
Citation: Nikolakopoulos, A.; Julian

Segui, M.; Pellicer, A.B.;

Kefalogiannis, M.; Gizelis, C.-A.;

Marinakis, A.; Nestorakis, K.;

Varvarigou, T. BigDaM: Efficient Big

Data Management and

Interoperability Middleware for

Seaports as Critical Infrastructures.

Computers 2023, 12, 218.

https://doi.org/10.3390/

computers12110218

Academic Editor: Paolo Bellavista

Received: 4 October 2023

Revised: 20 October 2023

Accepted: 24 October 2023

Published: 27 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

BigDaM: Efficient Big Data Management and Interoperability
Middleware for Seaports as Critical Infrastructures
Anastasios Nikolakopoulos 1,* , Matilde Julian Segui 2 , Andreu Belsa Pellicer 2 , Michalis Kefalogiannis 3 ,
Christos-Antonios Gizelis 3,* , Achilleas Marinakis 3,* , Konstantinos Nestorakis 3 and Theodora Varvarigou 1

1 School of Electrical and Computer Engineering, National Technical University of Athens,
15773 Athens, Greece; dora@telecom.ece.ntua.gr

2 Department of Communications, Universitat Politécnica de Valéncia, 46022 Valencia, Spain;
majuse@upv.es (M.J.S.); anbelpel@upv.es (A.P.B.)

3 IT Innovation Center OTE Group, 15124 Marousi, Greece; mkefalogiannis@ote.gr (M.K.);
knestorak@ote.gr (K.N.)

* Correspondence: tasosnikolakop@mail.ntua.gr (A.N.); cgkizelis@cosmote.gr (C.A.G.);
amarinaki@ote.gr (A.M.)

Abstract: Over the last few years, the European Union (EU) has placed significant emphasis on the
interoperability of critical infrastructures (CIs). One of the main CI transportation infrastructures are
ports. The control systems managing such infrastructures are constantly evolving and handle diverse
sets of people, data, and processes. Additionally, interdependencies among different infrastructures
can lead to discrepancies in data models that propagate and intensify across interconnected systems.
This article introduces “BigDaM”, a Big Data Management framework for critical infrastructures. It is
a cutting-edge data model that adheres to the latest technological standards and aims to consolidate
APIs and services within highly complex CI infrastructures. Our approach takes a bottom-up perspec-
tive, treating each service interconnection as an autonomous entity that must align with the proposed
common vocabulary and data model. By injecting strict guidelines into the service/component
development’s lifecycle, we explicitly promote interoperability among the services within critical
infrastructure ecosystems. This approach facilitates the exchange and reuse of data from a shared
repository among developers, small and medium-sized enterprises (SMEs), and large vendors. Busi-
ness challenges have also been taken into account, in order to link the generated data assets of CIs
with the business world. The complete framework has been tested in the main EU ports, part of the
transportation sector of CIs. Performance evaluation and the aforementioned testing is also being
analyzed, highlighting the capabilities of the proposed approach.

Keywords: marketplaces; interoperability; critical infrastructure; smart data model; data virtualization;
big data analysis; big data management

1. Introduction

Critical infrastructures (CIs) are systems, networks, and assets that are essential for
the functioning of a society and its various sectors. They encompass sectors such as energy,
transportation, water, communications, emergency services, financial services, healthcare,
food and agriculture, government facilities, and information technology [1]. These infras-
tructures provide crucial services, and their disruption can have severe consequences [2].
It is safe to characterize critical infrastructures as the main cornerstones of the global econ-
omy. In terms of data production, critical infrastructures generate vast volumes of data on a
daily basis. These data include information related to operations, monitoring, maintenance,
security, and various other aspects. With the increasing digitization and interconnectedness
of these infrastructures, the volume of data being generated continues to grow exponen-
tially. Managing and leveraging these data effectively is crucial for optimizing operations,
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enhancing security, and making informed decisions to ensure the resilience and reliability
of critical infrastructures.

To ensure proper management and handling of data volumes generated within the
CI industry, there is a need to incorporate data-driven intelligence. This involves the
aggregation of diverse data from the infrastructure itself and various stakeholders involved
in its operations. Several CI domains present an extensive range of data sources, as seen
in Figure 1. Such domains are the port infrastructures, part of the CI transportation sec-
tor. Additionally, with the emergence of Internet of Things (IoT) technology, there is a
rapid adoption of smart logistics mechanisms and sensing systems within CI premises,
resulting in the generation of large volumes of data. These data encompass a wide range
of information, involving various communication, sensor systems, and control technolo-
gies. They facilitate real-time decision-making and information sharing among different
stakeholders throughout the CI supply chain. Moreover, CI data collection occurs through
various methods and is stored in different formats, with the harvested data being struc-
tured, semi-structured, or unstructured. Given the fact that there are sixteen different
critical infrastructure sectors, one can easily comprehend the magnitude of the data being
generated. Such big data have to be safeguarded and handled properly.

Figure 1. The 16 critical infrastructure sectors of global industry and economy [3].

However, several challenges of general big data management and analysis have to
be taken into consideration before conducting research on CI-related big data solutions.
Analyzing big data presents challenges that researchers and practitioners must address
to derive meaningful insights and make data-driven decisions. These challenges can be
broadly categorized into various aspects of data collection, storage, processing, analysis,
and interpretation. Here is an analysis and listing of the main challenges in big data
management and analysis:

• Volume, Velocity, Variety, Veracity, and Value: Also known as the famous “5 Vs” of big
data. Regarding Volume, big data sets are characterized by their sheer size, often
comprising terabytes, petabytes, or even exabytes of data. Storing and processing
such vast amounts of data can strain computing resources and require specialized in-
frastructure. As for Velocity, data are generated at an unprecedented speed, especially
in fields like IoT (Internet of Things) and social media. Real-time or near-real-time
analysis of streaming data can be challenging, as it requires low-latency processing
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capabilities. For Variety, big data is diverse and can come in various formats, such as
structured, semi-structured, and unstructured data. This variety includes text, images,
videos, sensor data, and more. Integrating and analyzing data from different sources
and formats can be complex. Regarding Veracity, data quality and reliability can be
questionable in big data. Inaccurate or incomplete data can lead to erroneous conclu-
sions. Cleaning and validating data to ensure accuracy is a significant challenge. And
as for Value, despite the vast amount of data available, extracting valuable insights is
not guaranteed. Finding meaningful patterns, trends, and correlations often requires
advanced analytics techniques, including machine learning and data mining.

• Data Management and Infrastructure Challenges: Dealing with the exponential growth
in data volume and ensuring systems can scale efficiently. Managing computational
resources, such as CPU, memory, and storage, is complex and requires careful op-
timization. Efficiently storing, indexing, and retrieving data in distributed storage
systems, especially with large-scale data, presents significant challenges. Balancing
the performance requirements of big data analysis with the associated infrastructure
costs is an ongoing concern.

• Data Integration and Processing Challenges: Implementing and fine-tuning sophisticated
algorithms and models for analyzing big data can be challenging, demanding expertise
in machine learning, statistics, and data science. Combining data from diverse sources,
each with its own structure and format, requires robust data integration tools and
techniques. Gaining meaningful insights from large and complex datasets through
data exploration and visualization is a complex task. Ensuring that different tools and
systems used in big data analysis can work together seamlessly is a constant challenge.

• Data Security, Ethics, and Governance Challenges: Storing and processing sensitive data
in big data systems can pose significant security and privacy risks, requiring measures
to ensure data confidentiality, integrity, and regulatory compliance (e.g., GDPR).
Addressing ethical and legal concerns surrounding data analysis, such as data privacy,
algorithmic bias, and responsible data usage, is crucial. Establishing robust data
governance policies and practices is essential for maintaining data quality, security,
and compliance. Additionally, overcoming the shortage of skilled data scientists and
analysts who can work effectively with big data remains a significant challenge.

• Environmental and Long-term Challenges: The energy consumption of large-scale data
centers and computing resources used for big data analysis can have a significant
environmental impact, making sustainability an important concern. Archiving and
preserving big data for future analysis can be challenging, especially given rapidly
evolving technologies and data formats, requiring long-term data preservation strate-
gies and solutions.

Addressing these challenges requires a multidisciplinary approach involving computer
science, data engineering, domain expertise, and collaboration across various stakeholders.
As technology continues to evolve, new challenges may emerge, making it essential for
researchers and practitioners to stay updated and adapt to the evolving landscape of big
data analysis.

Based on the challenges of big data analysis, in order to grasp how massive the data
volumes produced by critical infrastructures are, let us provide some examples. In the
sector of energy, the power grid in the United States alone is used to generate about 100 to
1000 petabytes of data per year [4,5]. On a global scale, the energy sector generates a massive
amount of data, with estimates ranging from 100 to 200 exabytes per year [6]. Energy-
related data includes information on power generation, transmission, and distribution. It
also includes data on weather conditions, equipment status, and customer usage patterns.
Apart from the energy sector, the transportation systems sector generates several petabytes
of data per year [7,8]. These data include information on traffic flow, vehicle emissions,
and passenger travel patterns. The same goes for the telecommunications sector, whose
data include information on call records, text messages, and internet usage [9]. The amount
of data generated by critical infrastructures is only going to increase in the future. This
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is due to the increasing use of sensors, smart devices, and other connected technologies
(like IoT devices mentioned before). As these technologies become more widespread, they
will generate even more data that can be used to improve the efficiency and security of
critical infrastructures.

