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Abstract: Deep learning (DL) methods have the potential to be used for detecting COVID-19 symp-
toms. However, the rationale for which DL method to use and which symptoms to detect has not yet
been explored. In this paper, we present the first performance study which compares various convo-
lutional neural network (CNN) architectures for the autonomous preliminary COVID-19 detection of
cough and/or breathing symptoms. We compare and analyze residual networks (ResNets), visual
geometry Groups (VGGs), Alex neural networks (AlexNet), densely connected networks (DenseNet),
squeeze neural networks (SqueezeNet), and COVID-19 identification ResNet (CIdeR) architectures to
investigate their classification performance. We uniquely train and validate both unimodal and mul-
timodal CNN architectures using the EPFL and Cambridge datasets. Performance comparison across
all modes and datasets showed that the VGG19 and DenseNet-201 achieved the highest unimodal and
multimodal classification performance. VGG19 and DensNet-201 had high F1 scores (0.94 and 0.92)
for unimodal cough classification on the Cambridge dataset, compared to the next highest F1 score for
ResNet (0.79), with comparable F1 scores to ResNet for the larger EPFL cough dataset. They also had
consistently high accuracy, recall, and precision. For multimodal detection, VGG19 and DenseNet-201
had the highest F1 scores (0.91) compared to the other CNN structures (≤0.90), with VGG19 also
having the highest accuracy and recall. Our investigation provides the foundation needed to select
the appropriate deep CNN method to utilize for non-contact early COVID-19 detection.

Keywords: deep learning; convolutional neural networks (CNN); COVID-19 symptoms; autonomous
detection of multimodal symptoms; cough and breathing

1. Introduction

The COVID-19 pandemic has profoundly impacted global health and society, highlight-
ing the need for continued research and innovative solutions, such as artificial intelligence,
to address its challenges. DL has been widely used for audio analysis of human paralin-
guistics in a number of different healthcare applications, including for the diagnosis of
(1) cold and flu symptoms using speech [1], (2) asthma using both speech and breathing [2],
and (3) COVID-19 utilizing cough and breathing [3,4]. Additionally, convolutional neural
network (CNN) architectures, including AlexNet, SqueezeNet, and ResNet18 [5], and gen-
erative adversarial networks (GAN) [6] have been used to detect COVID-19 using X-rays,
CT scans, and/or ultrasound images of patients’ chests [7].

COVID-19 has different symptoms, including fever, sore throat, dry cough, muscle
aches, headaches, and shortness of breath [8]. However, there is no established method for
detecting COVID-19 through multiple symptoms while considering their different preva-
lence levels. Additionally, while deep learning has been utilized for COVID-19 detection,
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there has not been a comprehensive evaluation to determine which CNN structures offer
the most accurate performance for non-contact COVID-19 detection.

To be more precise, when investigating clinically obtained statistical datasets for
COVID-19, it has been found that varying symptoms have different prevalences [9]. Namely,
the MIT clinical dataset, which consists of various symptoms of people who have tested
positive for COVID-19 from over 160 clinical studies in different countries (including China,
the USA, Japan, Singapore, and Italy), found that respiratory symptoms such as dry cough
and shortness of breath are the most common among all the COVID-19 symptoms [9,10].

To date, only a handful of DL methods have been used for unimodal detection [11–15] of
COVID-19 using the aforementioned respiratory symptoms. Furthermore, to the authors’
knowledge, there is only one existing multimodal DL detection method [3]. Namely, re-
searchers have trained and tested different DL structures on specific COVID-19 datasets.
However, they have not compared the various CNN structures with each other to deter-
mine which DL method provides the highest performance accuracy for non-contact-based
detection. Furthermore, the prevalence weight of the symptoms has not been taken into
account, and all symptoms are given equal importance as input to the structures for training.
In general, both the type of CNN structure [16] and the size of the dataset [17] are important
factors contributing to the classification accuracy of such audio signals.

In this paper, our objective is to present the first performance study of various deep
CNN architectures for autonomous preliminary COVID-19 detection of cough and/or
breathing symptoms. This unique comparison study provides the foundation needed
in selecting the appropriate DL method for non-contact early COVID-19 detection using
cough and breathing symptoms. Our main contributions are:

• The first comprehensive performance comparison study of state-of-the-art deep CNN
structures (ResNets, VGGs, AlexNet, DenseNet, SqueezeNet) and a custom multi-
modal CIdeR [3] structure for autonomous COVID-19 detection on the EPFL [18]
and Cambridge [19] cough and breathing datasets. We investigate the classification
measures of these methods for both unimodal and multimodal detection.

