
Citation: Mohamed, K.S. Batch

Gradient Learning Algorithm with

Smoothing L1 Regularization for

Feedforward Neural Networks.

Computers 2023, 12, 4. https://

doi.org/10.3390/computers12010004

Academic Editor: Paolo Bellavista

Received: 6 December 2022

Revised: 13 December 2022

Accepted: 16 December 2022

Published: 23 December 2022

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Batch Gradient Learning Algorithm with Smoothing L1
Regularization for Feedforward Neural Networks
Khidir Shaib Mohamed 1,2

1 Department of Mathematics, College of Sciences and Arts in Uglat Asugour, Qassim University,
Buraydah 51452, Saudi Arabia; k.idris@qu.edu.sa or khshm7@yahoo.com

2 Department of Mathematics and Computer, College of Science, Dalanj University, Dilling P.O. Box 14, Sudan

Abstract: Regularization techniques are critical in the development of machine learning models.
Complex models, such as neural networks, are particularly prone to overfitting and to performing
poorly on the training data. L1 regularization is the most extreme way to enforce sparsity, but,
regrettably, it does not result in an NP-hard problem due to the non-differentiability of the 1-norm.
However, the L1 regularization term achieved convergence speed and efficiency optimization solution
through a proximal method. In this paper, we propose a batch gradient learning algorithm with
smoothing L1 regularization (BGSL1) for learning and pruning a feedforward neural network with
hidden nodes. To achieve our study purpose, we propose a smoothing (differentiable) function in
order to address the non-differentiability of L1 regularization at the origin, make the convergence
speed faster, improve the network structure ability, and build stronger mapping. Under this condition,
the strong and weak convergence theorems are provided. We used N-dimensional parity problems
and function approximation problems in our experiments. Preliminary findings indicate that the
BGSL1 has convergence faster and good generalization abilities when compared with BGL1/2, BGL1,
BGL2, and BGSL1/2. As a result, we demonstrate that the error function decreases monotonically and
that the norm of the gradient of the error function approaches zero, thereby validating the theoretical
finding and the supremacy of the suggested technique.

Keywords: convergence; batch gradient learning algorithm; feedforward neural networks; smoothing
L1 regularization

1. Introduction

Artificial neural networks (ANNs) are computational networks based on biological
neural networks. These networks form the basis of the human brain’s structure. Similar
to neurons in a human brain, ANNs also have neurons that are interconnected to one
another through a variety of layers. These neurons are known as nodes. The human brain
is made up of 86 billion nerve cells known as neurons. They are linked to 1000 s of other
cells by axons. Dendrites recognize stimulation from the external environment as well as
inputs from sensory organs. These inputs generate electric impulses that travel quickly
through the neural network. A neuron can then forward the message to another neuron
to address the issue or not forward it at all. ANNs are made up of multiple nodes that
mimic biological neurons in the human brain (See Figure 1). A feedforward neural network
(FFNN) is the first and simplest type of ANN, and now it contributes significantly and
directly to our daily lives in a variety of fields, such as education tools, health conditions,
economics, sports, and chemical engineering [1–5].

The most widely used learning strategy in FFNNs is the backpropagation method [6].
There are two methods for training the weights: batch and online [7,8]. In the batch method,
the weights are modified after each training pattern is presented to the network, whereas in
the online method, the error is accumulated during an epoch and the weights are modified
after the entire training set is presented.

Computers 2023, 12, 4. https://doi.org/10.3390/computers12010004 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers12010004
https://doi.org/10.3390/computers12010004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://doi.org/10.3390/computers12010004
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers12010004?type=check_update&version=3

Computers 2023, 12, 4 2 of 15

Computers 2023, 12, x FOR PEER REVIEW 2 of 16

(a) (b)

Figure 1. (a) The biological neural networks (b) The artificial neural network structure.

The most widely used learning strategy in FFNNs is the backpropagation method
[6]. There are two methods for training the weights: batch and online [7,8]. In the batch
method, the weights are modified after each training pattern is presented to the network,
whereas in the online method, the error is accumulated during an epoch and the weights
are modified after the entire training set is presented.

