7%

Venue Types

Journal Conference Symposium

Figure 3. Distribution of primary publication venue types.

We examined the frequency of the test automation frameworks categorized under four-
time intervals. Figure 5 illustrates the use of test automation frameworks in selected articles.

As illustrated in Figure 5, keyword-driven testing framework was investigated or used
in the articles as a testing approach as compared with other automation testing frameworks.
However, from 2016 onwards, researchers were looking for other approaches such as
model-based testing and other automation testing tools. This indicates that customization
of a keyword-driven testing architecture needs to be performed before applying it for
mobile automation testing.

Computers 2023, 12, 97 11 of 33

Computers 2023, 12, 97 11 of 32

approaches such as model-based testing and other automation testing tools. This indicates
that customization of a keyword-driven testing architecture needs to be performed before
applying it for mobile automation testing.

Figure 4. Yearly distribution of primary publications.

Figure 5. Frequency of test automation framework.

5.1. Data Extraction
Based on the selection method, the required data for answering the research ques-

tions were extracted. For this purpose, an extraction form was designed for the selected
research papers. During this process, two types of data were extracted: data for answering
the research questions and data for displaying the bibliographic information of the study.
The extracted data were stored in an excel file for further analysis. Table 5 shows the data
extraction form for the selected articles.

1

1

0

0

0

1

1

0

4

3

4

2

1

0

1

0

6

14

16

1

0 5 10 15 20 25

2008-2011

2012-2015

2016-2019

2020-2023

Frequency of Automation testing
framework applied in selected Articles

Hybrid DDT KDT Model-based Other Approaches/tools

Figure 4. Yearly distribution of primary publications.

Computers 2023, 12, 97 11 of 32

approaches such as model-based testing and other automation testing tools. This indicates
that customization of a keyword-driven testing architecture needs to be performed before
applying it for mobile automation testing.

Figure 4. Yearly distribution of primary publications.

Figure 5. Frequency of test automation framework.

5.1. Data Extraction
Based on the selection method, the required data for answering the research ques-

tions were extracted. For this purpose, an extraction form was designed for the selected
research papers. During this process, two types of data were extracted: data for answering
the research questions and data for displaying the bibliographic information of the study.
The extracted data were stored in an excel file for further analysis. Table 5 shows the data
extraction form for the selected articles.

1

1

0

0

0

1

1

0

4

3

4

2

1

0

1

0

6

14

16

1

0 5 10 15 20 25

2008-2011

2012-2015

2016-2019

2020-2023

Frequency of Automation testing
framework applied in selected Articles

Hybrid DDT KDT Model-based Other Approaches/tools

Figure 5. Frequency of test automation framework.

Computers 2023, 12, 97 12 of 33

5.1. Data Extraction

Based on the selection method, the required data for answering the research questions
were extracted. For this purpose, an extraction form was designed for the selected research
papers. During this process, two types of data were extracted: data for answering the
research questions and data for displaying the bibliographic information of the study. The
extracted data were stored in an excel file for further analysis. Table 5 shows the data
extraction form for the selected articles.

Table 5. Data extraction form.

Data Item Description

Paper ID The unique ID assigned for the research paper

Title The title given for the research paper

Author(s) The authors of the paper

Year Year of publication of the research paper

Publication venue The publisher’s name for the study

Venue type The type of the research article

Mobile automation techniques Mobile automated testing techniques used in the study

Mobile testing tools Mobile testing tools used/discussed in the paper

Framework/tool A framework or a tool proposed in the study

Challenges The challenge or limitation of mobile automation frameworks discussed in the study

Applicability The degree of the applicability of the test automation framework for mobile apps

5.2. Taxonomy of MATF Research

To facilitate the data extraction process and to answer the research questions stated in
Section 4.1 concretely, we found it useful to build a taxonomy of mobile automation testing.
Such classification is important to gain a full understanding of the latest development in
mobile automation testing framework. We adopted the taxonomy from the Kong et al. [20]
research study. A general view of the taxonomy diagram, represented in Figure 6, is
described in three categories, namely test objectives, test techniques, and test challenges.
These categories are associated with the research questions. Test objectives or concerns and
test techniques are linked with RQ1, and test challenges are linked with RQ2.

To answer RQ1, we exploited the existing automation testing framework’s (Test ap-
proaches) applicability in mobile application testing. However, this will only show the
frequency of the test approaches discussed in the selected articles. We also need to check if
the test approaches have a role in satisfying the mobile quality factors (or test objectives).
To answer RQ2, we investigated the limitations or concerns of the test approaches.

Overall, we classified the taxonomy into three dimensions.
Test Objectives: This category summarizes the test objectives. We have listed six

testing objectives. These include reusability, efficiency, reliability, compatibility, scalability,
performance, and functionality.

Test Techniques: This category focuses on automation testing approaches (e.g., data-
driven or keyword-driven) as well as testing types (e.g., regression testing).

Test Challenges: The last category demonstrates the limitations indicated in the selected
articles from the existing test automation frameworks (e.g., fragmentation, complexity).

Computers 2023, 12, 97 13 of 33Computers 2023, 12, 97 13 of 32

Figure 6. Taxonomy of mobile automation testing (Reproduced from [20]).

6. Review Findings
A summary of the reported findings is shown in Tables 6, 7, and 8, respectively. We

also stated a research question that is related to the taxonomy of mobile automation test-
ing research.

6.1. What Are the Concerns of Automation Testing Frameworks?
Our review investigates the test objectives that test automation frameworks seek to

achieve. Test objectives are factors that need to be fulfilled in the mobile automation test-
ing process. For example, reusability is one of emphasized test objectives [28].

6.1.1. Test Objectives

Figure 6. Taxonomy of mobile automation testing (Reproduced from [20]).

6. Review Findings

A summary of the reported findings is shown in Tables 6–8, respectively. We also stated
a research question that is related to the taxonomy of mobile automation testing research.

6.1. What Are the Concerns of Automation Testing Frameworks?

Our review investigates the test objectives that test automation frameworks seek to
achieve. Test objectives are factors that need to be fulfilled in the mobile automation testing
process. For example, reusability is one of emphasized test objectives [28].

Computers 2023, 12, 97 14 of 33

6.1.1. Test Objectives

In this section, we present the various test concerns in the mobile automation testing
process, which includes satisfying the functional and non-functional requirements. We
discuss some of the concerns from the investigated literature.

Reusability: Reusability is the third priority test concern according to our investi-
gation [29]. A total of 41% of the literature discusses the significance of reusability in
mobile application testing. Reusability in this context can be for the test scripts, func-
tions/keywords, and test automation frameworks. Reusable test scripts help testers not to
write test cases for every application or module. Many mobile applications are produced
that while being different in their objective, they will have generic features. So, instead of
writing test cases for each application, test cases are written for unique features or rather
for functions and objects. The selected publication discussed several insights on how to
improve reusability. Zhongqian et al. [16] proposed an android-based keyword-driven
automated testing framework (AKDT) that improves the reusability of test scripts. Pereira
et al. [30] confirmed that a keyword-driven testing framework has high reusability. Recent
studies [28,31] also showed that the reusability of keywords with good design practice
of keyword-driven testing has a latent effect on reducing maintenance costs. The work of
Rwemalika et al. [28,31] confirms the previous findings by [2,32], in that a keyword-driven
testing framework is a better approach for achieving reusability in mobile automation testing.

Efficiency: Efficiency is concerned with the utilization of test resources appropri-
ately [33]. It is related to testing time and cost. According to our review, 54% of the articles
discussed about the importance of efficiency, surpassing reusability by 13%. Designing and
implementing efficient test automation approaches is the second priority in the selected
publications. An efficient test framework supports test engineers to produce test scripts
with a fast execution time and reduced cost. Fazzini [34] reported that mobile companies
do not have enough time and the right framework to test their application. This study also
raises the issue of fragmentation in the android environment.

To mitigate the efficiency issue, a preliminary study was performed by Fazzini [34]
to propose three techniques to test apps more efficiently. The first technique enables
developers to generate independent test cases so that developers can be more effective and
efficient in testing applications. The second technique identifies screen compatibility issues
caused by the fragmentation of the ecosystem. Thirdly, they designed a bug report analysis
technique that changes error reports into test cases, so that developers can promptly start
repairing defects.

Another study by Machiry et al. [35] proposed a Dynodroid system that aids in input
generation for android apps. The system follows the “observe–select–expect” principle to
efficiently generate a sequence of such inputs for android apps. Dynodroid is more efficient
in finding bugs, compared to the popular Monkey tool.

When we come to the applicability of the existing frameworks in achieving efficiency,
from the examined publications, our analysis showed that only 40% of publications use
test automation frameworks such as keyword-driven and data-driven testing approaches
for achieving test efficiency [27,36].

Functionality: According to the review, functionality testing is the number one priority.
A total of 66% of the literature discussed the importance of functionality testing in mobile
application testing. Functional testing is a process of testing the functional aspect of the
application such as meeting the user’s expectations, reducing errors, and ensuring the
quality of the app [11]. Mobile apps are suffering from functionality defects that degrade
the quality and acceptance by end-users [37,38]. Mohammad et al. [11] conducted a
comparative analysis of quality assurance automated testing tools for windows mobile
applications. The study set out major quality factors such as functionality, usability, etc.,
and indicates which testing tools are suitable for achieving the quality factors. The results
showed that there is no single automated testing tool that meets all the quality factors.
Instead, a combination of mobile testing tools should be used to achieve the desired
objective. Ranorex and HockeyApp are the recommended testing tools in the study [11]

Computers 2023, 12, 97 15 of 33

The work of Boushehrinejadmoradi et al. [39] also discussed functionality as one of the
concerns in mobile application testing.

Reliability: Reliability testing is concerned with checking whether the application can
operate without failure for a specific time interval in a particular context [8]. In our review,
21% of the selected publications discussed the reliability test objective. Several authors have
reported the importance of reliability testing [5,40,41]. Lovreto et al. [40] stated that using
automated testing is essential for creating a reliable mobile app. Hu et al. [42] presents an
approach for automating the testing process for android applications. The author claimed
that the reliability of android apps is an important issue, and it is affected by the frequency
of bugs identified in the apps. The proposed automation testing framework provides
effective solutions for activity, event, and type-related bugs. The technique will facilitate
the creation of reliable applications and improve the quality of android apps.