• The investigation of the effect of the dataset size on the COVID-19 detection process.
• For the multimodal investigation, explicitly taking into account the impact and preva-

lence of cough and breathing recordings in detecting COVID-19 through the use of
our multimodal weighting function, allowing for more accurate detection of the virus.

The paper is organized as follows. Section 2 provides a review of the related works
in both unimodal and multimodal COVID-19 detection using DL techniques. Section 3
introduces the deep CNN architectures we have investigated and compared, as well as the
datasets we have used in the comparison. Section 4 describes our multimodal classification
methodology, including our multimodal weighting function, and Section 5 discusses our
procedure for the training of the CNN architectures for COVID-19 classification. Section 6
provides our experimental procedure and comparison results with respect to the per-
formance metrics of accuracy, recall, precision, and F1 score. Lastly, Section 7 provides
concluding remarks and insights for future work.

2. Related Works

Both unimodal and multimodal DL approaches have been used for the detection of
COVID-19, incorporating various symptoms. These approaches are discussed in detail below.

2.1. Unimodal Detection of COVID-19

Since COVID-19 infection can cause changes in the human respiratory system, people
with COVID-19 produce distinct cough and breathing sounds [3]. These sounds have been
mainly used for unimodal COVID-19 detection using different CNN structures [20]. For
example, in [21], a convolutional neural network was combined with bi-directional long
short-term memory (CNN-BiLSTM) to detect COVID-19 using smartphone-based breathing
recordings. These recordings were taken from the Coswara dataset containing breathing
recordings collected via worldwide crowdsourcing using a website application [22]. In
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both [11,19], ResNet-50 was used for COVID-19 detection using cough recordings from the
EPFL [18] and diagnosing COVID-19 using acoustics (DiCOVA) challenge [23] datasets,
respectively. In [13], a CNN architecture consisting of one Poisson biomarker layer and
three pre-trained ResNet50 in parallel was used to detect COVID-19 using cough recordings
of the Opensigma dataset. In [24], breathing, cough, or speech data recordings were used for
unimodal COVID-19 detection with ResNet-50. The results showed that transfer learning
using the larger dataset without COVID-19 labels led to improved performance and better
generalization to unseen test data.

Different versions of VGG, including VGG-13 [13,14] and VGG-16 [25], have also been
used for COVID-19 detection using cough recordings from the DiCOVA challenge dataset.
In [26], DenseNet was used for COVID-19 detection using speech recordings from the
Cambridge dataset [19].

In one study [27], a hybrid ML and genetic algorithm method was used for unimodal
COVID-19 detection using cough recordings. The hybrid method had higher accuracy
compared to individual ML models, including logistic regression, linear discriminant
analysis, K -nearest neighbors, decision tree regression, Gaussian naive Bayes, and support
vector machines. In [28], a literature review on the existing ML-based and DL-based
methods, such as Resnet50, SVM, and DensNet-201, for using images such as CT Scans
and X-rays in the detection of COVID-19 was discussed, and the importance of obtaining
high-quality medical datasets with large sample sizes for accurate COVID-19 forecasts and
diagnosis was highlighted.

2.2. Multimodal Detection of COVID-19

Multimodal COVID-19 detection can be used to enhance the accuracy of virus detection
(by approximately 15%) by incorporating the effects of different symptoms, such as dry
cough and shortness of breath [25]. In general, there are two main approaches used for
multimodal detection: (1) concatenating different mode samples together as the multimodal
input to the CNN structure [3], or (2) first performing unimodal detection of each symptom
individually and then combining the results with a weighting function [9].

In [3], a new deep CNN structure, COVID-19 identification ResNet (CIdeR), was
developed for the classification of joint breath and cough audio recordings. The structure
was trained and tested on the Cambridge dataset [19]. An area under the receiver operating
characteristic curve (AUCROC) of 84% was obtained. If a new mode is to be added, the
CNN requires retraining. Therefore, combing the predictions of unimodal models by using
weighting functions, such as in [10] and [25], can be used to incorporate more symptoms
while avoiding retraining the entire CNN structure for the detection process.

In [25], individual support vector machine (SVM) classifiers were used to classify
cough, breathing, and speech recordings. Then, an equal weighting function combined
the output of these classifiers for overall COVID-19 detection. In [10], we proposed a
novel probability-based weighted function that considered symptom prevalence in order to
combine the output of each mode classifier. The classifier used in [10] was CIdeR. However,
any binary or DL classifier could be used for this architecture. Our results showed a 55.4%
improvement in the probability of early detection of COVID-19 when compared to only
using an equal weighting function, as in [25].