The handling of large data volumes in critical infrastructures is essential for ensuring
the security and resilience of these infrastructures. By collecting, storing, and analyzing
large amounts of data, critical infrastructures can improve their operational efficiency,
identify and mitigate risks, and respond to incidents more effectively. Applying big
data techniques to process such a vast amount of data has the potential to equip critical
infrastructures with essential tools for automating decision processes and managing job
queues efficiently. By leveraging these techniques, many tasks within the CI workflow
could become easier. For example, given a specific CI sector, the ability to incorporate not
only operational data but also global data from various actors across its value chain could
be a crucial factor in its growth and expansion as an industry element. As of today, no
CI-oriented big data management framework has been proposed. The scientific literature
lacks a solution that provides big data harmonization, interoperability, processing, filtering,
cleaning, and storing, for data that come from critical infrastructure sectors. Several big
data management systems have been published, but none combine management with
harmonization and interoperability and have been specifically tested with CI-related data.
This reality motivated the current research team to implement a new proposal, which aims
to unlock the latent power of existing data derived from CI operations, leading to optimal
resource and infrastructure utilization.

This research paper is organized to begin by presenting a critical infrastructure (CI)
data management proposal. After that, it comprises seven main sections: “Related Work”
provides context by reviewing existing research, “Business Model and Services” outlines
economic and functional aspects, “Data Model and Interoperability” and “Data Processing
and Virtualization” explore system architecture, “Performance Evaluation and Results”
present key insights and results from the proposed framework’s testing, and “Conclusions”
summarizes the paper, including future prospects.

2. CI Data Management Proposal

Despite the promising possibilities mentioned at the end of the Introduction section
(Section 1), the current reality falls short of fully realizing this potential due to challenges
related to data interoperability and efficient data management. The lack of seamless data
integration hampers the adoption of data-driven solutions in CI production environments.
This reason is the main motivation for the research conducted and presented in this article,
as also mentioned at the end of the Introduction (Section 1). The gap between proper big
data handling and their utilization by both CIs (from which they are generated) and external
beneficiaries can be bridged by BigDaM, this journal’s proposal. It stands for the “Big
Data Management” framework, and it is specialized to critical infrastructures. Conceptually,
it is a middleware framework, consisting of a “Data Model and Interoperability” layer,
as well as a “Data Processing and Virtualization” layer. BigDaM aims to relieve CIs
from the time-consuming task of properly and wholly managing the data generated. Its
development and implementation is the continuation of a previous work published as
a paper in 2022 by the same authoring team [10]. The model proposed was based on
the use case of smart ports (and therefore the CI transportation sector, in which ports
belong to), studied within the context of DataPorts European Research Project [11]. This
article expands the original approach and applies new improvements to the framework. It
provides an in-depth analysis of the framework’s operation and evaluates its performance
through thorough testing.

BigDaM can prove to be a vital assistant to CI sectors. It consists of two main layers,
named “Interoperability” and “Data Processing and Virtualization”. The Interoperability
layer enhances data interoperability, while the Data Processing and Virtualization layer
implements proper data management practices for the incoming data. Thus, BigDaM
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can bring about significant positive impacts on critical infrastructures. By enabling seam-
less exchange and integration of data across different systems and components, CIs can
achieve enhanced operational efficiency, real-time monitoring, and predictive maintenance
capabilities. With improved interoperability, these infrastructures can optimize resource
allocation, streamline decision-making processes, and ensure better coordination among
various elements. Moreover, effective data management safeguards against data loss,
cybersecurity threats, and system failures, bolstering overall reliability and resilience. Ulti-
mately, these advancements foster safer, more sustainable, and cost-effective operations,
empowering critical infrastructures to meet the ever-evolving demands of modern society
while minimizing disruptions and ensuring continuity.

Additionally, BigDaM can augment the beneficiaries of the data generated by CIs, as
stated before. This is why BigDaM has significant soundness in the business industry as
well. Potential advantages of enhancing data interoperability and proper management
extend beyond economic benefits for CI authorities. Various stakeholders can benefit
from this improved data exchange, leading to service enhancements. Notably, telecom-
munications operators, harnessing their substantial data resources, play a vital role in
this burgeoning data-driven market. By offering data or services via APIs, they furnish
valuable insights for informed decision-making to external stakeholders, including public
authorities, municipalities, shipping companies, transportation authorities, cultural and
trade associations, and others. In a few words, data generated from one CI sector can
be used by beneficiaries of another CI sector, creating a multi-CI network of dataflows.
Nonetheless, integrating data streams from diverse sources can present challenges, thereby
magnifying the overall benefit of achieving successful data interoperability.

3. Related Work

This journal showcases an application scenario rooted in the operations of a spe-
cific port, the port of Valencia, and thus being tested in the transportation sector of CIs,
as mentioned earlier. The port of Valencia predominantly focuses on the handling of
containerized goods movement, boasting three extensive terminals overseen by globally
significant maritime companies. Furthermore, the port administers various other freight
categories, including liquids, solids, and roll-on/roll-off cargo. Additionally, the port
annually accommodates a notable influx of cruise vessels. From a technological perspective,
the port of Valencia has actively participated in multiple noteworthy research initiatives
within the realms of the Internet of Things (IoT) [12] and the field of big data [13]. However,
both projects do not focus on the optimal management and handling of big data volumes.

3.1. EU Research Projects and Initiatives

Since the main testing of the proposed framework has taken place in ports, related
projects to it are also tightly coupled with the maritime industry. Numerous initiatives at the
European level have been undertaken in the past, with certain projects remaining actively
operational to this day, all aimed at cultivating a comprehensive ecosystem centered around
ports. European entities and associations like ESPO [14], IAPH [15], and AIVP [16] have
been at the forefront of endeavors that seek to establish connections and advocate for
port authorities while fostering relationships with the European Union and other nations.
Their pivotal role in global trade positions them as pioneers in the realm of smart ports.
Moreover, in collaboration with several EU ports, ENISA [17] has formulated a report that
delivers valuable insights into the cybersecurity strategies employed by port authorities
and terminal operators, thus adding another layer of significance to their contributions.

Furthermore, the European Union (EU), particularly through the Horizon 2020 pro-
grams, has allocated substantial funding to a multitude of projects regarding the future of
EU ports. These projects are strategically designed to establish comprehensive management
platforms [18] tailored for maritime and port environments. The overarching goal is to
foster interoperability, paving the way for ports to evolve into cognitive and intelligent
entities. Examples such as the SmartCities project have culminated in the Marketplace of
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the European Innovation Partnership on Smart Cities and Communities [19]. Projects like
e-Mar, FLAGSHIP, and INMARE are dedicated to addressing matters pertinent to maritime
transportation. The MASS initiative focuses on enhancing human conduct aboard ships,
with particular emphasis on emergency scenarios. MARINE-ABC serves as a showcase for
the potential of mobile ship-to-shore communication.

Meanwhile, the BigDataStack project [20] strives to streamline cluster management
for data-related operations. However, it does not implement a complete solution for big
data interoperability, harmonization, and management. The SmartShip initiative [21]
dedicates its efforts to crafting data analytics-based decision support systems and an
optimization platform grounded in the principles of a circular economy. These collective
undertakings, in conjunction with other comparable initiatives, underscore the shared
objective uniting the research community, port authorities, shipping entities, and supply
companies: the creation of a novel ecosystem enriched with cutting-edge data-centric
services, which will ultimately benefit both ports and local communities. Adding to this
momentum, the European maritime sector is charting a course through new calls to provide
seamlessly integrated, high-quality services as an integral part of the broader European
transportation network.

3.2. Other Important Research Work

Apart from initiatives of the European Union (through research projects), several
proposals for big data analysis and management in critical infrastructure sectors have been
published over the past years. One such proposal was authored in 2014 by Baek et al. [22],
which presented a cloud computing framework for big data management in smart grids.
A smart grid is an advanced electrical system that utilizes digital technology to efficiently
manage and optimize the generation, distribution, and consumption of electricity. There-
fore, smart grids represent a technological advancement aimed at enhancing the efficiency,
dependability, economic viability, and sustainability of electricity supply services, serving
as a pivotal component in modern energy infrastructure. In order to address the significant
challenges concerning the effective management of diverse front-end intelligent devices
like power assets and smart meters, as well as the processing of extensive data streams
generated by these devices, the research team introduced a secure cloud computing-based
framework designed for the management of big data in smart grids. The core concept of the
framework revolves around constructing a hierarchical network of cloud computing centers
to deliver various computing services for information management and comprehensive big
data analysis. As a technology that offers on-demand computational resources, cloud com-
puting emerges as a promising solution to tackle obstacles such as big data management
and analytics, given attributes like energy conservation, cost-efficiency, adaptability, scala-
bility, and versatility. The proposal is solid, but it did not provide performance evaluation
or results. It shifted its focus from the optimal handling, processing, and cleaning of the
data from smart grid networks.