Compatibility: Compatibility is another test objective that checks whether the applica-
tion can run on different hardware devices and operating system platforms [43,44]. Mobile
applications are suffering from compatibility issues that are related to the fragmentation of
the android ecosystem [34,45]. However, despite the significance of compatibility testing,
only 16% of the selected articles provide a review on it. To mitigate compatibility problems,
we need to develop efficient and scalable automation frameworks that perform compati-
bility testing for mobile applications [45]. For instance, Choudhary et al. [45] performed
a comparative study among test input generation tools. The authors showed Monkey,
GUIRipper [46], and A3E [47] testing tools are compatible with every android framework
version. We did not find a single article that uses test automation frameworks for achieving
compatibility. We believe compatibility testing is overlooked in the current studies, but it is
crucial to the successful performance of mobile applications.

Scalability: Scalability testing is a non-functional requirement that measures an appli-
cation’s ability to meet the growing needs of the user such as increased user traffic, data
size, transaction frequency, etc. [11]. Only 13% of the selected articles introduce the concept
of scalability in their automating testing research [5,48,49]. We also observed from the
review that scalability is given less emphasis compared to compatibility. As discussed in
functionality testing, the work of Mohammad et al. [11] also noted that a few automated
testing tools, namely Perfecto mobile and Keynote, are available for assurance of scalability.
When we come to the applicability of the existing frameworks in achieving scalability,
just like that of compatibility, none of the examined publications apply the existing test
automation frameworks for achieving scalability in mobile test automation.

Performance: Performance testing evaluates the speed, response time, and overall
stability of the mobile application [11]. Mobile applications are sensitive to performance issues
such as slow user interaction, poor responsiveness, and unstable application [50,51]. Kulkarni
et al. [52] developed a performance analysis module using the Calabash automation tool
which determines the launch time of the mobile application. The authors also reported that
calabash is an open-source tool that supports all API levels. Kannan et al. [53] also reported
performance-related bottlenecks that happened when migrating a very huge database of a
client using a migration tool. The tool was subjected to performance testing and obtained
unsatisfactory results.

The selected publications for our SLR in terms of the test objectives are considered in
Table 6. Through our in-depth review, the most considered testing objective is functionality,
accounting for 66% of the selected publications. Efficiency and reusability test objectives
ranked second and third, respectively, which account for 54% and 41% of the primary
selected publications.

6.1.2. Test Techniques

Test techniques discuss the kind of test approaches and test types used or discussed in
the examined literature. Test approaches discuss the different automation methodologies
applied in mobile application testing (e.g., data-driven or keyword-driven testing) as well
as the test types (e.g., white-box or black-box testing).

Computers 2023, 12, 97 16 of 33

I. Test Approaches

Modular and Library automation testing techniques were not discussed in the selected
articles, so they are not discussed in this section. However, linear, data-driven, keyword-
driven, model-driven techniques, and a combination of one or more techniques (i.e., hybrid
techniques) were discussed in selected publications. Table 7 lists all the testing approaches
addressed in the literature review.

Linear testing is a testing approach that applies a record/playback method, i.e., testers
set the testing tool to the record mode while performing actions on the application under
test [2,52]. Song et al. [54] proposed an integrated test automation framework to test
multiple heterogenous platforms efficiently.

Data-driven testing is a testing methodology that uses tables to store test data [2]. It
allows testers to input a single test script that can perform tests for all test data from a table,
and the test environment settings and control are not hardcoded, i.e., the test criteria, the
input values, and output values are stored on a specified data source, such as Excel, CSV
files, etc. In [55], the authors developed a novel framework for testing mobile applications
based on a data-driven approach. The framework uses the Appium test library and server
to automatically test mobile applications. Hanna et al. [2] conducted a review of scripting
techniques for automation testing and recommended a data-driven scripting technique
since it satisfies the following characteristics (i.e., reusable functions, low maintenance cost,
separation of data from test scripts, using scripts in regression testing, etc.).

Keyword-driven testing is an extension of the data-driven testing approach, which
is developed to mitigate the limitation of data-driven testing [2]. The keyword-driven
approach is an improvement to its predecessor where all tests are alike and producing new
tests requires new code in the framework. In keyword-driven testing, the test data and the
keywords are kept in external files. Keywords are the core components in the framework
that are used to store the testing process. Even if most of the investigated literature did not
use existing automation testing framework in their research work, our review has shown
that from the existing automation test approaches under investigation, keyword-driven
testing is the most common approach used in mobile automation testing; a total of 55% of
the publications have involved some keyword-driven technology. Zun et al. [56] used a
keyword-driven testing approach to create a multi-platform automatic testing framework
(MATF). The framework can automatically generate and execute the test script on android
and iOS platforms.

The benefit of the keyword-driven technique is also discussed by Zhongqian et al. [16].
The advantages mentioned include an easy and efficient way of creating test scripts, intro-
ducing business logic into one’s automated test batches, the early building of automated
tests to save time, and easy maintenance of test scripts.

Hybrid testing is the combination of one or more testing frameworks, such as linear,
data-driven, keyword-driven, or model-driven testing. The reason for combining is to gain
the benefit from each framework and to eliminate possible disadvantages. For example,
Pajunen et al. [57] designed and implemented a general-purpose hybrid test automation
framework. The framework is constructed from a keyword-driven and model-based testing
approach. The paper describes the integration of the online model-based testing tool
(TEMA toolset) and keyword-driven test automation framework (Robot Framework). The
integration helps testers to take advantage of the wide variety of library support that the
Robot framework provides and that can be used in the online TEMA toolset. In [48], the
authors showed that a combination of data-driven and keyword-driven technology with
the help of XML can separate test scripts, data, and business logic, which not only enhances
the reusability of test scripts but also divides the human labor into framework developers
and testers.

Model-driven testing is a new paradigm in software testing that helps testers in
automatic code generation from a given model. Similarly, model-based testing automates
the generation and execution of test cases from a given model [58,59]. In [60], the authors
proposed the MATeL model (mobile application testing language) that applies the concepts

Computers 2023, 12, 97 17 of 33

of both the model driven-approach and domain-specific modeling language (DSML). The
model helps in improving the quality of mobile applications. Furthermore, adding DSML
behavior facilitates the test scenario in mobile applications because the testing is based on
specific domain elements that are close to the area of mobile device concepts. The authors
are trying to improve the model by adding new benchmarks such as smooth integration
of the DSML with industrial testing platforms to provide a full-fledged testing tool for
test engineers.

II. Test Types

In general, there are different types of testing based on the box approach or levels of
testing. Based on the box approach, there are three testing methods, namely white-box,
black-box, and grey-box testing [53,61]. Based on the level of testing, we have unit testing,
integration testing, system testing, regression testing, acceptance testing, and so forth. We
discussed the box approach and regression testing. The review results show that priority
is given to black-box testing, followed by white-box and grey-box testing. On the other
hand, the box approach has achieved more emphasis than regression testing. The statistics
showed that 52% of the publications discussed the box testing approach, whereas 39% of
the examined articles discuss the regression testing method.

Table 6. Test objectives from the examined literature.

Paper Id Tool/Technique/
Framework

R
eu

sa
bi

li
ty

Ef
fic

ie
nc

y

Pe
rf

or
m

an
ce

R
el

ia
bi

li
ty

R
el

ia
bi

li
ty

Sc
al

ab
il

it
y

C
om

pa
ti

bi
li

ty

Fu
nc

ti
on

al
it

y

SA1 Mustafa Abdul et al. [62] X X X

SA2 KDT [63] X X

SA3 KDT/DSL [30] X X X

SA4 EarlGrey [49] X X X

SA5 KDT [31] X X

SA6 Ukwikora [28] X

SA7 Mohammad et al. [11] X X X X X X X X

SA8 Appium [37] X X

SA9 Sinaga et al. [50] X X

SA10 Appium/OpenCV [40] X X X X X X X

SA11 Mattia Fazzini [34] X X X

SA13 DDT [55] X X X

SA15 Appium [64] X X X X

SA16 MDT [58] X X

SA17 Hussain et al. [32] X X X X X

SA18 Divya Kumar et al. [8] X X X X X X

SA19 Vahid Garousi et al. [65] X

SA20 Jamil et al. [5] X X X X X

SA23 Calabash [52] X X X

SA24 ISO/IEC/IEEE [27] X X X X X

Computers 2023, 12, 97 18 of 33

Table 6. Cont.

Paper Id Tool/Technique/
Framework

R
eu

sa
bi

li
ty

Ef
fic

ie
nc

y

Pe
rf

or
m

an
ce

R
el

ia
bi

li
ty

R
el

ia
bi

li
ty

Sc
al

ab
il

it
y

C
om

pa
ti

bi
li

ty

Fu
nc

ti
on

al
it

y

SA25 Shauvik Roy et al. [45] X X X X X X

SA26 Nader et al. [39] X X X X

SA27 Gunasekaran et al. [38] X X X X X X

SA28 MAT [44] X X X X

SA29 Bansal et al. [61] X X X

SA30 Rasneet et al. [41] X X X

SA31 Hanna et al. [2] X X X X

SA32 Kannan et al. [53] X X

SA34 Pallavi et al. [66] X

SA35 PLC Open XML/KDT [67] X X

SA36 Shiwangi et al. [3] X X X X

SA37 Dynodroid [35] X X X

SA38 KDTFA [29] X X

SA39 Android KDATF [16] X X X

SA40 Testdroid [68] X X

SA41 AndroidRipper [46] X

SA43 MobTAF [69] X X X X

SA44 Song et al. [54] X

SA45 Hu et al. [42] X X

SA47 Crawler [70] X X

SA48 Dominik et al. [71] X

SA49 MDT/KDT [57] X

SA50 Quadri et al. [10] X X

SA51 MobileTest [33] X X

SA53 TDD [51] X X X X

SA54 KDT/DDT [48] X X X

SA55 Adaptive KDT [72] X

SA56 LKDT [36] X X X X

Count 23 30 17 12 7 9 37

White-box testing is a type of testing that mainly focuses on the internal details and
structure of the system. It needs the tester’s full knowledge of the program structure [61]. It
is applied in the early phase of system development such as in unit testing. It is considered
exhaustive and time-consuming. Software developers carried out white-box testing [41].