In [28], audio data, including cough, breathing, and voice, were used to monitor
COVID-19 progression and recovery, with a DL-based tracking tool developed using gated
recurrent units (GRUs). They trained and tested their algorithm on a small dataset including
only 212 users in total (106 COVID-positive and 106 COVID-negative) and obtained an
AUCROC of 79%. The study concluded that audio-based COVID-19 monitoring has the
potential for telemonitoring respiratory diseases for recovery trend predictions.

In the aforementioned papers, different deep learning methods using CNN structures
have been used for unimodal or multimodal detection of cough, breathing, and/or speech.
In many of these implementations, the rationale behind the choice of CNN structure uti-
lized for detection is not discussed, nor are other structures compared for performance
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analysis to determine the DL methods that will provide the highest performance accuracy
for COVID-19 detection. Furthermore, it has been noted that in none of the multimodal
studies were the relevance and relative weight of symptoms taken into account during the
training and evaluation phases utilizing multimodal techniques. Moreover, the current
approach of providing respiratory audio as a single input to a deep learning structure is
deemed inapplicable for the multimodal approach that aims to integrate multiple symp-
toms, including both audio and self-reported symptoms such as headache, as self-declared
symptoms cannot be solely represented within the audio input for a deep learning structure.

Finally, Table 1 presents a comprehensive comparison of the most relevant above-
mentioned studies in the field of COVID-19 detection with the work presented in this
paper. The table is designed to provide a clear and concise overview of the comparison and
highlight the significance of the present study. The papers listed in Table 1 were carefully
selected based on their relevance and contribution to the field of COVID-19 detection.
This table helps to ease the comparison between the state-of-the-art studies (reviewed in
Sections 2.1 and 2.2) and the work presented in this paper.

Table 1. Comparison of most relevant publications to our work. Checkmark (4) indicates that the
publication/work has worked on the mentioned feature. Additionally, “N/A” is an abbreviation for
not applicable, and used for the publications in which the considered feature in the table should not
be considered as a criterion to be compared with other works. For instance, for ref. [10], the feature
of “Comparison to other Multimodal Approaches” is not applicable because only one symptom,
“cough”, is considered. Cross sign (8) shows that in the related paper, they have not worked on
the feature.

Reference DL Structure Unimodal
Approach

Multimodal
Approach

Considering
the Prevalence
of Symptoms

Comprehensive
Comparison to

Other Unimodal
Approaches

Comparison to
Other

Multimodal
Approaches

[11,19] ResNet-50 4 8 N/A 8 N/A

[13,14,25] VGGs 4 8 N/A 8 N/A

[26] DenseNet 4 8 N/A 8 N/A

[3] CIdeR 8 4 8 8 8

[28] GRU 8 4 8 8 8

Our Work

ResNets,
VGGs,
DenseNet,
AlexNet,
SqueezeNet,
CIdeR

4 4 4 4 4

3. Deep Learning Networks for COVID-19 Symptom Detection

Herein, we introduce the CNN architectures we have investigated and compared with
respect to addressing the problem of autonomous early COVID-19 detection. Namely, we
compare the different structures for both unimodal and multimodal detection using cough
or/and breathing. We also introduce the weighting function utilized to achieve multimodal
COVID-19 detection.

3.1. Deep CNN Structures

The deep CNN structures used include (1) ResNets [29], (2) DenseNet [30], (3) AlexNet [31],
(4) SqueezeNet [32], (5) VGGs [33], and (6) CIdeR [3]. Deep CNN structures pretrained on
ImageNet have shown to be strong baseline networks for audio classification, including when
using spectrograms [16]. VGGs, ResNet-50 and DenseNet, have already been used for unimodal
COVID-19 detection, and CIdeR has been used for multimodal detection with accuracies ranging
from 84% to 95%. Our rationale for choosing these networks is as follows. VGGs are a top
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five classifier for ImageNet, and AlexNet has obtained the lowest test error in the ImageNet
Large Scale Visual Recognition Challenge [31]. Furthermore, SqueezeNet has achieved similar
accuracy to AlexNet on ImageNet [32]. However, SqueezeNet is more efficient in terms of
memory usage [32]. Moreover, it has been reported in the literature that ResNet, VGGs,
DenseNet, and CIdeR have all shown good performance for COVID-19 detection using different
input modes such as X-rays, cough, or breathing [3,5,24]. The below provides a short description
of the investigated CNN structures.