Another paper published by Kaur et al. [23] focuses on the implementation of a Big-
Data-capable framework for energy-efficient software-defined data centers in IoT setups.
Energy-efficient software-defined data centers (SDDCs) are data center facilities that lever-
age virtualization and intelligent management software to reduce energy consumption
while maintaining high computing performance and scalability. The rapidly evolving
industry standards and transformative advancements in the field of the Internet of Things
are poised to generate a substantial influx of big data in the near future. Consequently, this
will necessitate real-time data analysis and processing capabilities from cloud computing
platforms. A significant portion of the computing infrastructure relies on extensive and
geographically dispersed data centers (DCs). However, these DCs come with a substan-
tial cost in terms of rapidly escalating energy consumption, which, in turn, has adverse
environmental repercussions. Hence, the paper leverages the benefits of software-defined
data centers (SDDCs) to reduce energy consumption levels. The team’s approach includes
the design of a consolidated and Big-Data-enabled SDDC-based model to jointly optimize
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virtual machine (VM) deployment and network bandwidth allocation, aiming for reduced
energy consumption and guaranteed quality of service (QoS), especially in heterogeneous
computing environments. While the proposal is highly interesting, it lacks the focus on
critical-infrastructure-related data. At the same time, it does not cover the aspect of big data
harmonization and interoperability, which plays a key role within the BigDaM framework.

A publication authored by Lockow et al. in 2015 [24] analyzed the generation of big
data by the automotive industry (which falls within several CI sectors, from transporta-
tion to critical manufacturing) and the need to properly handle such large volumes of
information. More specifically, the paper conducts a comprehensive survey of use cases
and applications that leverage Apache Hadoop [25] in the automotive sector. Hadoop,
renowned for its scalability in both computing and storage, has emerged as a vital stan-
dard for big data processing, particularly within internet companies and the scientific
community. Over time, a robust ecosystem has evolved around it, encompassing tools
tailored for parallel, in-memory, and stream processing, SQL and NoSQL engines, as well
as machine learning resources. The paper addresses critical inquiries related to the potential
use of Hadoop in the automotive industry, such as: Which applications and datasets lend
themselves well to Hadoop utilization? How can a diverse spectrum of frameworks and
tools be effectively managed within a multi-tenant Hadoop cluster? What is the integration
strategy with existing relational data management systems? How can enterprise-level
security prerequisites be met? Lastly, what performance benchmarks can be established for
these tools in real-world automotive applications? Although it analyzed the potential use
of Hadoop services, the paper did not propose a complete (and custom) software solution
that addresses the big data challenges of the automotive sector.

A study conducted by Dinov [26] in 2016 covers the challenges and opportunities
in the sections of big healthcare data modeling and interpreting (therefore applying to
the healthcare and public health CI sector). Effectively managing, processing, and com-
prehending extensive healthcare data poses significant challenges in terms of cost and
complexity. This is why Dinov’s research aims to delineate the numerous challenges and
opportunities associated with big healthcare data, as well as the modeling techniques and
software methodologies that facilitate the amalgamation of complex healthcare data, ad-
vanced analytical tools, and distributed scientific computing. Utilizing examples involving
imaging, genetic information, and healthcare data, the author illustrates the processing of
heterogeneous datasets through the utilization of distributed cloud services, automated
and semi-automated classification methods, and open-science protocols. Despite notable
advancements, the author highlights the need for continuous development of innovative
technologies, in order to enhance, scale, and optimize the management and processing
of vast, intricate, and diverse datasets. He finds that a multifaceted approach involving
proprietary, open-source, and community-driven developments will be essential in fa-
cilitating widespread, dependable, sustainable, and efficient data-driven discovery and
analytics. Since the paper does not propose a new framework, BigDaM could address the
aforementioned needs, as further analyzed in Dinov’s research.

A publication by Bhat et al. [27] showcases the challenges of optimal agriculture and
food supply data management (which is part of the food and agriculture CI sector) us-
ing blockchain technologies, and then proceeds to propose an architecture for a future
framework implementation. More specifically, the study introduces an architecture that
addresses concerns related to storage and scalability optimization, interoperability, security,
privacy of personal data, and storage constraints inherent in existing single-chain agricul-
ture supply chain systems. Furthermore, it explores the classification of security threats
associated with IoT infrastructure and potential blockchain-based defense mechanisms. It
then concludes by discussing the key features of the proposed supply chain architecture,
followed by a summary and considerations for future work. There exists a consensus
that blockchain technology has the potential to enhance transparency within agriculture-
food supply chains (agri-food SCs). Present-day consumers increasingly demand food
production processes that are safe, sustainable, and equitable. Consequently, businesses
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are turning to blockchains and the Internet of Things (IoT) to fulfill these expectations. In
pursuit of heightened responsiveness within agri-food SCs, novel paradigms have emerged
that fuse blockchain with various industry technologies, including blockchain, big data, In-
ternet of Things (IoT), radio frequency identification (RFID), and near-field communication
(NFC), among others. It is vital to sift through the hype surrounding these technologies
and assess their limitations, which could hinder their adoption, implementation, and scala-
bility within agri-food supply chains. Although the publication contains vital information
regarding the potential implementation of a framework that manages big agri-food data, it
does not present a final adopted solution.

Last but not least, a recent study conducted by Donta et al. [28] focuses on the ap-
plications of distributed computing continuum systems (DCCS) to big data. Distributed
computing continuum systems (DCCS) leverage a multitude of computing devices for
processing data generated by edge devices like the Internet of Things and sensor nodes. As
a “CI-sector-specific” study, it explores the challenges of diverse data (in terms of formats
and attributes) collected by DCCS by drawing parallels to the realm of big data, allowing
the research team to harness the benefits of advanced big data analytics tools. They also
outline several existing tools suitable for monitoring and summarize their key charac-
teristics. In addition, the team proposes a comprehensive governance and sustainable
architecture for DCCS, aiming to minimize system downtime while optimizing resource
utilization. It consists of three stages: First, it analyzes system data to acquire knowledge.
Second, it leverages this knowledge to monitor and predict future conditions. Third, it
takes proactive actions to autonomously resolve issues or alert administrators. In order to
illustrate the monitoring and prediction of system performance, the team also provides an
example employing Bayesian network structure learning with a small dataset. The proposal
is interesting, but it does not cover the issue of data harmonization and interoperability,
similar to some publications presented above.

In light of such extensive initiatives undertaken within the European Union (mainly
through Horizon 2020 programs) and other research teams around the world, there arises a
pressing demand for the development of a novel framework that centers on the proficient
handling and management of big data within various critical infrastructures and the
maritime industry as a use case scenario. This demand highlights a concerted drive toward
creating advanced management platforms tailored to the intricate dynamics of CI sectors,
such as maritime and port environments. The implementation of a comprehensive big
data management framework holds immense potential to vastly improve the data cycle in
critical infrastructure sectors, such as the pivotal domain of ports. By harnessing the power
of advanced data handling and analysis, the proposed framework can stand as a linchpin
for enhancing the efficiency, resilience, and strategic decision-making within CI operations.

For example, the framework’s ability to process large volumes of data, extracted from
various facets of port activities, empowers stakeholders with actionable insights into traffic
patterns, inventory levels, equipment maintenance needs, and more. As ports operate as
crucial hubs in global trade, this data-driven approach also translates to improved collab-
oration with shipping companies, regulatory bodies, and other stakeholders, elevating
overall industry standards and reinforcing the broader resilience of critical infrastructure
networks. In essence, a well-designed big data management framework becomes a corner-
stone for fortifying the operational fabric of CI sectors and driving them towards a future
of heightened efficiency, innovation, and enduring competitiveness.

4. Business Model and Services

Let us imagine the following scenario: On the day of their travel, passengers will
utilize a mobile application that provides real-time information about the most optimal
route to reach their local airport (one of the CIs main sectors) and catch their scheduled
flight. By implementing this framework, the passenger flow can be orchestrated in an
efficient manner, ensuring smooth boarding experiences. To make this scenario a reality,
the system relies on both historical and real-time data available in the mobile application,
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as well as web services. This data-driven service can benefit various external stakeholders,
some of whom might not have any prior affiliation with the airlines’ community. In Figure 2
above, some of these stakeholders are listed alongside the potential benefits they can receive
from such data-driven services.

Figure 2. Potential beneficiaries by the data generated in ports, the transportation sector of CIs [10].

It is essential to understand that the dynamic business models will create value both
for data providers and the data/service users. Figure 3 depicts the offerings of the services
described in the scenario above through a Pains vs. Gains business model canvas from
the data seller and the data user perspective. As already mentioned, several external
stakeholders might be beneficiaries of such data-driven services. Some of them are without
any previous relation with the shipping ports community.