Overfitting in mathematical modeling is the creation of an analysis that is precisely
tailored to a specific set of data and, thus, may fail to fit additional data or predict future
findings accurately [9,10]. An overfitted model is one that includes more parameters than
can be justified by the data [11]. Several techniques, such as cross-validation [12], early
stopping [13], dropout [14], regularization [15], big data analysis [16], or Bayesian regu-
larization [17], are used to reduce the amount of overfitting.

Regularization methods are frequently used in the FFNN training procedure and
have been shown to be effective in improving generalization performance and decreasing
the magnitude of network weights [18–20]. A term proportional to the magnitude of the
weight vector is one of the simplest regularization penalty terms added to the standard
error function [21,22]. Many successful applications have used various regularization
terms, such as weight decay [23], weight elimination [24], elastic net regularization [25],
matrix regularization [26], and nuclear norm regularization [27].

Several regularization terms are made up of the weights, resulting in the following
new error function: 𝐸(𝑊) = 𝐸(𝑊) + 𝜆‖𝑊‖ (1)

where 𝐸(𝑤) is the standard error function depending on the weights w, λ is the regu-
larization parameter, and ‖∙ ‖ is the q-norm is given by

‖W‖ = (|w | + |w | + ⋯ + |w |)

where (0 ≤ q ≤ 2). The gradient descent algorithm is a popular method for solving this
type of problem (1). The graphics of the 𝐿 , 𝐿 / , 𝐿 , 𝐿 , elastic net, and 𝐿 regularizers
in Figure 2 show the sparsity. The sparsity solution, as shown in Figure 2, is the first point
at which the contours touch the constraint region, and this will coincide with a corner
corresponding to a zero coefficient. It is obvious that the 𝐿 regularization solution occurs
at a corner with a higher possibility, implying that it is sparser than the others. The goal
of network training is to find W∗ so that E(W) = min E(W). The weight vectors’ corre-
sponding iteration formula is

Figure 1. (a) The biological neural networks (b) The artificial neural network structure.

Overfitting in mathematical modeling is the creation of an analysis that is precisely
tailored to a specific set of data and, thus, may fail to fit additional data or predict future
findings accurately [9,10]. An overfitted model is one that includes more parameters
than can be justified by the data [11]. Several techniques, such as cross-validation [12],
early stopping [13], dropout [14], regularization [15], big data analysis [16], or Bayesian
regularization [17], are used to reduce the amount of overfitting.

Regularization methods are frequently used in the FFNN training procedure and
have been shown to be effective in improving generalization performance and decreasing
the magnitude of network weights [18–20]. A term proportional to the magnitude of the
weight vector is one of the simplest regularization penalty terms added to the standard
error function [21,22]. Many successful applications have used various regularization terms,
such as weight decay [23], weight elimination [24], elastic net regularization [25], matrix
regularization [26], and nuclear norm regularization [27].

Several regularization terms are made up of the weights, resulting in the following
new error function:

E(W) = Ě(W) + λ‖W‖q
q (1)

where Ě(w) is the standard error function depending on the weights w, λ is the regulariza-
tion parameter, and ‖·‖q is the q-norm is given by

‖W‖q =
(
|w1|q + |w2|q + · · ·+ |wN |q

) 1
q

where (0 ≤ q ≤ 2). The gradient descent algorithm is a popular method for solving this
type of problem (1). The graphics of the L0, L1/2, L1, L2, elastic net, and L∞ regularizers
in Figure 2 show the sparsity. The sparsity solution, as shown in Figure 2, is the first
point at which the contours touch the constraint region, and this will coincide with a
corner corresponding to a zero coefficient. It is obvious that the L1 regularization solution
occurs at a corner with a higher possibility, implying that it is sparser than the others.
The goal of network training is to find W∗ so that E(W) = minE(W). The weight vectors’
corresponding iteration formula is

Wnew = W − η
dE(W)

dW
(2)

L0 regularization has a wide range of applications in sparse optimization [28]. As the
L0 regularization technique is an NP-hard problem, optimization algorithms, such as the
gradient method, cannot be immediately applied [29]. To address this issue, ref. [30] pro-
poses smoothing L0 regularization with the gradient method for training FFNN. According
to the regularization concept, Lasso regression was proposed to obtain the sparse solu-
tion based on L1 regularization to reduce the complexity of the mathematical model [31].