(1) ResNet: ResNet (see Figure 1) structures [29] are designed using residual blocks.
Each residual block has two 3 × 3 convolutional layers with the same number of
output channels. Each layer is followed by a batch normalization layer and a rectified
linear activation unit (ReLU) activation function. The first two layers of ResNets are
a 7 × 7 convolutional layer followed by a 3 × 3 maximum pooling layer. In ResNet,
there are also residual skips for the blocks [29]. This structure has one average pooling
layer and a fully connected layer. There are two main reasons that these skips are
added to the network. They help to address the vanishing gradient or degradation
(accuracy saturation) problem that exists in other deep CNN structures. Namely,
when more layers are added to the structure, higher training errors will be obtained.
However, ResNet structures have solved this issue by skipping several layers [29].

(2) DenseNet: The DenseNet architecture [30] focuses on making the deep learning net-
works deeper and, at the same time, more efficient to train. The DenseNet structure
simplifies the connectivity between the layers by eliminating the need to learn re-
dundant feature maps. Hence, the structure needs fewer parameters compared to
the equivalent traditional CNNs, which results in higher computational and memory
efficiency. DenseNet-201 has 98 dense blocks, followed by a global average pool and a
fully connected layer [30]. Each dense block includes both 1 × 1 and 3 × 3 convolu-
tional layers. Due to the intricate nature of these structures, it is advisable to see the
primary reference [30] to obtain a comprehensive and accurate visual representation
of the DenseNet architecture.

(3) VGG: The visual geometry group (VGG) (see Figure 1) structures [33] are built by
blocks. One block for VGG consists of a sequence of convolutions with 3 × 3 kernels
with 1 × 1 padding and 2 × 2 maximum pooling with a stride of 2. After the final
pooling layer, there are fully connected (FC) layers [33].

(4) AlexNet: AlexNet (see Figure 1) [31] was the first convolutional network that used a
GPU to boost performance. Its architecture includes five convolutional layers, three
max-pooling layers, and fully connected layers [31].

(5) SqueezeNet: The SqueezeNet (see Figure 1) architecture [32] is comprised of “squeeze”
and “expand” layers. The structure consists of a convolutional layer [32], followed
by eight fire blocks and, finally, a final convolutional layer. A fire module consists
of a squeeze convolutional layer (which has a 1 × 1 filter) and an expand layer that
includes 1 × 1 and 3 × 3 convolutional filters [32].

(6) CIdeR: CIdeR (see Figure 1) [3] is based on the ResNet-50 structure. It has one input
layer and nine residual blocks (each consisting of a convolutional layer followed by a
batch normalization and ReLU). This structure has an output fully connected layer
followed by a ReLU. CIdeR can be used for unimodal detection by training on only
one input mode (i.e., breathing or cough).

3.2. Datasets

The datasets used for both training and testing are the Cambridge dataset [19] and the
EPFL (COUGHVID) dataset [18]. The Cambridge dataset includes 459 crowdsourced la-
beled cough and breathing audio recordings from 355 participants in the WebM format [18].
The samples were recorded using a microphone through Android and web applications.
Sixty-two of the participants had tested positive for COVID-19 based on the utilization of,
for example, PCR tests. The EPFL (COUGHVID) dataset provides 20,000 crowdsourced
recordings for cough only. A wide range of participant ages, genders, and geographic
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locations was included. The participants self-declared their COVID-19 status (positive
or negative), which was used to label the data. The recordings were gathered through
microphones using a Web application deployed on a server located at EPFL [18].
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As people around the world still need to wear masks in public places, including
in healthcare centers, transit, and education facilities as per regional COVID-19 rules,
we also created a small dataset, named the Autonomous Systems and Biomechatronics
Laboratory (ASBLab) dataset, to test the performance of the trained CNN models for real-
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world application of COVID-19 screening in public places with people wearing masks. The
ASBLab dataset includes both breathing and cough recordings of 10 random people over
the course of a week from the autonomous systems and biomechatronics laboratory in a
public space, all wearing masks. Namely, the dataset includes a total of 46 breathing and
cough recordings recorded using the ReSpeacker USB microphone array (https://www.
robotshop.com/en/respeaker-usb-microphone-array.html; accessed on 10 November 2022).
This omnidirectional microphone consists of four high-performance digital microphones
with a sensitivity of −26 dBFS. The participants’ self-declared screening was used to label
the data. All declared COVID-negative status. Ethics approval was obtained from the
University of Toronto Ethics committee.