Computers 2023, 12, 97 19 of 33

Table 7. Test approaches employed in the literature.

Paper Id Tool/Technique/
Framework Li

ne
ar

D
at

a-
dr

iv
en

K
ey

w
or

d-
dr

iv
en

R
el

ia
bi

li
ty

M
od

el
-d

ri
ve

n

Te
st

-d
ri

ve
n

H
yb

ri
d

SA2 KDT [63] X

SA3 KDT/DSL [30] X

SA5 KDT [31] X

SA6 Ukwikora [28] X

SA13 DDT [55] X

SA16 MDT [58] X

SA22 MATF/Appium [56] X X

SA23 Calabash [52] X

SA24 ISO/IEC/IEEE [27] X

SA31 Hanna et al. [2] X X X X X

SA35 PLC Open XML/KDT [67] X

SA38 KDTFA [29] X

SA39 Android KDATF [16] X X

SA43 MobTAF [69] X

SA44 Song et al. [54] X

SA46 DSML [60] X X

SA49 MBT/KDT [57] X X X

SA52 OSGi [73] X X

SA53 TDD [51] X

SA54 KDT/DDT/XML [48] X X X X

SA55 Adaptive KDT [72] X

SA56 LKDT [36] X

Count 3 4 15 3 1 3

Black-box testing involves testing a system functionality with no prior knowledge of
its internal code structure. A tester provides input and observes the output generated by
the system under test [49]. It is carried out by independent testers. It is a powerful testing
technique that reveals how a system reacts to expected and unexpected situations [37].

Grey-box testing is also called translucent testing. It combines the benefits of black-
box and white-box testing [45]. It is conducted with limited information about the internal
functionality of the system [5]. It has access to detailed design documents together with
information about requirements.

Regression testing is categorized under functional-level testing. According to Kannan
et al. [53], regression testing is a test technique that finds negative side effects (regression
tests) and re-executes those tests that are impacted by the code changes. The examined
literature indicates that automation testing is suitable to perform repetitive and labor-
intensive tasks. This makes automated testing a suitable approach to conduct regression
testing [2,54,65]. In [38], the authors conducted a comparative study on mobile automation
testing tools. Their study indicated that Ranorex and Maveryx mobile testing tools help to
conduct robust regression testing.

Computers 2023, 12, 97 20 of 33

6.2. What Are the Challenges of Automation Testing Frameworks in Mobile Testing?

Test Challenges
Mobile test automation has its challenges in using the current test automation frame-

works. This is the major reason researchers developed a novel test approach by utilizing
the existing test automation framework. In this section, we have identified and discussed
the bottlenecks in mobile automation testing frameworks. The challenges include com-
plexity, maintenance cost, time, and fragmentation. Table 8 summarizes the test challenges
discussed in the literature work.

Complexity: Mobile applications are becoming larger and more complex. This raises
the issue of application quality [16,64]. The need for better-quality apps puts pressure on
test engineers and the mobile automation testing process. In [27], it was stated that the need
for high-quality apps also adds to the complexity of designing and testing applications.
To reduce the complexity issue, a proper keyword-driven testing technology that applies
different levels of keyword abstraction is crucial. On the contrary, there are research works
from the literature that states that keyword-driven testing increases complexity [2,28]. For
instance, early research indicates that the keyword-driven scripting technique is complex
as it needs a special framework and effort in creating test scripts [2]. Recent studies by
Rwemalika et al. [31] also suggest that keyword-driven testing test design is complex with
several levels of abstraction. The same authors [28] extend the previous research work
to address the complexity issue [28]. The authors introduce an automated tool called
Ukwikora—a continuous monitoring tool for keyword-driven testing (KDT). The tool
supports testers in automating and analyzing acceptance test suites.

Maintenance cost: Most mobile app testers agree that mobile app maintenance costs
15–20% of the total app development cost [74]. This figure can be reduced with the support
of test automation frameworks. Mobile app maintenance is not only about fixing defects,
but is also an inclusive process of several practices such as performance enhancement,
upgrading the app, maintaining robustness, etc. In their review of the impact of automa-
tion on software cost, Kumar et al. [8] mentioned that timely maintenance of automated
testing suits is necessary to reduce the maintenance cost. In a review of scripting tech-
niques [2], the authors indicate that data-driven and keyword-driven scripting have low
maintenance costs as compared with modular, library, and linear scripting techniques. On
other hand, ISO/IEC/IEEE [27] provides a guideline that aids in creating an efficient and
consistent solution for keyword-driven testing. During the discussion on the benefits of
KDT, ISO/IEC/IEEE [27] reported that maintenance of the keyword scripts does not affect
the execution of the test cases. On the contrary, continuous maintenance and support of the
keyword library will require time, budget, and professional experts.

Time consumption: Despite the available test automation tools and approaches, mo-
bile testing has always been a time-consuming task [55]. To alleviate this issue, the mobile
development industry practices test automation [62]. However, test automation by itself
requires development effort and significant time. In the research by Kumar et al. [8], the
experimental analysis showed that test automation has a positive impact on time and cost
as compared with manual testing. In addition, with the appropriate use of automation
approaches and tools, we can decrease testing time to execute test scripts. Jamil et al. [5]
performed a literature review of software testing techniques and stated that using automa-
tion testing techniques is time effective, as it saves a tremendous amount of labor time.
In its discussion on types of test automation frameworks, Jamil et al. [5] pointed out that
keyword-driven testing has encompassed all the benefits of data-driven testing. In addition
to that the keywords reusability feature benefits quality assurance testers to test their test
script efficiently and cut down the testing time and ensure on-time application release.

Fragmentation: Mobile device fragmentation is a trending test challenge that occurs
when some mobile users are running an older version of an operating system, while other
mobile users are using updated versions [65]. The issue is normally associated with android
devices but not with iOS devices. Even though that is the ground fact, our systematic
review faces a lack of research effort on the topic (refer to Table 8). Fazzini [34], reported

Computers 2023, 12, 97 21 of 33

the fragmentation of the android ecosystem as one of the bottlenecks mobile companies
face in testing mobile applications. The study proposed a new technique that identified
compatibility issues caused by android fragmentation. In [45,60], the authors agree with
Fazzini [34] that ecosystem fragmentation is a serious challenge for conducting tests that
can reveal all issues that an end-user might face on a specific device runtime environment.
Together, these studies provide important insights into mobile device fragmentation as the
issue is related to other test concerns also such as compatibility and complexity [34,45,60].

Table 8. Test challenges reviewed in the literature.

Paper Id Tool/Technique/
Framework Ti

m
e

M
ai

nt
en

an
ce

co
st

C
om

pl
ex

it
y

Fr
ag

m
en

ta
ti

on

SA1 Mustafa Abdul et al. [62] X X

SA2 KDT [63] X

SA3 KDT/DSL [30] X X

SA4 EarlGrey [49] X

SA5 KDT [31] X X

SA6 Ukwikora [28] X X

SA7 Mohammad et al. [11] X X X

SA8 Appium [37] X

SA9 Sinaga et al. [50] X

SA10 Appium/OpenCV [40] X X

SA11 Mattia Fazzini [34] X X

SA12 Anusha et al. [75] X

SA13 DDT [55] X X

SA14 AutoClicker [76] X

SA15 Appium [64] X X

SA16 MDT [58] X X X

SA17 Hussain et al. [32] X X

SA18 Divya Kumar [8] X X X

SA19 Vahid Garousi et al. [65] X

SA20 Muhammad Jamil et al. [5] X X

SA24 ISO/IEC/IEEE [27] X X X

SA25 Shauvik Roy et al. [45] X

SA26 Nader et al. [39] X

SA27 Gunasekaran et al. [38] X X

SA28 MAT [44] X

SA29 Bansal et al. [61] X

SA30 Rasneet et al. [41] X

SA31 Hanna et al. [2] X X

SA35 PLC Open XML/KDT [67] X

Computers 2023, 12, 97 22 of 33

Table 8. Cont.

Paper Id Tool/Technique/
Framework Ti

m
e

M
ai

nt
en

an
ce

co
st

C
om

pl
ex

it
y

Fr
ag

m
en

ta
ti

on

SA36 Shiwangi et al. [3] X

SA39 Android KDATF [16] X X X

SA40 Testdroid [68] X

SA41 AndroidRipper [46] X

SA42 MobiTest [77] X

SA43 MobTAF [69] X

SA46 DSML [60] X X X

SA47 Crawler [70] X X

SA50 Quadri et al. [10] X X

SA51 MobileTest [33] X X

SA53 TDD [51] X X

SA56 LKDT [36] X X X

Count 28 20 18 5

7. Discussion

There have been research works on mobile application testing for the past few years.
However, most of the work did not indicate the relation between automated testing frame-
works and mobile application testing. Our discussion focuses on the trends that we
observed while conducting the SLR as well as future research directions and challenges
that need to be addressed by the research community.

7.1. Trend Analysis

Figure 7 shows the trend in test approaches over the years. Keyword-driven testing is
dominating the literature on automation testing frameworks for testing mobile applications.
Recent publications [28,30,31,63] confirm this statement.

Trend analysis of testing types in Figure 8 shows that most of the literature focuses on
regression testing. This is not a surprising result since automated testing is very effective in
performing regression testing. Together, white-box, black-box, and grey-box testing cover
52% of the research work, while 39% is regression testing and the rest 9% did not focus on
any of the testing types.

Regarding testing objectives, Figure 9 depicts that functionality and efficiency as the
most trending objectives in the examined literature, whereas time and maintenance cost
are the most trending test challenges.