Computers 2023, 12, 4 3 of 15

Lasso quickly evolved into a wide range of models due to its outstanding performance.
To achieve maximally sparse networks with minimal performance degradation, neural
networks with smoothed Lasso regularization were used [32]. Due to its oracle proper-
ties, sparsity, and unbiasedness, the L1/2 regularizer has been widely utilized in various
studies [33]. A novel method for forcing neural network weights to become sparser was
developed by applying L1/2 regularization to the error function [34]. L2 regularization
is one of the most common types of regularization since the 2-norm is differentiable and
learning can be advanced using a gradient method [35–38]; with L2 regularization, the
weights provided are bounded [37,38]. As a result, L2 regularization is useful for dealing
with overfitting problems.

Computers 2023, 12, x FOR PEER REVIEW 3 of 16

𝑊 = 𝑊 − 𝜂 𝑑𝐸(𝑊)𝑑𝑊 (2)

𝐿 regularization has a wide range of applications in sparse optimization [28]. As the 𝐿 regularization technique is an NP−hard problem, optimization algorithms, such as
the gradient method, cannot be immediately applied [29]. To address this issue, ref. [30]
proposes smoothing 𝐿 regularization with the gradient method for training FFNN. Ac-
cording to the regularization concept, Lasso regression was proposed to obtain the sparse
solution based on 𝐿1 regularization to reduce the complexity of the mathematical model
[31]. Lasso quickly evolved into a wide range of models due to its outstanding perfor-
mance. To achieve maximally sparse networks with minimal performance degradation,
neural networks with smoothed Lasso regularization were used [32]. Due to its oracle
properties, sparsity, and unbiasedness, the 𝐿1/2 regularizer has been widely utilized in
various studies [33]. A novel method for forcing neural network weights to become
sparser was developed by applying 𝐿1/2 regularization to the error function [34]. 𝐿2 reg-
ularization is one of the most common types of regularization since the 2−norm is differ-
entiable and learning can be advanced using a gradient method [35–38]; with 𝐿2 regular-
ization, the weights provided are bounded [37,38]. As a result, 𝐿2 regularization is useful
for dealing with overfitting problems.

(a) (b) (c)

(d) (e) (f)

Figure 2. The sparsity property of different regularization (a) 𝐿 regularization, (b) 𝐿 / regulari-
zation, (c) 𝐿 regularization, (d) 𝐿 regularization, (e) elastic net regularization, (f) 𝐿 regulariza-
tion.

The batch update rule, which modifies all weights in each estimation process, has
become the most prevalent. As a result, in this article, we concentrated on the gradient
method with a batch update rule and smoothing 𝐿1 regularization for FFNN. We first
show that if certain Propositions 1–3 are met, the error sequence will be uniformly monot-
onous, and the algorithm will be weakly convergent during training. Secondly, if there
are no interior points in the error function, the algorithm with weak convergence is
strongly convergent with the help of Proposition 4. Furthermore, numerical experiments

Figure 2. The sparsity property of different regularization (a) L0 regularization, (b) L1/2 regulariza-
tion, (c) L1 regularization, (d) L2 regularization, (e) elastic net regularization, (f) L∞ regularization.

The batch update rule, which modifies all weights in each estimation process, has
become the most prevalent. As a result, in this article, we concentrated on the gradient
method with a batch update rule and smoothing L1 regularization for FFNN. We first show
that if certain Propositions 1–3 are met, the error sequence will be uniformly monotonous,
and the algorithm will be weakly convergent during training. Secondly, if there are no
interior points in the error function, the algorithm with weak convergence is strongly con-
vergent with the help of Proposition 4. Furthermore, numerical experiments demonstrate
that our proposed algorithm eradicates oscillation and increases the computation learning
algorithm better than the standard L1/2 regularization, L1 regularization, L2 regularization,
and even the smoothing L1/2 regularization methods.

The following is the rest of this paper. Section 2 discusses FFNN, the batch gradient
method with L1 regularization (BGL1), and the batch gradient method with smoothing
L1 regularization (BGSL1). The materials and methods are given in Section 3. Section 4
displays some numerical simulation results that back up the claims made in Section 3.
Section 5 provides a brief conclusion. The proof of the convergence theorem is provided in
“Appendix A”.