4. CNN-Based COVID-19 Classification Methodology

The overall flow of the methodology in this work is presented in Figure 2. Detailed
information regarding each component of the diagram is provided in the relevant sub-
section or section of the paper. The following provides a brief overview of the flow diagram,
indicating the sections in which each component is thoroughly described.
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As shown in Figure 2, the first step involves converting cough and breathing audio
files into spectrograms, which are then utilized as separate inputs to train the related
unimodal CNN structures. The training process is described in Section 5 (Training) of this
paper. The statistical MIT dataset [9], explained in the Introduction section, is employed to
calculate the prevalence weights for the cough and breathing audio files and the weighting
function. The calculation process and related equations are presented in this section. The
trained CNN structures and calculated weighting function are then utilized to create the
multimodal classifier depicted in Figures 3–5 of this section. The multimodal classifier
is further tested on unseen data, and the results are reported and evaluated in Section 6
(Experiments and Results) of this paper.

https://www.robotshop.com/en/respeaker-usb-microphone-array.html
https://www.robotshop.com/en/respeaker-usb-microphone-array.html
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The following explains the process by which the cough and breathing audio files are
initially transformed into their corresponding spectrograms and then used as inputs to the
classification module.

The classification architecture, as depicted in Figure 3, comprises two key components:
the “Spectrogram Conversion” module and the “Multi-modal Classification” module. The
primary function of the “Spectrogram Conversion” module is to convert audio inputs into
their corresponding spectrograms. The “Multi-modal Classification” module then utilizes
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these spectrograms to classify individuals with either the COVID-positive or COVID-
negative status.

Spectrogram Conversion Module: to generate spectrograms for all recordings, the
WebM audio is first converted to WAV format. It is noted that the recordings in the EPFL
dataset are represented in audio WebM format, and the Cambridge and ASBLab datasets
contain WAV format. Then, by taking the short-time Fourier transform (STFT) of the WAV
files, the corresponding spectrogram, Figure 4, that presents the visual form of the audio
frequencies with respect to time for each of the WAV files is obtained. A log transformation
is used to convert the amplitude of STFT outputs into decibels using the Librosa [34] Python
package. The fast Fourier transform (FFT) length and the sampling rate (kHz) that were
used to obtain the spectrograms are 2048 and 48,000, respectively.

Multi-modal Classification Module: the primary function of this module is to classify
the spectrograms generated from the audio inputs into either the COVID-positive or
COVID-negative category. This module, as illustrated in Figure 5, encompasses both the
trained CNN models, the implementation of which will be described in subsequent sections,
and our weighting function for multimodal detection.

A probability-based weighting function is used for multimodal COVID-19 detection,
Figure 5. As shown in the figure, the outputs of the unimodal cough and breathing
classifiers are provided as inputs into our multimodal weighting function ( fw), Equation (1)
below. In [10], we introduce the following novel weighting function, ( fw), which takes into
account the importance of different symptoms (Si, i ∈ {1, . . . , n}) through using their
clinically obtained weights, for the multimodal COVID-19 detection.

fw = ∑n
i=1 ISi wsi , (1)

where ISi (i ∈ {1, . . . , n}), as defined in Equation (2), represents the binary output of each
unimodal classifier for detecting COVID-19 through individual symptoms. A value of
1 indicates that the symptom has been classified as positive for COVID-19, while a value of
0 indicates that it has been classified as negative for COVID-19.

ISi =

{
1, classified COVID− positive
0, classified COVID− negative

. (2)

The weights in fw (Equation (1)), which was defined as a weighting function to
incorporate different symptoms by taking into account their weights and the related
unimodal CNN classifier binary outputs, are defined below in Equation (3):

wSi =
pi

∑n
j=1 pj

, (3)

where j ∈ {1, . . . , n}. pi and pj are the prevalence of each symptom. The pi and pj values
represent the probability that a person who tested positive for COVID-19 has the considered
symptom. To obtain pi and pj, the clinical MIT dataset [9] is utilized. This statistical dataset
contains the study population and symptoms prevalence (in percentages). These symptoms
include both cough and shortness of breath. By using Equation (1) and the MIT dataset, by
firstly obtaining the wights of the symptoms using the MIT dataset and then incorporating
them into the fw in Equation (1), the relationship in Equation (4) is obtained for the weighting
function:

fw = 0.67IC + 0.33IB (4)

where IC and IB are the outputs of the classifiers for cough and breathing recordings,
respectively. The output of fW provides the probability of COVID-positivity.