From 2016 onwards, efficiency surpasses the reusability test concern, and it is widely
covered in the literature just like that as functionality test objective. Regarding test chal-
lenges, Figure 10 shows that time test concern has attracted automation testing research. On
the other hand, maintenance cost and complexity have had similar results over the years.

Computers 2023, 12, 97 23 of 33

Computers 2023, 12, 97 22 of 32

7. Discussion
There have been research works on mobile application testing for the past few years.

However, most of the work did not indicate the relation between automated testing frame-
works and mobile application testing. Our discussion focuses on the trends that we ob-
served while conducting the SLR as well as future research directions and challenges that
need to be addressed by the research community.

7.1. Trend Analysis
Figure 7 shows the trend in test approaches over the years. Keyword-driven testing

is dominating the literature on automation testing frameworks for testing mobile applica-
tions. Recent publications [28,30,31,63] confirm this statement.

Figure 7. Testing approaches’ trends.

Trend analysis of testing types in Figure 8 shows that most of the literature focuses
on regression testing. This is not a surprising result since automated testing is very effec-
tive in performing regression testing. Together, white-box, black-box, and grey-box test-
ing cover 52% of the research work, while 39% is regression testing and the rest 9% did
not focus on any of the testing types.

Figure 8. Testing types’ trends.

0 1 1 0

4 3 4
21 1 0 01 0 1 0

6

14
16

1
0

5

10

15

20

2008-2011 2012-2015 2016-2019 2020-2023

Distribution of Test Approaches

Data Driven Keyword driven Hybrid Model based other approaches

0

6

2 2
1

10

7

2

0

3

1
0

4

11

5

2

0

2

4

6

8

10

12

2008-2011 2012-2015 2016-2019 2020-2023

Distribution of Test types

white-box Black-box grey-box regression

Figure 7. Testing approaches’ trends.

Computers 2023, 12, 97 22 of 32

7. Discussion
There have been research works on mobile application testing for the past few years.

However, most of the work did not indicate the relation between automated testing frame-
works and mobile application testing. Our discussion focuses on the trends that we ob-
served while conducting the SLR as well as future research directions and challenges that
need to be addressed by the research community.

7.1. Trend Analysis
Figure 7 shows the trend in test approaches over the years. Keyword-driven testing

is dominating the literature on automation testing frameworks for testing mobile applica-
tions. Recent publications [28,30,31,63] confirm this statement.

Figure 7. Testing approaches’ trends.

Trend analysis of testing types in Figure 8 shows that most of the literature focuses
on regression testing. This is not a surprising result since automated testing is very effec-
tive in performing regression testing. Together, white-box, black-box, and grey-box test-
ing cover 52% of the research work, while 39% is regression testing and the rest 9% did
not focus on any of the testing types.

Figure 8. Testing types’ trends.

0 1 1 0

4 3 4
21 1 0 01 0 1 0

6

14
16

1
0

5

10

15

20

2008-2011 2012-2015 2016-2019 2020-2023

Distribution of Test Approaches

Data Driven Keyword driven Hybrid Model based other approaches

0

6

2 2
1

10

7

2

0

3

1
0

4

11

5

2

0

2

4

6

8

10

12

2008-2011 2012-2015 2016-2019 2020-2023

Distribution of Test types

white-box Black-box grey-box regression

Figure 8. Testing types’ trends.

Computers 2023, 12, 97 23 of 32

Regarding testing objectives, Figure 9 depicts that functionality and efficiency as the
most trending objectives in the examined literature, whereas time and maintenance cost
are the most trending test challenges.

From 2016 onwards, efficiency surpasses the reusability test concern, and it is widely
covered in the literature just like that as functionality test objective. Regarding test chal-
lenges, Figure 10 shows that time test concern has attracted automation testing research.
On the other hand, maintenance cost and complexity have had similar results over the
years.

Figure 9. Test objectives’ trends.

Figure 10. Test challenges’ trends.

7.2. Research Question Insights
RQ1: What is the applicability of automation testing frameworks in mobile auto-

mation testing?
First, with this research question, we wanted to explore the usage of the existing test

automation framework for mobile application testing based on the satisfaction of the test
objectives.

“Functionality” and “Efficiency” have been the most trending concerns in functional
and non-functional test objectives, respectively.

“Reusability” is another testing objective that needs attention in mobile automation
testing since designing reusable test scripts for the automated process will increase the
tester’s productivity and lower the maintenance burden.

“Compatibility” testing is specific testing of mobile applications’ suitability with mo-
bile devices. The cause of the compatibility issue comes from android fragmentation,
which is given less emphasis in this work.

Choosing the right mobile testing tools (e.g., Appium, Calabash, Ranorex, etc.) can
assist in conducting the test types such as white-box, black-box, and regression testing.

6

14 14

34

9 8

2

6
8

14

2

0

5

10

15

2008-2011 2012-2015 2016-2019 2020-2023

Distribution of Test Objectives

Functionality Reusability Efficiency

5

9

14

2

6
4

9

1
3 3

10

2

0

5

10

15

2008-2011 2012-2015 2016-2019 2020-2023

Distribution of Test Challenges

Time Consumption Maintenance cost Complexity

Figure 9. Test objectives’ trends.

Computers 2023, 12, 97 24 of 33

Computers 2023, 12, 97 23 of 32

Regarding testing objectives, Figure 9 depicts that functionality and efficiency as the
most trending objectives in the examined literature, whereas time and maintenance cost
are the most trending test challenges.

From 2016 onwards, efficiency surpasses the reusability test concern, and it is widely
covered in the literature just like that as functionality test objective. Regarding test chal-
lenges, Figure 10 shows that time test concern has attracted automation testing research.
On the other hand, maintenance cost and complexity have had similar results over the
years.

Figure 9. Test objectives’ trends.

Figure 10. Test challenges’ trends.

7.2. Research Question Insights
RQ1: What is the applicability of automation testing frameworks in mobile auto-

mation testing?
First, with this research question, we wanted to explore the usage of the existing test

automation framework for mobile application testing based on the satisfaction of the test
objectives.

“Functionality” and “Efficiency” have been the most trending concerns in functional
and non-functional test objectives, respectively.

“Reusability” is another testing objective that needs attention in mobile automation
testing since designing reusable test scripts for the automated process will increase the
tester’s productivity and lower the maintenance burden.

“Compatibility” testing is specific testing of mobile applications’ suitability with mo-
bile devices. The cause of the compatibility issue comes from android fragmentation,
which is given less emphasis in this work.

Choosing the right mobile testing tools (e.g., Appium, Calabash, Ranorex, etc.) can
assist in conducting the test types such as white-box, black-box, and regression testing.

6

14 14

34

9 8

2

6
8

14

2

0

5

10

15

2008-2011 2012-2015 2016-2019 2020-2023

Distribution of Test Objectives

Functionality Reusability Efficiency

5

9

14

2

6
4

9

1
3 3

10

2

0

5

10

15

2008-2011 2012-2015 2016-2019 2020-2023

Distribution of Test Challenges

Time Consumption Maintenance cost Complexity

Figure 10. Test challenges’ trends.

7.2. Research Question Insights

RQ1: What is the applicability of automation testing frameworks in mobile au-
tomation testing?

First, with this research question, we wanted to explore the usage of the existing
test automation framework for mobile application testing based on the satisfaction of the
test objectives.

“Functionality” and “Efficiency” have been the most trending concerns in functional
and non-functional test objectives, respectively.

“Reusability” is another testing objective that needs attention in mobile automation
testing since designing reusable test scripts for the automated process will increase the
tester’s productivity and lower the maintenance burden.

“Compatibility” testing is specific testing of mobile applications’ suitability with
mobile devices. The cause of the compatibility issue comes from android fragmentation,
which is given less emphasis in this work.

Choosing the right mobile testing tools (e.g., Appium, Calabash, Ranorex, etc.) can
assist in conducting the test types such as white-box, black-box, and regression testing.

Secondly, we observed that from 2016 onwards, the keyword-driven testing (KDT)
framework appears to be the most widely applicable test approach, as depicted in Figure 7.
In addition, it provides a solution for most of the test objectives and challenges such as
reusability, efficiency, functionality, time, complexity, etc. Based on this evidence, we
proposed a hybrid architecture called MATF that utilizes keyword-driven testing.

Keyword-driven testing approach is composed of the following components: object
repository, keyword library, execution engine, data storage, and an excel sheet for editing
purposes. Researchers have shown that the architecture has its benefits including a high
degree of reusing test scripts, test abstraction, and ease of the maintenance of the testing
process. However, we believe the components of the architecture can be improved by
adding domain-specific and high-level keywords in the keyword library. This will help
in building a robust keyword library that will have a positive impact on creating reusable
test scripts.

The architecture of the improved mobile automation testing framework (MATF) is
depicted in Figure 11.

Computers 2023, 12, 97 25 of 33

Computers 2023, 12, 97 24 of 32

Secondly, we observed that from 2016 onwards, the keyword-driven testing (KDT)
framework appears to be the most widely applicable test approach, as depicted in Figure
7. In addition, it provides a solution for most of the test objectives and challenges such as
reusability, efficiency, functionality, time, complexity, etc. Based on this evidence, we pro-
posed a hybrid architecture called MATF that utilizes keyword-driven testing.

Keyword-driven testing approach is composed of the following components: object
repository, keyword library, execution engine, data storage, and an excel sheet for editing
purposes. Researchers have shown that the architecture has its benefits including a high
degree of reusing test scripts, test abstraction, and ease of the maintenance of the testing
process. However, we believe the components of the architecture can be improved by add-
ing domain-specific and high-level keywords in the keyword library. This will help in
building a robust keyword library that will have a positive impact on creating reusable
test scripts.

The architecture of the improved mobile automation testing framework (MATF) is
depicted in Figure 11.

Figure 11. Architecture of MATF framework based on DSL and KDT technology.