Figure 3. Value proposition (Gains vs. Pains) for data sellers and users.

Five brief examples of stakeholder/benefit pairs are as follows:

• The data consumer category may be interested in data and also have the ability to
provide data. Cargo, transport, and logistics companies are highly interested in people’s
and trucks’ mobility information. A road traffic optimization will lead to more efficient
routing of cargo transferring and lead to a revenue increase. Such a category of data
consumers may benefit not only by using data and services, but also benefit by offering
their data in terms of transferring routes, container volumes, etc. This will result in
even optimized traffic conditions. This is one case where the data consumer can be
considered also as a data producer.

• The research community and academia are in many cases the birthplace of new innova-
tive services and algorithms. Therefore, their interest in using large volumes of data
that are accurate, secured, and up to date, for them to train their algorithms and create
AI-based services, positions them in a significant data consumer category. The services
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that may be produced by using the scenario’s available datasets could be offered as a
service to a data-driven platform. This is also a case where the data consumer can be
also considered as a data producer.

• Universities is a category that can be combined with the research communities in
terms of data available for research, obtained by the aforementioned scenario. These
institutions can benefit from the use of the data and increase/improve their research
exposure and additionally offer data in terms of data streams of their online courses in
the aviation industry, logistics, etc. Once again, this is a case where the data consumer
can be considered also as a data producer.

• Startups and SMEs are considered among the highly developed innovators. They
develop services by creating and using algorithms based on data availability. The
number of startups and SMEs that are related to the aviation industry has rapidly
increased over the last few years; therefore, the need to feed these companies with
datasets will not only increase the revenue of the data providers but also create new
innovative services that will be based on these datasets. Moreover, startups and
SMEs are in pursuit of new markets to make an entrance and try to sell their prod-
ucts/services. Once more, this is a case where the data consumer can be considered
also as a data producer.

• Public Authorities in any form are always aiming to improve the services offered to
the citizens and also improve their quality of file. In order to achieve this, they need
information given by available data. In almost every subcategory of public authorities,
the information that is most needed is the mobility of citizens, in order to have a better
view of the region and therefore set proper policies. More specifically, they need data
and analytics to define policies for the cases of overtourism, increase visitors and
maximize their experience, improve services and facilities/public transportation, etc.

However, one vital issue that should be analyzed in the future, is how the framework
would provide the aforementioned benefits to the stakeholders. Since BigDaM will handle
and manage the data generated by various critical infrastructure sectors, it could play
the role of the data provider to the stakeholders. However, additional expansion to the
framework should take place, for a sophisticated User Interface to be implemented, through
which the stakeholders will have the ability to request subsets of CI-oriented data.

5. Data Model and Interoperability

Interoperability is the ability to share data and services among different computer
systems and depends on the ability of the involved systems to understand the structure
and meaning of the data that they receive and present the data that they send in a way
that can be interpreted by others. Semantic interoperability is based on the definition of an
unambiguous way to interpret the data that is being exchanged among different computer
systems. This can be achieved through the use of a common data model, which provides a
vocabulary for a domain where the concepts are defined without any ambiguity and can
be related to each other or organized according to different criteria. Hence, the definition
of a common vocabulary provides a shared understanding of the domain of interest [29].
Another key element for interoperability is the provision of a standardized interface for
accessing the data.

5.1. Data Modeling Methodology

However, in the case of CIs, enabling interoperability is not a trivial task because
the different organizations in the CI sectors do not follow a common standard. Instead,
they usually have their own vocabularies, which may have a poor definition of semantics
(or no explicit semantic formulation at all). For this reason, the proper definition of a
common vocabulary for CIs, following the appropriate guidelines and best practices, has
been necessary to enable interoperability. Moreover, the actual needs of the market must
be taken into account during the definition of such a common data model in order to be
able to implement solutions that are valuable for the different stakeholders. The aim is that
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each message exchanged via the applications involved in the CIs follows the common data
model. This way, the process of understanding the received data is simplified because there
is no need to know the details of the underlying information system of each data provider.

The first step in the definition of the common data model was the identification and
analysis of the different data sources as well as the existing components of the digital
infrastructure of the CIs that had to be integrated with the proposed solution in order to
identify the key concepts needed in the data model definition. This analysis considered the
meaning and format of the data, as well as the storage and data management mechanisms.
From this analysis, the main concepts of the vocabulary were identified and classified as
possible classes, attributes, or relationships. The results of this analysis were then combined
into a global high-level view of the data model. In addition, the identified classes were
arranged into a set of domains and subjects.

Next, the existing ontologies and vocabularies related to the identified domains were
studied in order to determine which definitions could be reused in the common data model.
More concretely, the main ontologies and vocabularies that were analyzed are the following:
Fiware Smart Data Models [30], IDSA Information Model [31], United Nations Centre
for Trade Facilitation and Electronic Business (UN/CEFACT) model [32], Blockchain in
Transport Alliance (BiTA) [33], DCSA Interface for track and trace (DCSA) [34], IPSO Smart
Objects (OMA SpecWorks) [35] and Smart Applications REFerence (SAREF) ontology [36].
From those, the most relevant one is Fiware Smart Data Models because components of
the Fiware ecosystem [37] have been selected as part of the platform. Whenever possible,
concepts from the analyzed vocabularies were reused. The concepts from the identified
vocabulary that were not found in the standard ontologies and vocabularies were defined
based on the global high-level definition of the common data model following the Fiware
Smart Data Models guidelines and taking into account the requirements of the different
use cases. The last step was the definition of the detailed specifications of the common data
model. These specifications follow the guidelines of the Smart Data Models initiative.

Regarding the Smart Data Models initiative, it is led by the Fiware Foundation in
collaboration with other organizations and aims to offer an agile standardization mecha-
nism that is both open and capable of accommodating real-world scenarios. This initiative
provides a set of open definitions that are compatible with schema.org and several existing
domain-oriented standards and real use cases. These definitions are provided as JSON
schemas and JSON-LD context documents compatible with Fiware NGSI v2 and NGSI-LD
APIs. The standard NGSI-LD [38], which is an evolution of NGSI v2 to support linked data,
was defined by the European Telecommunications Standards Institute (ETSI) [39]. NGSI de-
fines an information model and an interface for sharing context information, while the use
of linked data enables the automatic association of the data with an ontology. In this way,
the initiative aims to facilitate the development of interoperable smart solutions in different
application domains through the provision of harmonized data formats and semantics.

5.2. Enabling Data Interoperability via the Adoption of Common Data Models

Making use of the previously described methodology, a common data model is created
to accurately describe the reality of the elements and effectively address real-life use cases
within CI domains. As a practical example, within the context of the European Research
Project DataPorts [11], a data model for smart ports was defined to cover specific data
modeling requirements in ports.

The data model definition process was initiated by taking into consideration the
needs of two prominent European seaports (Valencia and Thessaloniki) along with two
global use cases related to those ports, which involved smart containers and port event
notifications. The data model was focused on different port domain verticals, such as
cargo, customs, geofencing, land transport, mobility, port management, sea transport, or
tracking. These verticals are included in a set of pilot scenarios focused on tracking transport
operations, port authority data sharing, port analytics services, or vessel notifications. The
data model includes mappings to relevant standard vocabularies of the considered ports,
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thus promoting seamless interoperability with other solutions. From an operative point
of view, the common data model is hosted in a Github repository [40], following the
specifications of Fiware Smart Data Models. The concepts of the common data model
have been grouped under a set of subjects inside the smart ports domain. Each subject
contains the corresponding NGSI-LD context document, which describes how the data is
interpreted according to the data model, as well as other shared resources and information,
and provides access to the different entity types that it contains. The representation of the
entity types is described using JSON Schema. In addition, the specifications of each entity
type and the corresponding examples in NGSI v2 and NGSI-LD, as well as in plain JSON
and JSON-LD, are provided. Thus, the data model is fully compatible with the Fiware
ecosystem and the Smart Data Models initiative.

The adoption of the Smart Data Models principles initiative plays a crucial role in
enhancing data sharing and interoperability approaches while also providing a straightfor-
ward mechanism to define the data structure of the port domain. By adopting this common
data model, the reuse and utilization of data in cognitive port applications is made possible
while also facilitating the reusability of these applications. This approach ensures efficient
data handling and empowers the port industry with enhanced data-driven solutions. In
addition, from the perspective of cataloging and discovery, the publication of data sources
is facilitated by referencing their specifications, and it enables the verification of a data
source’s compliance through the data-sharing ecosystem’s standards. By embracing the
common data model, stakeholders within the port domain can leverage the full potential
of their data, unlocking valuable insights and opportunities for innovation. Specifically, the
inclusion of the data model in specific scenarios of the ports demonstrates the effectiveness
of this interoperability approach in enhancing the overall performance and effectiveness of
port operations, fostering a more interconnected and cognitive port ecosystem.

Once published, the data model is public and can be updated with the needs identified
by other ports or maritime actors that want to adopt it, making it possible to update the
original specifications of the data model to improve it and foster its adoption by the whole
community or work on an independent branch to cover the specific needs of a local scenario.
This agile standardization is achieved through a series of agreements among the parties
involved in the creation and use of the common data model.