In the cases where the recordings of both coughs and breathing are combined together
in a dataset and cannot be separated, the audio for both cough and breathing for each
person can be given as one input into the CNN structure. The corresponding coefficient
(wC,B) will be utilized in the weighting function ( fw). wC,B represents the combined weight
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of cough (wC) and breathing (wB) symptoms. This can be obtained by taking the average
of the cough and breathing weights, i.e., wC,B = wC+wB

2 . It is noted that wC and wB are
obtained using Equation (3). The corresponding IC,B (see Equation (2)), which is the output
of a CNN classifier trained for the combined cough and breathing recordings, and the
calculated wC,B will be implemented in Equation (1) to determine fw.

5. Training

The deep CNN structures were trained and validated using the Cambridge and
EPFL datasets. We use a 70–30% split for training and validation. The trained models
were also tested as a proof-of-concept for COVID-19 screening of individuals in public
places using the cough and breathing recordings of the ASBLab dataset to evaluate their
performance. The weights of the CNN models were updated through training on the EPFL
and Cambridge datasets. The number of epochs, batch size, and learning rate were 100, 5,
and 1 × 10−4, respectively. The number of training and validation recordings used from
the Cambridge dataset were 321 and 137, whereas the number of training and validation
recordings utilized from the larger EPFL dataset were 8347 and 2627, respectively.

6. Comparison of Deep CNN Structures for Multimodal Detection: Experiments
and Results

Experiments were performed on the validation sets to compare the classification
accuracy of the deep CNN structures. Namely, we conducted two sets of experiments:
(a) the unimodal detection of COVID-19 using separate breathing and cough symptoms,
and (b) the multimodal detection of COVID-19 using both breathing and cough symptoms
together.

6.1. Unimodal Detection of COVID-19

We use classification accuracy as a metric for the comparison of the different CNN
structures on similar datasets [16]. The classification accuracies for unimodal detection are
presented in Table 2 for both the EPFL and Cambridge datasets. The highest classification
accuracies for cough were obtained by (1) VGG19 with a classification accuracy of 91% for
the Cambridge dataset and (2) ResNet-34 and ResNet-152 with an accuracy of 93% for the
EPFL dataset.

Table 2. Classification accuracy of deep CNN structures for unimodal and multimodal COVID- 19
detection using cough and breathing recordings.

Cough Breathing Cough and Breathing

CNN
Structure

Dataset
Cambridge EPFL Cambridge Cambridge

CIdeR 81% 83% 84% 82%
ResNet-18 76% 92% 76% 76%
ResNet-34 75% 93% 41% 80%
ResNet-50 76% 92% 76% 69%

ResNet-101 82% 92% 77% 85%
ResNet-152 77% 93% 76% 74%

VGG16 86% 91% 86% 74%
VGG19 91% 92% 84% 89%
AlexNet 69% 92% 84% 60%

DenseNet-201 90% 91% 81% 88%
SqueezeNet1_0 79% 90% 76% 84%

Average 80% 91% 76% 76%

With respect to breathing, the highest classification accuracy was 86% and was ob-
tained by VGG16 for the Cambridge dataset. Similar to cough, a VGG structure had the
highest classification accuracy on this dataset. The lowest accuracy of 41% was obtained
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by ResNet-34. However, other ResNet structures with more layers (such as ResNet-152
and ResNet-101) had improved performance, 76% or 77%, respectively. In general, ResNet
structures with a higher number of layers will have better performance on small datasets
such as the Cambridge dataset.

6.2. Multimodal Detection of COVID-19

We also compared the classification accuracy of multimodal detection using the dif-
ferent CNN structures. The classification accuracy results for the Cambridge dataset are
reported in Table 2, as the EPFL dataset did not contain the breathing mode. As can be seen
from the table, the highest classification accuracy of 89% was for VGG19. In other words,
the VGG-19 and DenseNet-201 structures showed a 13% and 12% increase in accuracy, re-
spectively, compared to the average accuracy of 76% (as seen in Table 2) for the multimodal
COVID-19 detection. The VGG structures also had the highest accuracy on the Cambridge
dataset with respect to the individual modes.

In the multimodal detection of COVID-19, our proposed weighting function ( fw) has
been shown to be effective. CIdeR [35], which is the only designed DL for multimodal
COVID-19 detection, achieved the maximum accuracy of 79% in ref. [35]. As demonstrated
in Table 2, the use of our fw resulted in an accuracy of 89% for the multimodal COVID-19
detection, which shows a 10% increase in the multimodal classification detection. This is a
marked improvement over the state-of-the-art approaches. This comparison highlights the
potential of fw as a tool in the ongoing fight against the COVID-19 pandemic.