The proposed MATF architecture includes the following components:
• Editor: An MATF editor is a tool that allows testers to create and edit keyword test

scripts. It provides a user-friendly interface for defining high-level and domain-spe-
cific keywords. Practically, the MATF editor can be implemented using spreadsheet
applications such as Excel;

• High-level keywords: These are generic keywords that are used across multiple test
cases and are not specific to any mobile application;

• Domain-specific keywords: These are keywords that are specific to a particular mo-
bile application. They are used to describe the behavior of the mobile application un-
der test and are typically defined by the test engineers who are familiar with the ap-
plication;

• Robust keyword library: This is another component that acts as a repository of the
high-level and domain-specific keywords. The library should be well-organized and
easy to navigate, with clear descriptions of each keyword and its purpose;

• Domain specific language (DSL): This is a language that is used to define the high-
level and domain-specific keywords in the MATF architecture. The DSL should be
easy to read and use, with a clear syntax and structure;

• Reusable test scripts: These are test scripts that can be used across multiple test cases
and applications. They are typically created using a combination of high-level and
domain-specific keywords and are designed to be modular and easy to maintain;

Figure 11. Architecture of MATF framework based on DSL and KDT technology.

The proposed MATF architecture includes the following components:

• Editor: An MATF editor is a tool that allows testers to create and edit keyword
test scripts. It provides a user-friendly interface for defining high-level and domain-
specific keywords. Practically, the MATF editor can be implemented using spreadsheet
applications such as Excel;

• High-level keywords: These are generic keywords that are used across multiple test
cases and are not specific to any mobile application;

• Domain-specific keywords: These are keywords that are specific to a particular mobile
application. They are used to describe the behavior of the mobile application under test
and are typically defined by the test engineers who are familiar with the application;

• Robust keyword library: This is another component that acts as a repository of the
high-level and domain-specific keywords. The library should be well-organized and
easy to navigate, with clear descriptions of each keyword and its purpose;

• Domain specific language (DSL): This is a language that is used to define the high-level
and domain-specific keywords in the MATF architecture. The DSL should be easy to
read and use, with a clear syntax and structure;

• Reusable test scripts: These are test scripts that can be used across multiple test cases
and applications. They are typically created using a combination of high-level and
domain-specific keywords and are designed to be modular and easy to maintain;

• Tool bridge: The tool bridge connects the MATF editor to the execution engine, allow-
ing test scripts and test data to be passed between the two components;

• Execution engine: This is the component that runs the test scripts and interacts with
the mobile app, using the keywords defined in the test scripts to perform actions and
verify behavior;

• Test data: These are the input data that are required to execute the test cases. The test
data are usually stored in a separate file or database;

• Mobile app: This is the application under test and interacts with the execution engine
using the keywords defined in the test scripts.

The proposed MATF architecture can help address some of the test challenges associ-
ated with mobile application testing such as fragmentation, maintenance cost, etc. Table 9
shows what the architecture provides to address the test challenges.

Computers 2023, 12, 97 26 of 33

Table 9. MATF architecture to address the test challenges.

MATF
Architecture

Test Challenges Test Challenges Description What MATF Offers

Fragmentation
Mobile apps and operating systems (OSs)
are highly fragmented due to
compatibility issues

Allows testers to create modular and
reusable test scripts that can be easily
adapted to different device
configurations and OSs.

Complexity Mobile apps have multiple screens,
features, and interactions

Provides a clear and structured way to
define and organize test scripts to
manage the test suites easily.

Maintenance cost
Mobile apps are evolving, and new
features and updates are released on a
regular basis

It provides a modular and reusable
framework that can easily be changed
and maintained.

Time consumption Testing mobile apps across multiple
devices can be time-consuming

Allows testers to create test scripts that
can be executed across multiple devices.

RQ2: What are the challenges of the existing automation testing frameworks for
mobile automation testing?

Given the limitations of earlier test automation approaches (i.e., linear, modular, and
library architecture) and the complexity of mobile applications, it is not a surprise that most
approaches divert to recent techniques (i.e., data-driven, keyword-driven, model-based,
hybrid). Even when we compare the recent approaches, keyword-driven testing was the
dominant technology, since it has several benefits that facilitate the testing activities (e.g.,
easy creation and maintenance of test cases, independent of the application under test and
test tools, achieves abstraction with the help of keywords, non-technical personnel can
automate the scripts, etc.).

The analysis of the selected articles revealed that keyword-driven testing is a suitable
approach for mobile application testing. Keyword-driven testing for mobile applications is
advantageous, as it facilitates the creation of automated tests by utilizing and enhancing
the existing keywords in the framework.

Keyword-driven testing has its challenges that need to be improved upon. For instance,
the keyword reusability feature has room for improvement; it also has a complicated
framework, and test cases tend to get complex as compared with data-driven testing. This
indicates that the keyword-driven approach needs to pair up with trending automation
testing approaches and techniques such as model-driven testing and domain-specific
modeling languages to create an efficient hybrid framework that improves the issue of
reusability and complexity in mobile applications [57,60].

Finally, to ease the development and maintenance of mobile application testing, effi-
cient and reliable mobile-based keyword-driven testing needs to be developed. This will
improve the readability, reusability, and maintainability of the test cases.

7.3. Future Research Directions and Challenges

Even though the articles we investigated have their contributions, some authors posed
open challenges and future research directions to call more research attention to the domain.
We have summarized the concerns as follows:

• Addressing mobile fragmentation issue: Most of the research studies focus on func-
tional and usability defects of mobile apps. Mobile ecosystem fragmentation is not
given enough emphasis in the literature. Out of the examined literature, only five
research articles discuss the fragmentation of the mobile ecosystem [34,45,60,65,68];

• Enhancing mobile automation testing frameworks: The examined literature indi-
cates that there is still room for improvement in mobile automation testing frameworks.
According to the investigated literature, a keyword-driven testing framework is a
potential candidate for mobile application testing. The framework should be utilized
and enhanced to make it suitable for testing mobile apps;

Computers 2023, 12, 97 27 of 33

• Making the existing automation frameworks scalable and compatible with differ-
ent mobile platforms: Scalability and compatibility are important test concerns that
need to be fulfilled in mobile automation testing. However, these factors were over-
looked in the investigated literature. Few research articles mentioned the limitation of
the existing mobile testing tools/or frameworks in performing scalable and compatible
testing [11,40,45];

• Developing automation testing techniques and guidelines: Appropriate testing
techniques and guidelines need to be developed for mobile automation testing [5].
These techniques dictate developers and test engineers in creating quality mobile
applications for the market. For example, the keyword-driven testing approach and
other related guidelines were published by International Organization for Standard-
ization(ISO/EC/IEEE) [27];

• Evaluation of test tools and framework: We believe proper validation of mobile
testing frameworks should be conducted to check the applicability and capability of
test tools. Evaluation of testing tools supports test experts to choose the right tool for
their app [32,56];

• Finally, in the next part of the research study, we are presenting a novel mobile
automation testing framework called MATF that conducts automation testing for
mobile apps based on the improved keyword-driven testing technology.

8. Threats to Validity

This section discusses threats to the validity of this study and the measures taken to
mitigate them.

On potential misses of related work: We have not considered for our systematic
review master’s or doctoral theses related to automation testing framework. The threat can
be solved by incorporating thesis work in peer-reviewed journals and conferences.

On quality assessment: A researcher conducted the quality assessment checklist. The
researcher tried to mitigate this issue by following the SLR process according to the review
protocol. The protocol is reviewed to ensure the clarity of the quality criteria.

On data extraction errors: A researcher conducted the data extraction using the data
extraction excel form to make the results as formal and error-free as possible. However,
we cannot conclude all the investigated papers are precise. Also, the extracted data may
not have been reliable for all approaches, and the data aggregation process can still contain
errors. Nevertheless, we attempted a cross-checking mechanism on the extracted results to
mitigate the issue.

The aspects and the measurements used in this review may not represent character-
istics of mobile automated testing. Yet, the test concerns are collected from the examined
literature to build the taxonomy and are useful in comparing the existing test automa-
tion frameworks.

9. Conclusions

We report in this paper a systematic literature review performed in mobile automa-
tion testing frameworks. Our review explored 56 publications that appeared in major
conferences, symposiums, and journals. We then proposed a taxonomy of the related
research by looking into three dimensions. The first one is the test objectives that focuses on
functional and non-functional concerns addressed by the automation testing frameworks.
The second one is the test techniques, which involve the test approaches (i.e., data-driven,
keyword-driven testing, hybrid, etc.) and test types (i.e., white-box, black-box testing, etc.).
We have further investigated the methods used in the literature indicating the strengths
and weaknesses of the research papers. Lastly, we have provided open challenges and new
research directions for mobile automation testing research such as how to design and build
an improved MATF for assuring the quality of mobile apps regarding compatibility and
fragmentation issues, etc.

Computers 2023, 12, 97 28 of 33

Author Contributions: Conceptualization, N.G.B., C.D., and J.A.V.d.P.; methodology, N.G.B. and
C.D.; validation, C.D. and J.A.V.d.P.; writing—original draft preparation, N.G.B.; writing—review
and editing, C.D. and J.A.V.d.P.; visualization, N.G.B., C.D. and J.A.V.d.P.; supervision, C.D. and
J.A.V.d.P.; project administration, C.D. and J.A.V.d.P.; funding acquisition, J.A.V.d.P. and C.D. All
authors have read and agreed to the published version of the manuscript.

Funding: The APC of the paper is funded by page fees from the University of South Africa (Unisa)
as well as the Unisa research professor fund of the third author.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Examined publications.