Computers 2023, 12, 4 4 of 15

2. Network Structure and Learning Algorithm Methodology
2.1. Network Structure

A three-layer neural network based on error back-propagation is presented. Consider
a three-layer structures consisting of N input layers, M hidden layers and 1 output layer.
Given that g : R → R can be a transfer function for the hidden and output layers, this
is typically, but not necessarily, a sigmoid function. Let w0 = (w01, w02, . . . , w0M)T ∈ RM

be the weight vector between all the hidden layers and the output layer, and let denoted
wj =

(
wj1, wj2, . . . , wjN

)T ∈ RN be the weight vector between all the input layers and the
hidden layer j(j = 1, 2, . . . , M). To classify the offer, we write all the weight parameters in
a compact form, i.e., W =

(
wT

0 , wT
1 , . . . , wT

M
)
∈ RM+NM, and we have also given a matrix

V = (w1, w2, . . . , wM)T ∈MN×M. Furthermore, we define a vector function

F(x) = (f(x1), f(x2), . . . , f(xN))
T (3)

where x = (x1, x2, . . . , xN)
T ∈ RN . For any given input ξ ∈ RM the output of the hidden

neuron is F(V ξ), and the final output of the network is

y = f(w0·F(V ξ)) (4)

where w0·F(V ξ) represents the inner product between the vectors w0 and F(V ξ).

2.2. Modified Error Function with Smoothing L1 Regularization (BGSL1)

Given that the training set is
{

ξ l , Ol
}L

l=1
⊂ RN ×R, where Ol is the desired ideal

output for the input ξ l . The standard error function E(W) without regularization term
as following

Ě(W) =
1
2 ∑L

l=1

[
Ol − f

(
w0·F

(
Vξ l

))]2
= ∑L

l=1 fl

(
w0·F

(
Vξ l

))
(5)

where fl(t) := 1
2

[
Ol − fl(t)

]2
. Furthermore, the gradient of the error function is given by

Ěw0(W) = ∑L
l=1 f ′l

(
w0·F

(
Vξ l

))
F
(

Vξ l
)

(6)

Ěwj(W) = ∑L
l=1 f ′l

(
w0·F

(
Vξ l

))
w0l f ′l

(
wj·ξ l

)
ξ l (7)

The modified error function E(W) with L1 regularization is given by

E(W) = Ě(W) + λ ∑M
j=1

∣∣wj
∣∣ (8)

where |W | denoted the absolute value of the weights. The purpose of the network training
is to find W∗ such that

E (W∗) = minE (W) (9)

The gradient method is a popular solution for this type of problem. Since Equation (8)
involves the absolute value, this is a combinatorial optimization problem, and the gradient
method cannot be employed to immediately minimize such an optimization problem.
However, in order to estimate the absolute value of the weights, we recognize the use of
a continuous and differentiable function to replace L1 regularization by smoothing in (8).
The error function with smoothing L1 regularization can then be adapted by

E(W) = Ě(W) + λ ∑M
j=1 h

(
wj
)
, (10)

Computers 2023, 12, 4 5 of 15

where h(x) is any continuous and differentiable functions. Specifically, we use the following
piecewise polynomial function as:

h(t) =

|t | i f |t| ≥ m

− 1
8m3 t4 + 3

4m t2 + 3
8 m , i f | t| < m, (11)

where m is a suitable constant. Then the gradient of the error function is given by

EW(W) =
(

ET
w0
(W), ET

w1
(W) , ET

w2
(W), · · · , ET

wM
(W)

)T
(12)

The gradient of the error function in (10) with respect to wj is given by

Ewj(W) = Ěwj(W) + λh′
(
wj
)

(13)

The weights
{

Wk
}

updated iteratively starting from an initial value W0 by

Wk+1 = Wk + ∆Wk, k = 0, 1, 2, · · · , (14)

and

∆wk
j = −η

[
Ěwk

j
(W) + λh′

(
wk

j

)]
(15)

where η > 0 is learning rate, and λ is regularization parameter.