6.3. Statistical Significance between CNN Structures

We conducted non-parametric Kruskal–Wallis H tests to determine if there was statis-
tical significance between the classification accuracies of the CNN structures. The results
are presented in Table 3. As can be seen from the table, there is a statistically significant
difference between the classification accuracies for the unimodal breathing recordings of the
Cambridge dataset (p < 0.001). Therefore, we performed post hoc Dunn tests to determine
which structures provide significantly different accuracies. The Dunn test results showed
that ResNet-34 had a statistically lower classification accuracy than all the other structures
(p < 0.001). It is noteworthy that the results of the Dunn test for ResNet-34 demonstrate the
maximum and minimum p-values for ResNet-152 and VGG16, respectively, with p-values
of 2.22× 10−6 and 1.17× 10−9. These findings confirm the results reported in Table 2.

Table 3. Kruskal–Wallis H test results for the CNN structures.

Dataset/Data Type H p-Value

Cambridge/Cough 12.64 0.24
EPFL/Cough 2.11 0.99
Cambridge/Breathing 56.32 <0.001
Cambridge/Cough and Breathing 15.46 0.12

However, the tests did not confirm that VGG16 had a statistically higher classification
accuracy than the other CNN structures for breathing.

6.4. Precision, Recall, and F1 Scores

As statistical significance was not determined for the top-performing CNN structures
for both unimodal and multimodal detection, we further investigated their precision,
recall, and F1 scores. Namely, we compared the VGG19, DenseNet-201, ResNet-34, and
ResNet-152 structures for unimodal COVID detection using cough recordings. VGG19 and
DenseNet-201 had the highest accuracies for the Cambridge dataset (90% and higher), and
ResNet-34 and ResNet-152 both had the highest accuracy on the EFPL dataset (93%), with
VGG19 and DenseNet-201 also having over 90% accuracy on the EFPL dataset. The results
are presented in Table 4.
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Table 4. Classification metrics for the top-performing CNN structures for unimodal cough. The best
metrics in each column are highlighted in yellow.

EPFL Cambridge

Structure

Measure
Accuracy Recall Precision F1 Accuracy Recall Precision F1

ResNet-34 0.93 0.98 0.93 0.95 0.75 0.84 0.74 0.79
ResNet-152 0.93 0.98 0.92 0.95 0.77 0.83 0.76 0.79

VGG19 0.92 0.97 0.92 0.94 0.91 0.96 0.91 0.94
DenseNet-201 0.91 0.99 0.91 0.94 0.90 0.95 0.90 0.92

For the breathing mode, we compared precision, recall, and F1 scores for the top-
performing structures of CIdeR, VGG16, VGG19, AlexNet, and DenseNet-201, which all
had classification accuracies of over 80%. The results are presented in Table 5.

Table 5. Classification metrics for the top-performing CNN structures for unimodal breathing. The
best metrics in each column are highlighted in yellow.

Structure
Measure Accuracy Recall Precision F1

CIdeR 0.84 0.88 0.89 0.88
VGG16 0.86 0.83 0.99 0.90
VGG19 0.84 0.90 0.88 0.89
AlexNet 0.84 0.88 0.9 0.89

DenseNet-201 0.81 0.88 0.8 0.84

In Table 6, the precision, recall, and F1 scores of CIdeR, ResNet-34, ResNet-101,
SqueezeNet1_0, VGG19, and DenseNet-201 are presented. These are the top-performing
multimodal COVID-19 detection CNN structures with a classification accuracy of 80%
or higher.

Table 6. Classification metrics for the top-performing CNN structures for multimodal cough and
breathing. The best metrics in each column are highlighted in yellow.

Structure
Measure Accuracy Recall Precision F1

CIdeR 0.82 0.85 0.81 0.83
ResNet-34 0.80 0.87 0.80 0.83
ResNet-101 0.85 0.91 0.82 0.86

SqueezeNet1_0 0.84 0.83 0.98 0.90
VGG19 0.89 0.93 0.90 0.91

DenseNet-201 0.88 0.91 0.92 0.91

VGG19 and Densnet-201 have consistently high F1 scores across the two datasets for
unimodal cough classification as well as consistently high accuracy, recall, and precision.
VGG-16, VGG-19, and AlexNet obtained the highest F1 scores on the Cambridge dataset for
breathing when also comparing the other evaluation metrics. With respect to the F1 scores
for multimodal detection using both cough and breathing, VGG19 and DenseNet-201 had
the highest scores, with VGG19 also having the highest accuracy and recall.