5.3. Interoperability Layer

The Interoperability layer enables semantic interoperability between the different
data providers and data consumers through the definition of a unified semantic model
and interface to access the data. In addition to the common data model, the necessary
mechanisms and enablers to provide access to the data from the existing data sources
were implemented. These mechanisms are based on open-source components of the
Fiware ecosystem.

This innovative Interoperability layer offers a comprehensive framework encom-
passing mechanisms, data models, and interfaces to streamline the common access and
management of various data sources within critical infrastructures. Notably, its Inter-
operability layer stands out by unifying disparate data through standardized interfaces,
while its adaptive standardized data model effectively homogenizes intricate information
into domain-specific concepts. This approach greatly simplifies data integration, fostering
better understanding and accessibility across different trending technologies, including
cognitive services, blockchain, data governance, or data spaces. Moreover, the solution’s
modular and scalable design is geared towards users’ specific requirements, offering the
flexibility to expand with value-added tools and adapt to changing needs. Additionally,
it substantially reduces the effort required for application development. The platform’s
commitment to semantic interoperability further enhances its appeal, providing a pathway
for seamless communication among critical infrastructures such as port platforms, systems,
and applications. Lastly, the incorporation of a common data model, in the case of ports
for European seaports, signifies a significant stride towards enabling harmonious data
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exchange and collaboration across applications and services in the context of a critical
infrastructure complex ecosystem and its operations.

Firstly, due to the heterogeneous nature of the data sources, a set of agents was devel-
oped to access the data from the different sources and convert it into NGSI format following
the common data model described in the previous section. When certain conditions are
met, the agent retrieves the data from its corresponding data source, translates it, and sends
it to the other components of the platform. As a result, the data sent to the analytics services
built on top of the proposed solution and other data consumers that have the proper access
permissions follow the same format and semantic model regardless of the particular aspects
of the data source. Since the agents are tailored for each specific data source, the agents
were implemented making use of a Python framework for agent development named
pyngsi [41] in order to facilitate this task. Two types of agents were defined, namely, the
publish/subscribe agents, which integrate near real-time data in the platform, and the
on-demand agents, which make the historical datasets available for the Data Processing
and Virtualization layer.

The publish/subscribe agents send the translated data to the Orion Context Broker [42]
(Figure 4), which is the main component of a “Powered by Fiware” platform. Orion provides
a common NGSI API to access the current values of the data from the different data sources.
In the proposed solution, Orion manages the different data flows for near real-time data,
enabling access to the data via push and pull mechanisms. Another key function of Orion in
the platform is the management of the metadata definitions of the different data sources and
agents (Figure 5) to make them available for the Data Processing and Virtualization layer.
In particular, the data source metadata contains a machine-readable semantic description
of the data provided by that data source and links it to the corresponding definitions in
the common data model. The provision of these metadata definitions enables a shared
meaning of the data and eases its use by the different components of the platform as well
as the services built on top of it. Moreover, the use of metadata enables the creation of a
data catalog, which in turn can be utilized as a base to define several functionalities such as
data discovery, resource management, and access control.

Since Orion keeps only the last values of the data, a different mechanism was imple-
mented to provide access to the historical datasets through the on-demand agents. Due
to the volume of translated data that the agents of this type send to the platform, Fiware
Cygnus [43] was integrated as part of the solution to help manage the historical data.
Cygnus is a connector based on Apache Flume [44] that facilitates data persistence in a
variety of third-party storage systems. The on-demand agents send batches of translated
historical data to Cygnus, which reassembles the datasets and sends them to the selected
backend to make them available for the Data Processing and Virtualization layer. This is
also the final step that completes BigDaM’s flow, which can be seen in Figure 6 below:

Figure 4. Publish/subscribe NGSI agent [10].



Computers 2023, 12, 218 14 of 34

Figure 5. Metadata management in the Interoperability layer.

Figure 6. BigDaM’s complete flow, as data make their way from Data Access, to Semantic Interoper-
ability components, and finally enter the Data Processing and Virtualization layer, before being ready
for potential recipients.

6. Data Processing and Virtualization

Once the data have been translated and standardized/harmonized following the data
model outlined in the section above, the subsequent task involves offering these data as
a service. This enables developers to construct cognitive, data-driven applications. To
facilitate this process, a data processing and virtualization middleware is essential. It acts as
an intermediary layer, bridging the gap between CI data providers and consumers, ensuring
smooth and efficient interaction. This is where the Data Processing and Virtualization layer
comes to play.
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Data virtualization represents a data integration method that offers information access
through a virtualized service layer, without taking account of the data sources’ physical
locations. By doing so, it enables applications to retrieve data from various heterogeneous
sources via a single endpoint, creating a unified and encapsulated view of the information
for querying purposes. This approach also allows data transformation and processing
to ensure the data are prepared for consumption. One of the main challenges faced in
data virtualization is effectively managing different types of storage systems, such as
key-value, document, or relational databases, all requiring integration. Moreover, data-
intensive applications relying on virtualized data sources demand specific quality of service
guarantees, including performance and availability, from the system. The Data Processing
and Virtualization layer tackles these challenges and contributes to the platform’s data
interoperability. Its primary focus lies in meeting each CI’s data quality requirements.
Essentially, the layer is responsible for appropriately preparing data inputs from diverse
sources within a generic given project’s architecture, maintaining metadata from all feeds,
and making the “cleaned” and processed datasets available to potential clients. The primary
source of load for the layer is persistent data streams, encompassing data that has already
been collected and stored. The architecture and complete flow of the Data Processing and
Virtualization layer can be seen in Figure 7 below:

Figure 7. Architectural view of the Data Processing and Virtualization layer, with its three subcomponents.

In regard to the data processing tools and technologies of the layer, Apache Spark [45]
is the chosen framework due to its ability to support multiple programming languages,
including Java, Scala, Python, and R. It boasts extensive documentation and has a vast
community of users, making it a popular choice. Furthermore, Spark has the capability
to produce advanced analytical results. Although other frameworks have their unique
advantages and challenges, Spark stands out for its versatility. In addition, Spark demon-
strates superior scalability and overall efficient runtimes [46]. The Data Processing and
Virtualization layer comprises three primary subcomponents that collaborate and commu-
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nicate to achieve its goals. These are the Pre-Processing and Filtering Tool, the Virtual Data
Repository, and the Virtual Data Container.

6.1. Pre-Processing and Filtering Tool

Starting with the Pre-Processing and Filtering Tool, it serves as a subcomponent
responsible for pre-processing datasets obtained from the Data Model and Interoperability
layer. Given its generic nature, the tool (and the Data Processing and Virtualization layer
in general) can accept various types of data and efficiently handle them. Upon receiving
the incoming dataset in its entirety, the tool generates a dataframe, essentially forming a
table that contains all the collected data. To ensure data consistency, the Pre-Processing
and Filtering Tool analyzes the dataset’s metadata to determine the appropriate column
types for each attribute. If necessary, it performs data type corrections, a crucial step since
subsequent applications heavily rely on the dataset’s column integrity. Following this,
the subcomponent proceeds with the cleaning and filtering phase, applying the following
standard pre-processing techniques to the dataset:

• Elimination of white spaces from all cells containing string-type data.
• Conversion of empty cells and instances with ‘NULL’ string values to ‘nan’ (not a

number) values across all cells.
• Removal of records or rows from the dataset that lack datetime values or contain

incorrect ones.
• Conversion of correct datetime values to the UTC format for consistency and stan-

dardization purposes.

Before finalizing the process, the Pre-Processing and Filtering Tool undertakes the
task of generating a correlation matrix that assesses the relationships between the columns
within each dataset. This newly derived correlation data is then stored alongside the
existing cleaned dataset within the Virtual Data Repository (which is described later on),
where it can be analyzed at a later stage. Additionally, the subcomponent conducts outlier
detection on numerical columns, resulting in the creation of supplementary columns that
indicate whether a corresponding cell is identified as an outlier. For each numerical column
that is subject to outlier detection, a new column is generated with “yes” or “no” values,
signifying whether the corresponding cell is considered an outlier or not. The detection
method employed involves utilizing “three standard deviations from the mean” as a
threshold or cut-off radius. However, this method can be customized and adjusted to cater
to the specific needs of the users or data recipients. It is worth noting that the primary
codebase of the Pre-Processing and Filtering Tool is written in the Python programming
language, as it is a Python Spark (PySpark) job.

In conclusion, the Pre-Processing and Filtering Tool accomplishes comprehensive
pre-processing, cleaning, and filtering of each incoming dataset. During the pre-processing
phase, the dataset is entirely collected and converted into a format compatible with Python
code, ensuring a suitable column-row (tabular) structure. The cleaning process involves
identifying and addressing “dirty” values, which encompass NULLs, empty fields, outliers,
and incorrect entries. Subsequently, the dataset is thoroughly filtered to eliminate all
identified “dirty” values, either through replacement or removal, along with their respective
rows in the dataset/dataframe.