Paper Id Year Venue Publication Title

SA1 2022 NILES Advanced framework for automated testing of mobile applications

SA2 2021 ICAECT Test automation framework using soft computing techniques

SA3 2020 ICTSS Architecture based on keyword driven testing with domain specific language for a
testing system

SA4 2019 MOBILESoft EarlGrey: iOS UI automation testing framework

SA5 2019 ICST On the evolution of keyword-driven test suites

SA6 2019 ISSTA Ukwikora: continuous inspection for keyword-driven testing

SA7 2019 CCWC A comparative analysis of quality assurance automated testing tools for windows
mobile applications

SA8 2018 ICSST Environment for automated functional testing of mobile applications

SA9 2018 ICITEE Performance of automation testing tools for android applications

SA10 2018 SBGAMES Automated tests for mobile games: an experience report

SA11 2018 ESEC/FSE Automated support for mobile application testing and maintenance

SA12 2017 IRJET Comparative study on different mobile application frameworks

SA13 2017 IJMECS Novel framework for automation testing of mobile applications using Appium

SA14 2017 MOBISYS Fully automated UI testing system for large-scale android apps using multiple devices

SA15 2017 ICICCS Uberisation of mobile automation testing

SA16 2017 Software Qual J Testing of mobile-driven development applications

SA17 2017 JEST The perceived usability of automated testing tools for mobile applications

SA18 2016 J.Procs The impacts of test automation on software’s Cost, quality and time to market

SA19 2016 IEEE Software Test automation not just for test execution

SA20 2016 ICT4M Software testing techniques: a literature review

SA21 2016 ICCSNT The design and implement of the cross-platform mobile automated testing framework

SA22 2016 CCIS Research on automated testing framework for multi-platform mobile applications

SA23 2016 J4R Deployment of Calabash automation framework to analyze the performance of an
android application

Computers 2023, 12, 97 29 of 33

Table A1. Cont.

Paper Id Year Venue Publication Title

SA24 2016 ISO/IEC/IEEE Software and systems engineering- software testing- keyword-driven testing

SA25 2015 ASE Automated test input generation for android: are we their yet?

SA26 2015 ASE Testing cross-platform mobile app development frameworks

SA27 2015 IJAERS Survey on automation testing tools for mobile applications

SA28 2014 ICACCCT An automated testing framework fortesting android mobile applications in the cloud

SA29 2014 IJCSMC A comparative study of software testing techniques

SA30 2014 IJCET Latest research and development on software testing techniques and tools

SA31 2014 IJACSA A review of scripting techniques used in automated software testing

SA32 2014 IJCSE A study on variations of bottlenecks in software testing

SA33 2014 IJICT A strategic approach to software testing

SA34 2014 IJMAS Android mobile automation framework

SA35 2014 ETFA Adapting keyword driven test automation framework to IEC 61131-3 industrial
control applications using PLCopen XML

SA36 2014 IJCET Automated testing of mobile applications using scripting technique: a study
on Appium

SA37 2013 ESEC/FSE Dynodroid: An input generation system for android apps

SA38 2013 AMM Keyword-driven automation test

SA39 2013 ICCSEE Keyword-driven testing framework for android applications

SA40 2012 MUM Testdroid: automated remote UI testing on android

SA41 2012 ASE Using GUI ripping for automated testing of android applications

SA42 2012 ICSEA MobiTest: a cross-platform tool for testing mobile applications

SA43 2012 ICCIS A novel approach of automation testing on mobile devices

SA44 2011 ACIS An integrated test automation framework fortesting on heterogeneous
mobile platforms

SA45 2011 AST Automating GUI testing for android applications

SA46 2011 ECSA A model-driven approach for automating mobile applications testing

SA47 2011 ICSTW A GUI crawling-based technique for android mobile application testing

SA48 2011 ICST Providing a software quality framework for testing of mobile applications

SA49 2011 ICSTW Model-based testing with a general purpose keyword-driven test
automation framework

SA50 2010 IJCA Software testing-goals, principles, and limitations

SA51 2010 ICSE Test automation on mobile device

SA52 2009 QSIC An adapter framework for keyword-driven testing

SA53 2009 ICUIMC Performance testing based on test-driven development for mobile applications

SA54 2009 WCSE Design and implementation of GUI Automated testing framework based on XML

SA55 2008 ICAL Towards adaptive framework of keyword-driven automation testing

SA56 2008 CSSE LKDT: A keyword-driven based distributed test framework

References
1. Rafi, D.M.; Moses, K.R.K.; Petersen, K.; Mäntylä, M.V. Benefits and limitations of automated software testing: Systematic literature

review and practitioner survey. In Proceedings of the 2012 7th International Workshop on Automation of Software Test, Zurich,
Switzerland, 2–3 June 2012; pp. 36–42. [CrossRef]

2. Hanna, M.; El-Haggar, N.; Sami, M. A Review of Scripting Techniques Used in Automated Software Testing. Int. J. Adv. Comput.
Sci. Appl. 2014, 5, 194–202. [CrossRef]

https://doi.org/10.1109/IWAST.2012.6228988
https://doi.org/10.14569/IJACSA.2014.050128

Computers 2023, 12, 97 30 of 33

3. Singh, Ȧ.S.; Gadgil, Ȧ.R.; Chudgor, Ȧ.A. Automated Testing of Mobile Applications using Scripting Technique: A Study on
Appium. Int. J. Curr. Eng. Technol. India Accept. 2014, 362744, 3627–3630.

4. Aebersold, K. Test Automation Framework. Available online: https://smartbear.com/learn/automated-testing/test-automation-
frameworks/ (accessed on 1 June 2021).

5. Jamil, M.A.; Arif, M.; Abubakar, N.S.A.; Ahmad, A. Software testing techniques: A literature review. In Proceedings of the
Proceedings—6th International Conference on Information and Communication Technology for the Muslim World, ICT4M,
Jakarta, Indonesia, 22–24 November 2016. [CrossRef]

6. Muccini, H.; Informatica, D.; Di Francesco, A.; Informatica, D.; Esposito, P.; Informatica, D. Software Testing of Mobile Applica-
tions: Challenges and Future Research Directions. In Proceedings of the 7th International Workshop on Automation of Software
Test (AST), Zurich, Switzerland, 2–3 June 2012; pp. 29–35. [CrossRef]

7. Tramontana, P.; Amalfitano, D.; Amatucci, N. Automated functional testing of mobile applications: A systematic mapping study.
Softw. Qual. J. 2019, 149–201. [CrossRef]

8. Kumar, D.; Mishra, K.K. The Impacts of Test Automation on Software’s Cost, Quality and Time to Market. In Proceedings of the
Procedia Computer Science, Mumbai, India, 26–27 February 2016; Volume 79. [CrossRef]

9. Idri, A.; Moumane, K.; Abran, A. On the use of software quality standard ISO/IEC9126 in mobile environments. In Proceedings
of the 2013 20th Asia-Pacific Software Engineering Conference (APSEC), Bangkok, Thailand, 2–5 December 2013; Volume 1,
pp. 1–8. [CrossRef]

10. Quadri, S.M.; Farooq, S.U. Software Testing—Goals, Principles, and Limitations. Int. J. Comput. Appl. 2010, 6, 7–10. [CrossRef]
11. Mohammad, D.R.; Al-Momani, S.; Tashtoush, Y.M.; Alsmirat, M. A comparative analysis of quality assurance automated testing

tools for windows mobile applications. In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop
and Conference, CCWC 2019, Las Vegas, NV, USA, 7–9 January 2019; pp. 414–419. [CrossRef]

12. Kirubakaran, B.; Karthikeyani, V. Mobile application testing—Challenges and solution approach through automation. In
Proceedings of the 2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering, Salem, India,
21–22 February 2013; pp. 79–84. [CrossRef]

13. Usability. 2021. Available online: https://www.interaction-design.org/literature/topics/usability (accessed on 1 August 2021).
14. Sheetal Sharma, A.J. An efficient Keyword Driven Test Automation Framework for Web Applications. Int. J. Eng. Sci. Adv. Technol.

2012, 2, 600–604.
15. Hayes, L.G. The Automated Testing Handbook, 2nd ed.; Software Testing Institute, 1 March 2004. Available online: https://

books.google.com.hk/books/about/The_Automated_Testing_Handbook.html?id=-jangThcGIkC&redir_esc=y (accessed on 1
August 2021).

16. Wu, Z.; Liu, S.; Li, J.; Liao, Z. Keyword-Driven Testing Framework For Android Applications. In Proceedings of the 2nd International
Conference on Computer Science and Electronics Engineering (ICCSEE 2013); Atlantis Press: Paris, France, 2013; pp. 1096–1102.
[CrossRef]

17. Corral, L.; Sillitti, A.; Succi, G. Software assurance practices for mobile applications. Computing 2015, 97, 1001–1022. [CrossRef]
18. Sahinoglu, M.; Incki, K.; Aktas, M.S. Mobile Application Verification: A Systematic Mapping Study. In Proceedings of the

Computational Science and Its Applications—ICCSA; Springer International Publishing: Cham, Switzerland; Banff, AB, Canada,
22-25 June 2015; Volume 9159, pp. 147–163. [CrossRef]

19. Zein, S.; Salleh, N.; Grundy, J. A systematic mapping study of mobile application testing techniques. J. Syst. Softw. 2016,
117, 334–356. [CrossRef]

20. Kong, P.; Li, L.; Gao, J.; Liu, K.; Bissyande, T.F.; Klein, J. Automated Testing of Android Apps: A Systematic Literature Review.
IEEE Trans. Reliab. 2019, 68, 45–66. [CrossRef]

21. Singh, J.; Sahu, S.K.; Singh, A.P. Implementing Test Automation Framework Using Model-Based Testing Approach. In Intelligent
Computing and Information and Communication; Advances in Intelligent Systems and Computing; Springer: Singapore, 2018;
pp. 695–704. [CrossRef]

22. Linares-Vasquez, M.; Moran, K.; Poshyvanyk, D. Continuous, Evolutionary and Large-Scale: A New Perspective for Automated
Mobile App Testing. In Proceedings of the 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME),
Shanghai, China, 17–22 September 2017; pp. 399–410. [CrossRef]

23. Ahmad, A.; Li, K.; Feng, C.; Asim, S.M.; Yousif, A.; Ge, S. An Empirical Study of Investigating Mobile Applications Development
Challenges. IEEE Access 2018, 6, 17711–17728. [CrossRef]

24. Wang, J.; Wu, J. Research on Mobile Application Automation Testing Technology Based on Appium. In Proceedings of the
2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS), 14–15 September 2019; IEEE: Jishou, China;
pp. 247–250. [CrossRef]

25. Luo, C.; Goncalves, J.; Velloso, E.; Kostakos, V. A Survey of Context Simulation for Testing Mobile Context-Aware Applications.
ACM Comput. Surv. 2020, 53, 1–39. [CrossRef]

26. Keele, S. Guidelines for performing Systematic Literature Reviews in Software Engineering; ACM: New York, NY, USA, 2007. Available
online: https://dl.acm.org/doi/10.1145/1134285.1134500 (accessed on 1 March 2020).