3. Materials and Methods

It will be necessary to prove the convergence theorem using the propositions below.

Proposition 1. | f (t)|, | f ′(t)|, | f ′′(t)| and |F(t)|, |F′(t)| are uniformly bounded for t ∈ R.

Proposition 2. ‖wk
0‖ (k = 0, 1, · · ·) is uniformly bounded.

Proposition 3. η and λ are chosen to satisfy: 0 < η < 1/(λA− C1), where

C1 = L(1 + C2)C3max{C2, C5}+ 1
2 L(1 + C2)C3 +

1
2 LC2

3C2
4C5,

C2 = max
{√

BC3, (C3C4)
2
}

,

C3 = max

{
sup
t∈R
| f (t)|, sup

t∈R
| f ′(t)|, sup

t∈R
| f ′′(t)|, sup

t∈R,1≤l≤L

∣∣ f ′l (t)∣∣, sup
t∈R,1≤l≤L

∣∣ f ′′l (t)∣∣
}

,

C4 = min
1≤l≤L

‖ξ l‖, C5 = sup
k∈N
‖wk

0‖.

(16)

Proposition 4. There exists a closed bounded region Θ such that
{

Wk
}
⊂ Θ, and set Θ0 =

{W ∈ Θ : Ew(W) = 0} contains only finite points.

Remark 1. Both the hidden layer and output layer have the same transfer function, is tansig(·). A
uniformly bounded weight distribution is shown in Propositions 1 and 2. Thus, Proposition 4 is
reasonable. The Equation (10) and Proposition 1, | fl(t)|,

∣∣ f ′′l (t)∣∣, ∣∣ f ′′l (t)∣∣ are uniformly bounded
for Proposition 3. Regarding Proposition 2, we would like to make the following observation.
This paper focuses mainly on simulation problems with f (t) being a sigmoid function satisfying
Proposition 1. Typically, simulation problems require outputs of 0 and 1, or −1 and 1. To control
the magnitude of the weights w0, one can change the desired output into 0 + α and 1 − α, or −1 + α
and 1 − α, respectively, where α > 0 is a small constant. Actually, a more important reason of doing

Computers 2023, 12, 4 6 of 15

so is to prevent the overtraining, cf. [39]. In the case of sigmoid functions, when f (t) is bounded,
the weights for the output layer are bounded.

Theorem 1. Let the weight
{

Wk
}

be generated by the iteration algorithm (14) for an arbitrary

initial value W0, the error function E(W) be defined by (10) and if propositions 1–3 are valid, then
we have

I. E
(

Wk+1
)
≤ E

(
Wk
)

, k = 0, 1, · · · ;

II. There exists E∗ ≥ 0 such that lim
k→∞

Ewj

(
Wk
)
= E∗.

III. lim
k→∞
‖∆Wk‖ = 0,

IV. Further, if proposition 4 is also valid, we have the following strong convergence
V. There exists a point W∗ ∈ Θ0 such that lim

k→∞
Wk = W∗.

Note: It is shown in conclusion (I) and (II) that the error function sequence
{

E
(

Wk
)}

is monotonic

and has a limit (II). According to conclusions (II) and (IV), E
(

Wk
)

and EW

(
Wk
)

are weakly

converging. The strong convergence of { Wk} is mentioned in Conclusion (V).

We used the following strategy as a neuron selection criterion by simply computing
the norm of the overall outgoing weights from the neuron number to ascertain whether
a neuron number in the hidden units will survive or be removed after training. There
is no standard threshold value in the literature for eliminating redundant weighted con-
nections and redundant neurons from the initially assumed structure of neural networks.
The sparsity of the learning algorithm was measured using the number of weights with
absolute values of ≤0.0099 and ≤0.01, respectively, according to ref. [40]. In this study,
we chose 0.00099 as a threshold value at random, which is less than the existing thresh-
olds in the literature. This procedure is repeated ten times. Algorithm 1 describes the
experiment procedure.

Algorithm 1 The learning algorithm

Input
Input the dimension M, the number N of the nodes, the number
maximum iteration number K, the learning rate η, the regularization

parameter λ, and the sample training set is
{

ξ l , Ol
}L

l=1
⊂ RN ×R.