6.2. Virtual Data Repository

Moving to the second subcomponent of the Data Processing and Virtualization layer,
the Virtual Data Repository (VDR) serves as the temporary storage for all pre-processed,
cleaned, and filtered datasets received from the Pre-Processing and Filtering Tool. Once
a dataset has undergone all necessary functions, it is stored in the VDR alongside its
columns’ correlation matrix. To ensure efficiency standards within the layer, VDR utilizes
MongoDB [47], which has been modified and configured to suit the layer’s specific re-
quirements. MongoDB was chosen for its popularity as a document store. Additionally,
MongoDB’s auto-scaling and sharding capabilities, along with the flexibility it offers for
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custom configurations, align well with Data Processing and Virtualization’s needs. Given
that the layer’s core functionality revolves around data virtualization, the seamless inte-
gration of MongoDB with Kubernetes [48], a container management tool, is crucial. VDR
is situated within a Kubernetes cluster, leveraging Kubernetes’ optimal load balancing,
replication, scaling, and scheduling techniques.

The selection of MongoDB was a relatively easy one. Opting for a document-based
NoSQL database appears to be the most optimal decision for implementing temporary data
storage (VDR’s nature) within the Data Processing and Virtualization layer, aligning with
the data’s inherent characteristics that necessitate handling. Indeed, this database variant
proves to be well-suited for semi-structured data lacking a rigid schema while adhering
to specific formatting rules like XML, JSON, and BSON. Conversely, a relational database
would demand a comprehensive understanding of incoming dataset structures beforehand,
thereby restricting the ability to accommodate datasets with diverse schemas. Given that
the data used for testing are formatted in JSON, MongoDB (document-based storage) was
selected due to its exceptional performance, adaptability, and scalability. When compared
to key-value NoSQL databases, document-based options facilitate the support of various
entity types and intricate queries, a vital feature expected from the layer.

The outcome is a modified MongoDB system, comprising multiple replicas to enhance
its resilience and immunity against system failures. The level of robustness is contingent
upon critical factors, such as the number of replicas and their distribution within the clus-
ter. By employing more than one replica, VDR can effectively withstand the event of a
MongoDB replica failure. In such cases, the remaining replicas ensure uninterrupted func-
tionality of VDR, safeguarding all data and eliminating the risk of data loss or temporary
unavailability. All Mongo Replicas are considered as a unified database. The Kubernetes
platform plays a crucial role in this setup by performing load balancing and efficiently
distributing data in a manner it deems most suitable. Consequently, from the perspective
of the end user, the exact location (e.g., node or replica) where the queried response data
are stored remains concealed, ensuring a seamless user experience. VDR’s implementation
has been extensively analyzed by a publication in 2022 [49].

6.3. Virtual Data Container

The third and final subcomponent of the Data Processing and Virtualization layer is
named the Virtual Data Container (VDC) and plays a crucial role in facilitating communica-
tion with data recipients, enabling them to access the data stored in VDR. The VDC serves
as a versatile and generic subcomponent, responsible for further processing and filtering
the data based on specific rules set by data consumers using HTTP POST requests. The
filtering rules serve a dual purpose. First, they allow the datasets to be filtered, ensuring
that only the relevant data of interest (to a particular user) is served, essentially creating
a specific data pond tailored to their needs. Second, they are employed to identify and
eliminate erroneous inputs, such as extreme outliers (e.g., outdoor temperatures at minus
100 degrees Celsius), which are likely due to sensor malfunctions. When a data consumer
submits a POST request at VDC, they can define not only the filtering rules but also the
desired format in which they want to receive the data, allowing for customizable data
transformation. Additionally, VDC takes on the responsibility of providing useful metadata
for each dataset stored in VDR. This metadata includes information on the dataset’s size,
the number of rows and variables it contains, the timestamp of its last update, and more.
The metadata are made accessible through a RESTful API, facilitating easy retrieval and
utilization by data recipients. The information flow of the Virtual Data Container can be
seen in Figure 8 below:
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Figure 8. The information flow of the Virtual Data Container [10].

Concerning the foundation of VDC, Apache NiFi [50] stands as the preferred selection,
serving as the platform to construct data flows, allowing the Data Processing and Virtualiza-
tion layer to effectively present the cleaned and processed data to data consumers. The flow
responsible for implementing the VDC Rules System (which handles data processing and
filtering based on user-defined rules) is also introduced to the user through NiFi. The actual
processing, filtering, and transformation of the data are executed by Spark. Regarding the
selection of Apache NiFi as the best solution for the task, various elements have been taken
into account before making the decision. However, the three main tools examined were
Apache Flume [44], Kafka [51], and NiFi, based on their great performance, capacity for
horizontal scalability, and incorporation of a plug-in framework that permits the expansion
of functionalities through custom elements. The final choice revolved primarily around
the components Apache Flume and Apache NiFi. On one hand, Flume is configured
using configuration files, while on the other hand, NiFi provides a graphical interface for
configuring and monitoring procedures. The ease of having a UI made NiFi the final choice,
given the fact that it already was an efficient and scalable software tool.

As for the VDC’s rule structure, it is designed to be straightforward, consisting of
three key elements for each rule: a “subject column ”, an “operator”, and the “object”. The
expected format of the rules list is a JSON array, comprising rules represented as JSON
objects, each containing these specific string values. The VDC interprets and implements
the rules from this list onto the requested dataset.The architecture of the incoming rules
JSON file is as follows:

• A JSON object, which includes:

– A string field denoting the dataset’s name, and another one for the dataset’s ID.
– A JSON array containing the rules as individual JSON objects.

• Each JSON object (rule) in the array contains:

– A string field for its name.
– Another JSON object representing the rule itself, comprising the “subject_column”,

“operator”, and “object” fields.
– If the “operator” is a disjunction (using the “or” expression), the “object” field

should be a JSON array, containing two or more objects, each with single string
“operator” and “object” fields.

By adhering to this structure, the VDC can effectively parse and apply the defined
rules to the dataset, enabling efficient data filtering and transformation as per the data
consumer’s requirements.
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Figure 9 indicates the list of accepted operators that are available for use by the
rules’ authors, including data scientists, application developers, and end-users. Any rule
object that contains unknown operators is discarded during the processing. Moreover, the
rules system is founded on two fundamental principles, which are designed to help users
comprehend the nature of the rules:

1. The primary objective of a rule is to apply filters to one subject (column) at a time and
not to combine multiple subjects (columns). If a rule involves more than one column
as subjects, it might be seen as more of a “pre-processing” step rather than a direct
“filtering” action. Additionally, modifying the content of specific rows/values or
removing rows with specific value types falls under a lower-level operation, compared
to what the rules’ system suggests.

2. The Data Processing and Virtualization layer, being a generic framework, is intended
to be applicable to various datasets. Therefore, creating rules that exceed the standard
“subject-operator-object” architecture would contradict the layer’s generic nature.
Implementing basic pre-processing steps for specific datasets is relatively simple and
can be achieved in just a few lines of code. However, such specific pre-processing
steps may not be suitable for other datasets, given the layer’s flexibility to handle
diverse data types. Consequently, data scientists would have to resort to conditional
solutions like using “if the incoming dataset is X, then apply these selected lines of
code”. While this may be an easy solution, it compromises the fundamental generic
nature of the Data Processing and Virtualization layer.

Figure 9. Accepted operators by VDC’s Rules System.

7. Performance Evaluation and Results

First and foremost, the complete BigDaM framework has been tested in a cluster
consisting of two virtual machines. Both virtual machines are in VMWare infrastructure on
a VxRAIL cluster. The cluster consists of eight physical hosts (four in a primary computer
room and four in a secondary computer room, in an active-active configuration), and is
managed by vSphere version 7.0.3. The first virtual machine has 4 CPUs, 16 GB of RAM,
and a 100 GB hard disk. It runs Ubuntu Linux 18.04. The second virtual machine also has
4 CPUs, 16 GB of RAM, and an 80 GB hard disk. It runs Ubuntu Linux 20.04. Since BigDaM
is designed as a modular framework, evaluation and results will be shown for both the
Interoperability and the Data Processing and Virtualization layers.

7.1. Interoperability

Starting with the Interoperability layer, as a middleware component, it assumes a
crucial role in facilitating seamless interactions with the other components of a CI. Its main
objective is to establish efficient and effective communication among all internal elements.
This focus on achieving smooth information exchange becomes instrumental in preventing
any potential bottlenecks that could otherwise impede the overall system’s performance.

The performance of the Interoperability layer was tested using Autocannon. For testing
purposes, the solution took advantage of 8 CPU cores, 30 GB RAM, and an 80 GB SSD hard
drive. The tests ran 10 simultaneous connections for 10 s, with a total of 4000 requests.
Table 1 shows the use of hardware resources during the load test compared with the
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baseline. The statistics of the requests per second and the bytes per second transmitted
during the load test are reported in Table 2, while the latency statistics are shown in Table 3.

Table 1. Use of hardware resources.