27. ISO/IEC/IEEE 29119-5:2016; Software and Systems Engineering—Software Testing—Part 5: Keyword-Driven Testing. International
Organization for Standardization; International Electrotechnical Commission; Institute of Electrical and Electronics Engineers:
Geneva, Switzerland, 2016. Available online: https://standards.ieee.org/ieee/29119-5/5563/ (accessed on 16 April 2020).

https://smartbear.com/learn/automated-testing/test-automation-frameworks/
https://smartbear.com/learn/automated-testing/test-automation-frameworks/
https://doi.org/10.1109/ICT4M.2016.045
https://doi.org/10.1109/IWAST.2012.6228987
https://doi.org/10.1007/s11219-018-9418-6
https://doi.org/10.1016/j.procs.2016.03.003
https://doi.org/10.1109/APSEC.2013.12
https://doi.org/10.5120/1343-1448
https://doi.org/10.1109/CCWC.2019.8666463
https://doi.org/10.1109/ICPRIME.2013.6496451
https://www.interaction-design.org/literature/topics/usability
https://books.google.com.hk/books/about/The_Automated_Testing_Handbook.html?id=-jangThcGIkC&redir_esc=y
https://books.google.com.hk/books/about/The_Automated_Testing_Handbook.html?id=-jangThcGIkC&redir_esc=y
https://doi.org/10.2991/iccsee.2013.275
https://doi.org/10.1007/s00607-014-0395-8
https://doi.org/10.1007/978-3-319-21413-9
https://doi.org/10.1016/j.jss.2016.03.065
https://doi.org/10.1109/TR.2018.2865733
https://doi.org/10.1007/978-981-10-7245-1_68
https://doi.org/10.1109/ICSME.2017.27
https://doi.org/10.1109/ACCESS.2018.2818724
https://doi.org/10.1109/ICVRIS.2019.00068
https://doi.org/10.1145/3372788
https://dl.acm.org/doi/10.1145/1134285.1134500
https://standards.ieee.org/ieee/29119-5/5563/

Computers 2023, 12, 97 31 of 33

28. Rwemalika, R.; Kintis, M.; Papadakis, M.; Le Traon, Y.; Lorrach, P. Ukwikora: Continuous inspection for keyword-driven testing.
In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis, Beijing, China, 15–19 July
2019; pp. 402–405. [CrossRef]

29. Wu, Z.Q.; Li, J.Z.; Liao, Z.Z. Keyword Driven Automation Test. Appl. Mech. Mater. 2013, 427-429, 652–655. [CrossRef]
30. Pereira, R.B.; Brito, M.A.; Machado, R.J. Architecture Based on Keyword Driven Testing with Domain Specific Language for a

Testing System. In Proceedings of the International Conference on Testing Software and Systems(ICTSS), Naples, Italy, 9–11
December 2020; pp. 310–316. [CrossRef]

31. Rwemalika, R.; Kintis, M.; Papadakis, M.; Le Traon, Y.; Lorrach, P. On the Evolution of Keyword-Driven Test Suites. In
Proceedings of the 2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST), Xi’an, China, 22–27 April
2019; pp. 335–345. [CrossRef]

32. Hussain, A.; Razak, H.A.; Mkpojiogu, E.O.C. The perceived usability of automated testing tools for mobile applications. J. Eng.
Sci. Technol. 2017, 12, 86–93.

33. Zhifang, L.; Bin, L.; Xiaopeng, G. Test automation on mobile device. In Proceedings of the 5th Workshop on Automation of
Software Test, 3–4 May 2010; ACM: Cape Town, South Africa; pp. 1–7. [CrossRef]

34. Fazzini, M. Automated support for mobile application testing and maintenance. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Lake
Buena Vista, FL, USA, 4–9 November 2018; pp. 932–935. [CrossRef]

35. Machiry, A.; Tahiliani, R.; Naik, M. Dynodroid: An input generation system for android apps. In Proceedings of the 2013 9th Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, ESEC/FSE 2013—Proceedings, Saint Petersburg, Russia, 18–26 August 2013; pp. 224–234. [CrossRef]

36. Jie, H.; Lan, Y.; Luo, P.; Guo, S.; Gao, J. LKDT: A Keyword—Driven based distributed test framework. In Proceedings of the
Proceedings—International Conference on Computer Science and Software Engineering, CSSE 2008, Wuhan, China, 12–14
December 2008; Volume 2, pp. 719–722. [CrossRef]

37. Vajak, D.; Grbic, R.; Vranjes, M.; Stefanovic, D. Environment for Automated Functional Testing of Mobile Applications. In
Proceedings of the 2018 International Conference on Smart Systems and Technologies (SST), Osijek, Croatia, 10–12 October 2018;
pp. 125–130. [CrossRef]

38. Gunasekaran, S.; Bargavi, V. Survey on Automation Testing Tools for Mobile Applications. Int. J. Adv. Eng. Res. Sci. 2015, 2,
2349–6495. Available online: www.ijaers.com (accessed on 10 July 2021).

39. Boushehrinejadmoradi, N.; Ganapathy, V.; Nagarakatte, S.; Iftode, L. Testing Cross-Platform Mobile App Development Frame-
works (T). In Proceedings of the 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE),
Lincoln, NE, USA, 9–13 November 2015; pp. 441–451. [CrossRef]

40. Lovreto, G.; Endo, A.T.; Nardi, P.; Durelli, V.H.S. Automated Tests for Mobile Games: An Experience Report. In Proceedings
of the 2018 17th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames), Foz do Iguacu, Brazil, 29
October–1 November 2018; Volume 2018-Novem, pp. 48–488. [CrossRef]

41. Kaur Chauhan, Ȧ.R.; Singh, Ḃ.Ȧ.I. Latest Research and Development on Software Testing Techniques and Tools. Int. J. Curr. Eng.
Technol. 2014, 4, 2368–2372. Available online: http://inpressco.com/category/ijcet (accessed on 10 September 2021).

42. Hu, C.; Neamtiu, I. Automating GUI testing for Android applications. In Proceedings of the 6th International Workshop on
Automation of Software Test, 23–24 May 2011; ACM: Honolulu, HI, USA; pp. 77–83. [CrossRef]

43. Singh, K.; Mishra, S.K. A Strategic Approach to Software Testing. Int. J. Inf. Comput. Technol. 2014, 4, 1387–1394.
44. Prathibhan, C.M.; Malini, A.; Venkatesh, N.; Sundarakantham, K. An automated testing framework for testing Android mobile

applications in the cloud. In Proceedings of the 2014 IEEE International Conference on Advanced Communications, Control and
Computing Technologies, Ramanathapuram, India, 8–10 May 2014; pp. 1216–1219. [CrossRef]

45. Choudhary, S.R.; Gorla, A.; Orso, A. Automated Test Input Generation for Android: Are We There Yet? (E). In Proceedings of the
2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), Lincoln, NE, USA, 9–13 November
2015; pp. 429–440. [CrossRef]

46. Amalfitano, D.; Fasolino, A.R.; Tramontana, P.; De Carmine, S.; Memon, A.M. Using GUI ripping for automated testing of
Android applications. In Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering,
Essen, Germany, 3–5 September 2012; pp. 258–261. [CrossRef]

47. Azim, T.; Neamtiu, I. Targeted and depth-first exploration for systematic testing of android apps. In Proceedings of the 2013
ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications, Indianapolis, IN,
USA, 29–31 October 2013; pp. 641–660. [CrossRef]

48. Mu, B.; Zhan, M.; Hu, L. Design and Implementation of GUI Automated Testing Framework Based on XML. In Proceedings of
the 2009 WRI World Congress on Software Engineering, Xiamen, China, 19–21 May 2009; pp. 194–199. [CrossRef]

49. Tirodkar, A.A.; Khandpur, S.S. EarlGrey: iOS UI Automation Testing Framework. In Proceedings of the 2019 IEEE/ACM 6th
International Conference on Mobile Software Engineering and Systems (MOBILESoft), Montreal, QC, Canada, 25–25 May 2019;
pp. 12–15. [CrossRef]

50. Sinaga, A.M.; Wibowo, P.A.; Silalahi, A.; Yolanda, N. Performance of Automation Testing Tools for Android Applications. In
Proceedings of the 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE), Bali,
Indonesia, 24–26 July 2018; pp. 534–539. [CrossRef]

https://doi.org/10.1145/3293882.3339003
https://doi.org/10.4028/www.scientific.net/AMM.427-429.652
https://doi.org/10.1007/978-3-030-64881-7_21
https://doi.org/10.1109/ICST.2019.00040
https://doi.org/10.1145/1808266.1808267
https://doi.org/10.1145/3236024.3275425
https://doi.org/10.1145/2491411.2491450
https://doi.org/10.1109/CSSE.2008.1036
https://doi.org/10.1109/SST.2018.8564626
www.ijaers.com
https://doi.org/10.1109/ASE.2015.21
https://doi.org/10.1109/SBGAMES.2018.00015
http://inpressco.com/category/ijcet
https://doi.org/10.1145/1982595.1982612
https://doi.org/10.1109/ICACCCT.2014.7019292
https://doi.org/10.1109/ASE.2015.89
https://doi.org/10.1145/2351676.2351717
https://doi.org/10.1145/2509136.2509549
https://doi.org/10.1109/WCSE.2009.91
https://doi.org/10.1109/MOBILESoft.2019.00010
https://doi.org/10.1109/ICITEED.2018.8534756

Computers 2023, 12, 97 32 of 33

51. Kim, H.; Choi, B.; Yoon, S. Performance testing based on test-driven development for mobile applications. In Proceedings of
the International Conference on Ubiquitous Information Management and Communication; ACM: Suwon, Republic of Korea, 2009;
pp. 612–617. [CrossRef]

52. Kishan Kulkarni Soumya, M.A. Deployment of Calabash Automation Framework to Analyze the Performance of an Android
Application. J. Res. 2016, 02, 70–75. Available online: www.journalforresearch.org (accessed on 5 July 2022).