Initialization
Initialize randomly the initial weight vectors
w0

0 = (w0
0,1, · · · , w0

0,M)
T ∈ RM and w0

j = (w0
j0, · · · , w0

jN)
T ∈ RN

j(j = 1, 2, . . . , M)

Training

For k = 1, 2, · · · , K do
Compute the error function Equation (10).
Compute the gradients Equation (15).
Update the weights w0

0 and w0
j (1 ≤ j ≤ M) by using Equation (14).

end

Output Output the final weight vectors wK
0 and wK

j (1 ≤ j ≤ M)

4. Experimental Results

The simulation results for evaluating the performance of the proposed BGSL1 algo-
rithm are presented in this section. We will compare BGSL1 performance to that of four
common regularization algorithms: the batch gradient method with L1/2 regularization
(BGL1/2), the batch gradient method with smoothing L1/2 regularization (BGSL1/2), the
batch gradient method with L1 regularization (BGL1), and the batch gradient method
with L2 regularization (BGL2). Numerical experiments on the N-dimensional parity and
function approximation problems support our theoretical conclusion.

Computers 2023, 12, 4 7 of 15

4.1. N-Dimensional Parity Problems

The N-dimensional parity problem is another popular task that generates a lot of
debate. If the input pattern contains an odd number of ones, the output criterion is one;
alternatively, the output necessity is zero. An N-M-1 architecture (N inputs, M hidden
nodes, and 1 output) is employed to overcome the N-bit parity problem. The well-known
XOR problem is simply a 2-bit parity problem [41]. Here, the 3-bit and 6-bit parity problems
are used as an example to test the performance of BGSL1. The network has three layers:
input layers, hidden layers, and an output unit.

Table 1 shows the parameter settings for the corresponding network, where LR and RP
are abbreviations for the learning rate and regularization parameter, respectively. Figures 3
and 4 show the performance results of BGL2, BGL1, BGL1/2, BGSL1/2, and BGSL1 for 3-bit
and 6-bit parity problems, respectively. As illustrated by Theorem 1, the error function
decreases monotonically in Figures 3a and 4a, and the norm of the gradients of the error
function approaches zero in Figures 3b and 4b. According to the comparison results, our
proposal demonstrated superior learning ability and faster convergence. This corresponds
to our theoretical analysis. Table 2 displays the average error and running time of ten
experiments, demonstrating that BGSL1 not only converges faster but also has better
generalization ability than others.

Table 1. The learning parameters for parity problems.

Problems Network Structure Weight Size Max Iteration LR RP

3-bit parity 3-6-1 [−0.5, 0.5] 2000 0.009 0.0003

6-bit parity 6-20-1 [−0.5, 0.5] 3000 0.006 0.003

Table 2. Numerical results for parity problems.

Problems Learning Algorithms Average Error Norm of Gradient Time (s)

3-bit parity BGL1/2 3.7979 × 10−7 0.0422 1.156248

BGL1 5.4060 × 10−7 7.1536 × 10−4 1.216248

BGL2 9.7820 × 10−7 8.7826 × 10−4 1.164721

BGSL1/2 1.7951 × 10−8 0.0011 1.155829

BGSL1 7.6653 × 10−9 7.9579 × 10−5 1.135742

6-bit parity BGL1/2 8.1281 × 10−5 1.1669 52.225856

BGL1 3.8917 × 10−5 0.0316 52.359129

BGL2 4.1744 × 10−5 0.0167 52.196552

BGSL1/2 4.8349 × 10−5 0.0088 52.210994

BGSL1 4.1656 × 10−6 0.0015 52.106554

Computers 2023, 12, 4 8 of 15

Computers 2023, 12, x FOR PEER REVIEW 7 of 16

4. Experimental Results
The simulation results for evaluating the performance of the proposed BGS𝐿1 algo-

rithm are presented in this section. We will compare BGS𝐿1 performance to that of four
common regularization algorithms: the batch gradient method with 𝐿1/2 regularization
(BG𝐿1/2), the batch gradient method with smoothing 𝐿1/2 regularization (BGS𝐿1/2), the
batch gradient method with 𝐿1 regularization (BG𝐿1), and the batch gradient method
with 𝐿2 regularization (BG𝐿2). Numerical experiments on the N−dimensional parity and
function approximation problems support our theoretical conclusion.