CPU Usage % Mem. Usage Mem. Usage %

Baseline 0.15 79.78 MB 0.27
Load test 14.28 85.41 MB 0.28

Table 2. Throughput statistics.

1% 2.5% 50% 97.5% Mean Std. dev. Min

Requests/s 336 336 360 406 366.2 21.28 336
Data/s 8.94 MB 9.84 MB 9.58 MB 10.8 MB 9.74 MB 565 kB 8.93 MB

Table 3. Latency statistics.

2.5% 50% 97.5% 99% Mean Std. dev. Max

Latency (ms) 4 26 51 56 26.74 9.46 86

Following the evaluation of the system’s performance in a deployment with moderate
hardware specifications, it was determined that the expected performance requirements
were met. Moreover, the component exhibits flexibility to theoretically be deployed on
various platforms, including PC, server, cloud infrastructure, or Raspberry Pi, while still
maintaining the desired level of performance to effectively manage the different data flows
expected in a real scenario. The layer has not been tested on all the aforementioned systems,
but it could be part of a future implementation.

7.2. Data Processing and Virtualization

As for the Data Processing and Virtualization layer, it has been meticulously designed
to facilitate the completion of the entire flow within a relatively short time window, con-
tingent upon the volume of incoming datasets. The framework has been tested in the
aforementioned architecture. The datasets used for evaluation are three: First, a small
tabular dataset with approximately 31,200 documents was selected, aiming to emphasize
the layer’s efficiency by showcasing its swift processing and storage capabilities. However,
this dataset does not fall under the category of “big data”. For that reason, a second dataset
was selected, with a total volume of 64.1 million JSON objects, and a total size of 55.4 GBs.
The dataset is called “urn-ngsi-ld-ITI-Customs” and contains information on every item
that passed through the customs of the port of Valencia, during given periods of time. In a
few words, any given JSON object inside the dataset provides information for a specific
item that made its way through the customs of the port. Each JSON object has the following
format, as seen in Figure 10 below:
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Figure 10. A JSON object that contains information for a specific item from the port’s customs. The
full dataset contains 64.1 million JSON objects similar to that one.

In order to better evaluate the performance of the layer, tests will be conducted on
both the complete Customs dataset and also three parts of it. The first part contains objects
only from November of 2022 and has a size of 1.4 GB. The second part contains 6 million
objects, with a size of 5.2 GB. The third part has exactly 11 million objects, with a size of
9.5 GB. In the end, the Data Processing and Virtualization layer gets tested with the full
Customs dataset, with 64.1 million objects and 55.4 GB of size. The information provided
for all four datasets can be seen in the screenshots below:
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Additionally, for the Data Abstraction and Virtualization layer to be tested in an addi-
tional CI-sector-specific dataset, telecommunications company OTE group [52] provided
three datasets, each covering an annual duration from 2019 to 2021, regarding the cellular
network’s user mobility in the area of Thessaloniki, Greece. As a result, BigDaM is tested
in ports (CI transportation sector) and telecommunication providers (CI communications
sector). All three datasets have been subjects of extensive anonymization techniques per-
formed by OTE’s data engineers. Each document/JSON object in the datasets contains
information regarding a specific movement of a network user from one network cell to
another. The amount of incoming/outgoing text messages and phone calls of the user
are provided, as well as additional information, such as the potential holiday of the given
timestamp or the current cell’s distinct users (in that particular timestamp). A random
document/JSON object can be seen in Figure 11.

Each of the three datasets is named “urn-ngsi-ld-OTE-MobilityData-XXXX”, where
the Xs are replaced by the corresponding year (2019, 2020, and 2021). The first dataset, that
of 2019, contains 6.9 million documents and has a size of 2.8 GB. The second dataset of 2020,
contains 10.1 million documents and takes 4.1 GB of disk space. As for the third dataset
of 2021, it contains 5.7 million documents with 2.4 GB of size. However, a new (fourth)
dataset has been created, by fusing all the aforementioned three. This dataset is used for
performance evaluation purposes, in order to test BigDaM with an even larger set. The
newly fused dataset contains 22.8 million documents and takes 9.2 GB of disk space. The
information provided for each of the four datasets is evident through the screenshots below,
beneath Figure 11.

Figure 11. A JSON object that contains information for a random-anonymized-OTE cellular network
user in the area of Thessaloniki, Greece.



Computers 2023, 12, 218 23 of 34

The testing process began with a small indicative dataset of 31,200 documents. The
computing resources used by the layer and the obtained results are accessible through the
layer’s Apache Spark Cluster WebUI, since the layer operates within an Apache Spark
Cluster environment. Figure 12 provides an illustration of the Spark driver’s ID, times-
tamp, and the resources utilized by the driver during the execution of the Pre-Processing
and Filtering Tool, the layer’s initial subcomponent responsible for processing, filtering,
cleaning, and storing the dataset.

Figure 12. Screenshot from Data Processing and Virtualization layer’s Apache Spark Cluster WebUI.

As depicted in Figure 12, the driver with ID “driver-20230301132908-0011” was em-
ployed to load the Pre-Processing and Filtering Tool and execute the processing, filtering,
cleaning, and storing of the dataset. The driver is triggered automatically, by an API
call ready to be made by each CI’s software engineers, thus facilitating a seamless and
continuous flow. Each subcomponent or software tool triggers the subsequent steps in the
process. For this specific task, our Spark cluster driver utilized 6 CPU cores and 5 GB of
RAM to execute the tool. The duration of the entire process can be observed in Figure 13,
indicated within the driver’s logs.

The title of the log file confirms that we are examining the relevant driver’s information.
Toward the end of the log, there is a record indicating the total time taken by the Pre-
Processing and Filtering Tool to process, filter, clean, and store the designated dataset.
The entire process was completed in 0.76 min, which roughly translates to 45 s. This
short period of time is noteworthy, considering the series of tasks the tool executes on the
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dataset. As a result, the dataset is now stored securely and cleaned within the Virtual Data
Repository, making it readily available for retrieval by any potential data recipient.

Figure 13. Screenshot from Spark cluster driver’s logs.

Moving on to the Customs datasets, the first testing took part on the smaller subset
that contains data from November of 2022.

Same as before, the Spark cluster’s WebUI can assist in the process of monitoring the
layer’s operation. As seen in Figure 14, a driver with ID “driver-20230901183325-0000”
was generated by the system in order to load the Pre-Processing and Filtering Tool and
execute the processing, filtering, cleaning, and storing of the subset. According to Figure 15,
the Pre-Processing and Filtering Tool managed to complete the whole process, along with
storing the subset in the Virtual Data Repository, in 2.1 min. Given the size of the dataset
(1.4 GB and 1.4 million objects), it seems that the layer’s subcomponent did a good job in
efficiently processing, cleaning, and storing it.

Figure 14. Screenshot from Apache Spark Cluster WebUI, for the November 2022 subset.

Figure 15. Screenshot from “driver-20230901183325-0000” Spark cluster driver’s logs, for the Novem-
ber 2022 subset.
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Next comes the 6 million subset (of the complete 64 million Customs dataset), which
is again monitored through the Spark cluster WebUI. The Pre-Processing and Filtering
Tool has to apply all the aforementioned tasks to a set with a size of 5.4 GB, as stated
earlier. The Spark driver running the job is named “driver-20230901184317-0001”, as seen
in Figure 16 below:

Figure 16. Screenshot from Apache Spark Cluster WebUI, for the subset containing 6 million objects.

In the end, it took the driver (and therefore the Pre-Processing and Filtering Tool)
5.24 min to complete the whole process and eventually store the subset to the Virtual
Data Repository (Figure 17). Similar to the test of November 2022’s subset, the framework
finishes the job in a considerably low amount of time.

Figure 17. Screenshot from “driver-20230901184317-0001” Spark cluster driver’s logs, for the 6 million
subset.

Before the complete Customs dataset comes the final subset of it, containing 11 million
JSON objects and having a size of 9.5 GB. The driver generated by Spark in order to run the
Pre-Processing and Filtering Tool is named “driver-20230901185350-0002” (Figure 18). It
should complete the process in a short period of time, provided that it functions properly,
and the system does not experience any bottlenecks or drops in the performance.

As seen in the Spark driver’s logs in Figure 19, the Pre-Processing and Filtering Tool
managed to apply all the aforementioned tasks in the subset and finally store it in about 10
and a half minutes. It is becoming evident that the framework’s time needed to complete
the job follows a linear growth, in relation to the size and volume of the input.
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Figure 18. Screenshot from Apache Spark Cluster WebUI, for the subset containing 11 million objects.

Figure 19. Screenshot from “driver-20230901185350-0002” Spark cluster driver’s logs, for the 11 mil-
lion subset.

The Data Processing and Virtualization layer’s following test was with the complete
Customs dataset. A large JSON file containing 64.1 million objects, with a 55.4 GB size.
When triggered by the aforementioned API call, Spark initiates the process with the genera-
tion of a driver, named “driver-20230901191216-0003” (Figure 20). The WebUI confirms
that the process is now ongoing.