53. Kannan, S.; Pushparaj, T. A Study on Variations of Bottlenecks in Software Testing. Int. J. Comput. Sci. Eng. 2014, 2, 8–14. Available
online: https://www.ijcseonline.org/pdf_paper_view.php?paper_id=150&IJCSE-00256.pdf (accessed on 5 October 2021).

54. Song, H.; Ryoo, S.; Kim, J.H. An Integrated Test Automation Framework for Testing on Heterogeneous Mobile Platforms. In
Proceedings of the 2011 First ACIS International Symposium on Software and Network Engineering, Seoul, Republic of Korea,
19–20 December 2011; pp. 141–145. [CrossRef]

55. Alotaibi, A.A.; Qureshi, R.J. Novel Framework for Automation Testing of Mobile Applications using Appium. Int. J. Mod. Educ.
Comput. Sci. 2017, 9, 34–40. [CrossRef]

56. Zun, D.; Qi, T.; Chen, L. Research on automated testing framework for multi-platform mobile applications. In Proceedings of the
2016 4th International Conference on Cloud Computing and Intelligence Systems (CCIS), Beijing, China, 17–19 August 2016;
pp. 82–87. [CrossRef]

57. Pajunen, T.; Takala, T.; Katara, M. Model-Based Testing with a General Purpose Keyword-Driven Test Automation Framework. In
Proceedings of the 2011 IEEE Fourth International Conference on Software Testing, Verification and Validation Workshops, Berlin,
Germany, 21–25 March 2011; pp. 242–251. [CrossRef]

58. Marín, B.; Gallardo, C.; Quiroga, D.; Giachetti, G.; Serral, E. Testing of model-driven development applications. Softw. Qual. J.
2017, 25, 407–435. [CrossRef]

59. Kolawole, G. Model Based Testing Mobile Applications: A Case Study of Moodle Mobile Application. Master’s Thesis, Tallinn
University of Technology, Tallinn, Estonia, 2017.

60. Ridene, Y.; Barbier, F. A model-driven approach for automating mobile applications testing. In Proceedings of the 5th European
Conference on Software Architecture: Companion Volume, 13–16 September 2011; ACM: Essen, Germany; pp. 1–7. [CrossRef]

61. Bansal, A. A Comparative Study of Software Testing Techniques. Int. J. Comput. Sci. Mob. Comput. 2014, 3, 579–584. Available
online: http://link.springer.com/10.1007/978-3-319-59647-1_27 (accessed on 1 March 2020).

62. Salam, M.A.; Taha, S.; Hamed, M.G. Advanced Framework for Automated Testing of Mobile Applications. In Proceedings of the
2022 4th Novel Intelligent and Leading Emerging Sciences Conference (NILES), Giza, Egypt, 22–24 October 2022; pp. 233–238.
[CrossRef]

63. Swathi, B.; Tiwari, H. Test Automation Framework using Soft Computing Techniques. In Proceedings of the 2021 International
Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India, 19–20
February 2021; pp. 1–4. [CrossRef]

64. Seth, P.; Rane, N.; Wagh, A.; Katade, A.; Sahu, S.; Malhotra, N. Uberisation of mobile automation testing. In Proceedings of
the 2017 International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 15–16 June 2017;
pp. 181–184. [CrossRef]

65. Garousi, V.; Elberzhager, F. Test Automation: Not Just for Test Execution. IEEE Softw. 2017, 34, 90–96. [CrossRef]
66. Raut, P.; Tomar, S. Android Mobile Automation Framework. Int. J. Multidiscip. Approach Stud. (IJMAS) 2014, 1, 1–12. Available

online: http://ijmas.com/upcomingissue/1.06.2014.pdf (accessed on 1 March 2020).
67. Peltola, J.; Sierla, S.; Vyatkin, V. Adapting Keyword driven test automation framework to IEC 61131-3 industrial control

applications using PLCopen XML. In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA),
Barcelona, Spain, 16–19 September 2014; pp. 1–8. [CrossRef]

68. Kaasila, J.; Ferreira, D.; Kostakos, V.; Ojala, T. Testdroid:automated remote UI testing on Android. In Proceedings of the 11th
International Conference on Mobile and Ubiquitous Multimedia, Ulm, Germany, 4–6 December 2012; pp. 1–4. [CrossRef]

69. Nagowah, L.; Sowamber, G. A novel approach of automation testing on mobile devices. In Proceedings of the 2012 International
Conference on Computer & Information Science (ICCIS), Kuala Lumpur, Malaysia, 12–14 June 2012; Volume 2, pp. 924–930.
[CrossRef]

70. Amalfitano, D.; Fasolino, A.R.; Tramontana, P. A GUI Crawling-Based Technique for Android Mobile Application Testing. In
Proceedings of the 2011 IEEE Fourth International Conference on Software Testing, Verification and Validation Workshops, Berlin,
Germany, 21–25 March 2011; pp. 252–261.

71. Franke, D.; Weise, C. Providing a Software Quality Framework for Testing of Mobile Applications. In Proceedings of the 2011
Fourth IEEE International Conference on Software Testing, Verification and Validation, Berlin, Germany, 21–25 March 2011;
pp. 431–434.

72. Tang, J.; Cao, X.; Ma, A. Towards adaptive framework of keyword driven automation testing. In Proceedings of the 2008
IEEE International Conference on Automation and Logistics, Qingdao, China, 1–3 September 2008; IEEE: Piscataway, NJ, USA, 2008;
pp. 1631–1636. [CrossRef]

73. Takala, T.; Maunumaa, M.; Katara, M. An Adapter Framework for Keyword-Driven Testing. In Proceedings of the 2009 Ninth
International Conference on Quality Software, Jeju, Republic of Korea, 24–25 August 2009; pp. 201–210.

74. Cherednichenko, S. What’s the Cost to Maintain and Support an App in 2021. 2021. Available online: https://www.mobindustry.
net/blog/whats-the-cost-to-maintain-and-support-an-app-in-2020/ (accessed on 20 December 2021).

https://doi.org/10.1145/1516241.1516349
www.journalforresearch.org
https://www.ijcseonline.org/pdf_paper_view.php?paper_id=150&IJCSE-00256.pdf
https://doi.org/10.1109/SSNE.2011.15
https://doi.org/10.5815/ijmecs.2017.02.04
https://doi.org/10.1109/CCIS.2016.7790229
https://doi.org/10.1109/ICSTW.2011.39
https://doi.org/10.1007/s11219-016-9308-8
https://doi.org/10.1145/2031759.2031770
http://link.springer.com/10.1007/978-3-319-59647-1_27
https://doi.org/10.1109/NILES56402.2022.9942374
https://doi.org/10.1109/ICAECT49130.2021.9392602
https://doi.org/10.1109/ICCONS.2017.8250706
https://doi.org/10.1109/MS.2017.34
http://ijmas.com/upcomingissue/1.06.2014.pdf
https://doi.org/10.1109/ETFA.2014.7005185
https://doi.org/10.1145/2406367.2406402
https://doi.org/10.1109/ICCISci.2012.6297158
https://doi.org/10.1109/ICAL.2008.4636415
https://www.mobindustry.net/blog/whats-the-cost-to-maintain-and-support-an-app-in-2020/
https://www.mobindustry.net/blog/whats-the-cost-to-maintain-and-support-an-app-in-2020/

Computers 2023, 12, 97 33 of 33

75. Anusha, M.; Kn, S. Comparative Study on Different Mobile Application Frameworks. Int. Res. J. Eng. Technol. 2017, 4, 1299–1300.
Available online: https://irjet.net/archives/V4/i3/IRJET-V4I3306.pdf (accessed on 1 March 2020).

76. Ki, T.; Simeonov, A.; Park, C.M.; Dantu, K.; Ko, S.Y.; Ziarek, L. Demo:Fully Automated UI Testing System for Large-scale Android
Apps Using Multiple Devices. In Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and
Services, 19–23 June 2017; ACM: Niagara Falls, ON, Canada; New York, NY, USA; p. 185. [CrossRef]

77. Bayley, I.; Flood, D.; Harrison, R.; Martin, C. MobiTest: A Cross-Platform Tool for Testing Mobile Applications. In Proceedings of
the ICSEA 2012: The Seventh International Conference on Software Engineering Advances, Lisbon, Portugal, 18–23 November
2012; pp. 619–622. Available online: http://www.thinkmind.org/index.php?view=article&articleid=icsea_2012_22_20_10114
(accessed on 3 July 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://irjet.net/archives/V4/i3/IRJET-V4I3306.pdf
https://doi.org/10.1145/3081333.3089330
http://www.thinkmind.org/index.php?view=article&articleid=icsea_2012_22_20_10114

	Introduction
	Preliminary Research on Mobile Test Automation
	Mobile Automation Testing
	Software Quality for Mobile Apps
	Test Automation Frameworks
	Linear Automation Framework
	Modular-Based Automation Framework
	Library Architecture Testing Framework
	Data-Driven Testing Framework
	Keyword-Driven Testing Framework
	Hybrid Test Automation Framework

	Related Work
	Methodology of This Review
	Definition of Research Scope
	The Search String
	Inclusion and Exclusion Criteria

	Primary Publication Selection
	Data Extraction
	Taxonomy of MATF Research

	Review Findings
	What Are the Concerns of Automation Testing Frameworks?
	Test Objectives
	Test Techniques

	What Are the Challenges of Automation Testing Frameworks in Mobile Testing?

	Discussion
	Trend Analysis
	Research Question Insights
	Future Research Directions and Challenges

	Threats to Validity
	Conclusions
	Appendix A
	References