4.1. N−dimensional Parity Problems
The N−dimensional parity problem is another popular task that generates a lot of

debate. If the input pattern contains an odd number of ones, the output criterion is one;
alternatively, the output necessity is zero. An N−M−1 architecture (N inputs, M hidden
nodes, and 1 output) is employed to overcome the N−bit parity problem. The well-known
XOR problem is simply a 2−bit parity problem [41]. Here, the 3−bit and 6−bit parity prob-
lems are used as an example to test the performance of BGS𝐿1. The network has three
layers: input layers, hidden layers, and an output unit.

Table 1 shows the parameter settings for the corresponding network, where LR and
RP are abbreviations for the learning rate and regularization parameter, respectively. Fig-
ure 3 and Figure 4 show the performance results of BG𝐿2, BG𝐿1, BG𝐿1/2, BGS𝐿1/2, and
BGS𝐿1 for 3−bit and 6−bit parity problems, respectively. As illustrated by Theorem 1, the
error function decreases monotonically in Figures 3a and 4a, and the norm of the gradients
of the error function approaches zero in Figures 3b and 4b. According to the comparison
results, our proposal demonstrated superior learning ability and faster convergence. This
corresponds to our theoretical analysis. Table 2 displays the average error and running
time of ten experiments, demonstrating that BGS𝐿1 not only converges faster but also has
better generalization ability than others.

(a)

Computers 2023, 12, x FOR PEER REVIEW 8 of 16

.

(b)

Figure 3. The performance results of five different algorithms based on 3−bit parity problem: (a) The
curve of error function, (b) The curve of norm of gradient.

(a)

Figure 3. The performance results of five different algorithms based on 3-bit parity problem: (a) The
curve of error function, (b) The curve of norm of gradient.

Computers 2023, 12, 4 9 of 15

Computers 2023, 12, x FOR PEER REVIEW 8 of 16

.

(b)

Figure 3. The performance results of five different algorithms based on 3−bit parity problem: (a) The
curve of error function, (b) The curve of norm of gradient.

(a)

Computers 2023, 12, x FOR PEER REVIEW 9 of 16

(b)

Figure 4. The performance results of five different algorithms based on 6−bit parity problem: (a) The
curve of error function, (b) The curve of norm of gradient.

Table 1. The learning parameters for parity problems.

Problems Network Structure Weight Size Max Iteration LR RP
3−bit parity 3–6–1 [–0.5, 0.5] 2000 0.009 0.0003
6−bit parity 6–20–1 [–0.5, 0.5] 3000 0.006 0.003

Table 2. Numerical results for parity problems.

Problems Learning Algorithms Average Error Norm of Gradient Time (s)
3−bit parity BG𝐿1/2 3.7979 × 10−7 0.0422 1.156248

 BG𝐿1 5.4060 × 10−7 7.1536 × 10−4 1.216248
 BG𝐿2 9.7820 × 10−7 8.7826 × 10−4 1.164721
 BGS𝐿1/2 1.7951 × 10−8 0.0011 1.155829
 BGS𝐿1 7.6653 × 10−9 7.9579 × 10−5 1.135742

6−bit parity BG𝐿1/2 8.1281 × 10−5 1.1669 52.225856
 BG𝐿1 3.8917 × 10−5 0.0316 52.359129
 BG𝐿2 4.1744 × 10−5 0.0167 52.196552
 BGS𝐿1/2 4.8349 × 10−5 0.0088 52.210994
 BGS𝐿1 4.1656 × 10−6 0.0015 52.106554

4.2. Function Approximation Problem
A nonlinear function has been devised to compare the approximation capabilities of

the above algorithms: 𝐺(𝑥) = 12 𝑥 − 𝑠𝑖𝑛(𝑥) (17)

Figure 4. The performance results of five different algorithms based on 6-bit parity problem: (a) The
curve of error function, (b) The curve of norm of gradient.