Figure 20. Screenshot from Apache Spark Cluster WebUI, for the complete Customs dataset.

As always, the layer’s Pre-Processing and Filtering Tool will have to process, filter,
clean, and finally store the dataset in the Virtual Data Repository. The progress, along with
the final completion time, can be seen through the driver’s logs (Figure 21):
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Figure 21. Screenshot from “driver-20230901191216-0003” Spark cluster driver’s logs, for the com-
plete subset.

The Pre-Processing and Filtering Tool managed to complete the whole job in under
one hour. It took 58.48 min to effectively receive, process, and then store the Customs
dataset in VDR. Once again, it seems almost certain that completion time grows linearly,
in relation to the input. Next, the layer was tested with the OTE Group Mobility data of
2019–2021 in the area of Thessaloniki, Greece. The first dataset, that of 2019, comes first. As
seen in Figure 22, the driver “driver-20231004114021-0000” carries the task of running the
Pre-Processing and Filtering Tool to the dataset:

Figure 22. Screenshot from Apache Spark Cluster WebUI, for the Mobility dataset of 2019, with
6.9 million objects.

The layer completes the processing, filtering, cleaning, and storing of the dataset in
about 3.7 min, as seen in the driver’s logs (Figure 23). This means that 2.8 GB and 6.9 million
documents were parsed, edited and saved in under 4 min, which is a small amount of time,
given the series of tasks involved in the process.

Then, the layer is being tested with the Mobility dataset of 2020. The driver responsible
for the completion of the whole process is named “driver-20231004114951-0001”. As always,
the driver is triggered by an API call, known to the OTE Engineers who wish to initiate
BigDaM. Figure 24 shows the Spark cluster WebUI’s state:

From the driver’s logs (Figure 25), it can be seen that the 2020 Mobility dataset,
containing 10.1 million documents and having a size of 4.1 GB, was properly pre-processed,
filtered, cleaned, and stored in 5.3 min, which can be described as a very reasonable
amount of time. BigDaM’s efficiency seems to be independent of the nature of each dataset.
However, it is worth noting this applies to tabular datasets, since this is the type and form
several critical infrastructure sectors generate their data on.
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Figure 23. Screenshot from “driver-20231004114021-0000” Spark cluster driver’s logs, regarding the
Mobility 2019 dataset.

Figure 24. The Apache Spark Cluster WebUI, showing the driver “driver-20231004114951-0001” in
running state, for the Mobility dataset of 2020.

Figure 25. Screenshot from the logs of driver “driver-20231004114951-0001”, for the Mobility
2020 dataset.

Moving on to the Mobility dataset of 2021, this is the smallest of the Mobility ones,
since it contains 5.7 million documents and takes 2.4 GB of disk space (as stated earlier).
The driver responsible for the set’s appliance to the Pre-Processing and Filtering Tool is
named “driver-20231004115659-0002”, as seen in Figure 26 below:
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Figure 26. Screenshot from the Apache Spark Cluster WebUI, where the driver “driver-
20231004115659-0002” is shown active, for the Mobility dataset of 2021.

The process is completed in about 3 and a half minutes, once again highlighting
BigDaM’s efficiency (Figure 27). For the Mobility datasets, testing took part in chronological
order, rather than ascending sizing order (similar to the Customs datasets before). This is
because the datasets were tested in the same order they were received from OTE Group.

Figure 27. Screenshot from the logs of driver “driver-20231004115659-0002”, which handled the
Mobility 2021 dataset.

Last but not least, the Data Abstraction and Virtualization layer was tested on the
custom fused Mobility dataset, which included all the previous three. As a kind reminder, it
includes 22.8 million documents and takes 9.2 GB of disk space. The driver that applied the
Pre-Processing and Filtering Tool to our dataset is named “driver-20231004120403-0003”,
as seen in Figure 28 below:

Figure 28. Screenshot from the Apache Spark Cluster WebUI, where the driver “driver-
20231004120403-0003” is evidently active, for the custom Mobility dataset.
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Based on the driver’s logs in Figure 29, the whole process was completed in under
11 min (10.78 to be exact). The result further highlights BigDaM’s efficient operation and
points that it can be an optimal framework, regardless of the CI dataset source.

Figure 29. Screenshot from the driver’s “driver-20231004120403-0003”, as it completed the process
for the custom fused dataset.

At this point, the performance evaluation phase is over. It is now evident that, throughout
the testing period, the completion time grows linearly, in relation to the input. This can be
seen in Figures 30–32, where the results are presented in three scatter plots. The first plot
presents the time taken (in minutes) for each of the ITI Customs and OTE Mobility datasets
(in different lines), in relation to their sizes (in GB). The final Customs dataset of 55.4 GB is not
included in this plot. The second plot includes all the same tests but in one plot line, whilst the
third and final plot also includes the final Customs dataset. All three plots can be seen below:

Figure 30. First scatter plot with the tests of ITI Customs and OTE Mobility datasets in different plot lines.

Figure 31. Second scatter plot with all tests in the same plot line.
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Figure 32. Third scatter plot which includes the final ITI Customs dataset.

The linear growth of completion time, related to the input can be confirmed. More
specifically, it seems that with every minute that passes, about 1 GB of data are being
processed, filtered, cleaned, and stored. As the size in GB increases, completion time
(in minutes) increases linearly. This was also the “acceptance threshold” that was set as
the main criteria for a successful implementation. If the framework was able to operate
at a “1 Gigabyte per 1 min” completion speed, then it would meet the research team’s
expectations, which came to be true. In addition, it should also be noted that the Data
Processing and Virtualization layer did not experience any performance drops, nor did it
fail to complete a task/test. Regardless of the input’s size, it kept being operational. It is
also important to mention that each Spark driver used only 5 GB of RAM and 6 CPU cores
from the system, highlighting the proposed architecture’s efficiency.

8. Conclusions

The unique characteristics of critical infrastructures highlight the necessity for a mid-
dleware that formulates data in a manner conducive to accurate analysis. Additionally,
services should be refactored in advance to achieve the desired interoperability between
interconnected components. The BigDaM proposal adopts a data-centric approach by
design, offering a solution where SMEs, telecom operators, data providers, service con-
tent creators, transportation authorities, and other CI representatives can collaborate and
coexist within a harmonious data-sharing environment. This achievement stands as the
primary objective for frameworks aspiring to establish and populate an ecosystem capable
of attracting companies, startups, and individual developers.

This paper’s proposal, BigDaM, is designed to address the critical challenges of data
quality, harmonization, and efficiency that critical infrastructures face in the modern digital
era. Leveraging two software layers that cooperate with each other and exploit each other’s
capabilities (Data Interoperability and Data Processing and Virtualization layer), BigDaM
employs sophisticated data cleansing techniques to ensure data accuracy, completeness, and
consistency across various sources. Performance results in both the Data Interoperability
and the Data Processing and Virtualization layers, tested in the port of Valencia (using real
Customs datasets) and the metropolitan area of Thessaloniki (using anonymized cellular
network Mobility data), prove that both models, and therefore BigDaM as a whole, can be
evaluated in additional real-world scenarios. Since this current journal is a continuation of
an existing work [10], as mentioned at the beginning of Section 2, it is safe to assume that it
has achieved its goal of further expanding and exploring BigDaM’s potential as a big data
management framework for critical infrastructures.

However, additional research must be conducted in order to further improve BigDaM
and also prove that it can be used in more than one critical infrastructure sector (that is,
apart from the ports). The proof-of-concept testing using telecommunications data from
the OTE group further justifies this sentence. In addition, BigDaM should be tested in the
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industry section as well. Future work and implementations should focus on the long-term
feasibility of incorporating frameworks like BigDaM in CI sectors and evaluate the overall
impact. The European Union (through its research projects) should continue to focus on Big-
Data-driven applications, but should also aim for more product-ready solutions. The same
goes for any research team around the globe that wishes to explore the field of CI-generated
big data management. Future frameworks should be thoroughly tested in several critical
infrastructure sectors in order to make sure that such architectures are indeed capable of
handling large amounts of data coming from different sources and varying (maybe greatly)
in terms of structure, type, and format. The main current limitation of BigDaM is that it has
not been structured for sets other than tabular data. This has to be further examined in the
future, modifying the architecture and allowing for an opening in data types and formats,
as mentioned before. Last but not least, BigDaM has shown that big data management
frameworks can prove to be very useful, but only in a specific CI sector. This article’s
authoring team shall continue to conduct research on big data management and analysis
solutions by participating in the European Union’s “Datamite” research project [53]. It will
seek to improve BigDaM and further test it in other CI infrastructures.

By seamlessly integrating disparate data sets, BigDaM enables a level of harmonization,
empowering data specialists and other potential recipients to derive meaningful insights
and make informed decisions with a holistic view of their operations. Moreover, the
framework’s streamlined data processing pipelines and distributed computing architecture
foster improved efficiency, enabling quality in data processing and analytics extraction.
With BigDaM, CIs can explore the full potential of their data resources, unlocking new
avenues for growth, innovation, and success in today’s data-driven world.
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