Therefore, across the unimodal and multimodal CNN structures, VGG19 and DensNet-
201 can both be selected as the top-performing structures based on their F1 scores. We
further evaluate these two CNN structures on the ASBLab dataset. The results are summa-
rized in Table 7.
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Table 7. Classification accuracy for the two top-performing CNN structures on the ASBLab dataset.

Cough Breathing Cough and Breathing

CNN
Structure

Dataset
ASBLab ASBLab ASBLab

VGG19 97% 92% 61%
DenseNet-201 95% 89% 83%

It should be noted that one limitation of CNN architectures is that they require a large
amount of data to train, which may be difficult to obtain in the case of COVID-19 detection.
Although the ASBLab dataset is a small dataset, including only 46 cough and breathing
recordings of random people with COVID-negative status, the results show the potential
of using deep CNN structures, which are trained on crowdsourced datasets, on real-world
scenarios for COVID-19 screening when people are wearing masks.

In general, the accuracy of the multimodal VGG-19 and DenseNet-201 structures
represent improvements of 13% and 12% over the average accuracy of 76% (Table 2). They
also had the highest F1 scores (0.91) compared to the other CNN structures (≤0.90), with
VGG19 having the highest accuracy and recall. Furthermore, VGG19 and DenseNet-201
had high F1 scores (0.94 and 0.92) for unimodal cough classification compared to the next
highest F1 score for ResNet (0.79) for the Cambridge dataset, an improvement of 15% and
13%, respectively. Their F1 score (0.94) for the EPFL cough dataset was comparable to the
F1 score of ResNet-34 and ResNet-152 (0.95). This comparison study demonstrates the
effectiveness of the VGG-19 and DenseNet-201 deep learning models for multimodal and
unimodal COVID-19 detection. The better performance of VGG-19 is due to its use of small
convolutional filters and multiple layers, which allow for the extraction of both fine and
coarse audio features. The use of dense connections in DenseNet-201 provides enhanced
efficiency by alleviating the vanishing gradient problem, maintaining accuracy even as
the number of layers increases, and reducing the number of parameters in the network.
Therefore, these architectural features in VGG19 and DenseNet-201 allow for more effective
feature extraction and improved accuracy in audio classification tasks, such as COVID-19
detection using cough and breathing symptoms.

7. Conclusions

In this paper, we present the first performance comparison of deep CNN structures for
unimodal and multimodal COVID-19 detection using breathing and/or cough recordings.
Pretrained CNN models including ResNets (ResNets-18, ResNets-34, ResNets-50, ResNets-
101, ResNets-152), VGGs (VGG16 and VGG19), AlexNet, DenseNet-201, SqueezeNet1_0,
and the CIdeR structure were trained and validated on the EPFL and Cambridge datasets.
Comparison experiments were conducted to determine the performance of these deep
CNN structures across modes and datasets. The results showed that both VGG19 and
DenseNet-201 outperformed the other CNN structures and achieved high unimodal and
multimodal classification performance. Namely, they both had consistently high accuracy,
recall, precision, and F1 scores. In particular, VGG19 and DenseNet-201 had an F1 score
of 0.94 and 0.92 for unimodal cough classification on the smaller Cambridge dataset,
compared to the next highest F1 score of 0.79 for ResNet-34 and ResNet-152, and they
both had comparable F1 scores to ResNet-34 and ResNet-152 for the larger EPFL cough
dataset. With respect to unimodal breathing, another VGG model with 16 layers (VGG16)
obtained the highest classification accuracy with a comparable F1 score to VGG19. For
multimodal detection, VGG19 and DenseNet-201 both had the highest F1 scores of 0.91,
compared to the other CNN structures (≤0.90), with VGG19 also obtaining the highest
recall and accuracy.

We also tested these two top-performing deep CNN structures on our small ASBLab
multimodal cough and breathing dataset consisting of people wearing masks in a public
space to show their potential in real-world scenarios.
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Our deep CNN methodology has the capability of combining numerous different
modes and symptoms to improve the accuracy of COVID-19 detection. Hence, it requires
separate training data to be available for each mode to obtain symptom prevalence a priori.

Our future work will include building a large dataset of masked people with both
COVID-negative and COVID-positive status that can be used for real-time deep learning-
based screening in public places. Furthermore, we aim to incorporate additional modes
for detection, such as body temperature and self-reported symptoms such as sore throat
and sneezing.
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