4.2. Function Approximation Problem

A nonlinear function has been devised to compare the approximation capabilities of
the above algorithms:

G(x) =
1
2

x− sin(x) (17)

Computers 2023, 12, 4 10 of 15

where x ∈ [−4, 4] and chooses 101 training samples from an evenly spaced interval of
[−4, 4]. The initial weight of the network is typically generated at random within a given
interval; training begins with an initial point and gradually progresses to a minimum of
error along the slope of the error function, which is chosen stochastically in [−0.5, 0.5].
The training parameters are as follows: 0.02 and 0.0005 represent the learning rate (η) and
parameter regularization (λ), respectively. The stop criteria are set to 1000 training cycles.

The average error and norm of the gradient and running time of 10 experiments are
presented in Table 3. Through the results obtained from Figure 5a,b, respectively, we
see that BGSL1 has a better mapping capability than BGSL1/2, BGL1/2, BGL1 and BGL2,
with the error decreasing monotonically as learning proceeds and its gradient go to zero.
Table 3 shows the preliminary results are extremely encouraging and that the speedup and
generalization ability of BGSL1 is better than BGSL1/2, BGL1/2, BGL1 and BGL2.

Computers 2023, 12, x FOR PEER REVIEW 10 of 16

where x ∈ [−4, 4] and chooses 101 training samples from an evenly spaced interval of [–
4, 4]. The initial weight of the network is typically generated at random within a given
interval; training begins with an initial point and gradually progresses to a minimum of
error along the slope of the error function, which is chosen stochastically in [–0.5, 0.5]. The
training parameters are as follows: 0.02 and 0.0005 represent the learning rate (η) and pa-
rameter regularization (λ), respectively. The stop criteria are set to 1000 training cycles.

The average error and norm of the gradient and running time of 10 experiments are
presented in Table 3. Through the results obtained from Figure 5a and 5b, respectively,
we see that BGS𝐿1 has a better mapping capability than BGS𝐿1/2, BG𝐿1/2, BG𝐿1 and BG𝐿2,
with the error decreasing monotonically as learning proceeds and its gradient go to zero.
Table 3 shows the preliminary results are extremely encouraging and that the speedup
and generalization ability of BGS𝐿1 is better than BGS𝐿1/2, BG𝐿1/2, BG𝐿1 and BG𝐿2.

Table 3. Numerical results for function approximation problem.

Learning Algorithms Average Error Norm of Gradient Time (s)
BG𝐿1/2 0.0388 0.3533 4.415500
BG𝐿1 0.0389 0.3050 4.368372
BG𝐿2 0.0390 0.3087 4.368503

BGS𝐿1/2 0.0386 0.2999 4.349813
BGS𝐿1 0.0379 0.2919 4.320198

(a)

Computers 2023, 12, x FOR PEER REVIEW 11 of 16

(b)

Figure 5. he performance results of five different algorithms based on function approximate prob-
lem: (a) The curve of error function, (b) The curve of norm of gradient.

5. Discussion
Tables 2 and 3, respectively, show the performance comparison of the average error

and the average norms of gradients under our five methods over the 10 trials. Table 2
shows the results of N−dimensional parity problems using the same parameters, while
Table 3 shows the results of function approximation problems using the same parameters.

The comparison convincing in Tables 2 and 3 shows that the BGS𝐿 is more efficient
and has better sparsity–promoting properties than BG𝐿 / , BG𝐿 , BG𝐿 and even than the
BGS𝐿 / . In addition to that, Tables 2 and 3 show that our proposed algorithm is faster
than that of all numerical results. 𝐿 / regularization is sparser than the traditional 𝐿
regularization solution. Recently, in ref. [34], the BGS𝐿 / also shows that the sparsity is
better than that of BG𝐿 / . The results of ref. [33] show that the 𝐿 / regularization has
been demonstrated to have the following properties: unbiasedness, sparsity, and oracle
properties.

We obtained all three numerical results for five different methods using one hidden
layer of FFNNs. Our new method proposed a sparsification technique for FFNNs can be
extended to encompass any number of hidden layers.

6. Conclusions 𝐿 regularization is thought to be an excellent pruning method for neural networks. 𝐿 regularization, on the other hand, is also an NP−hard problem. In this paper, we pro-
pose BGS𝐿 , a batch gradient learning algorithm with smoothing 𝐿 regularization for
training and pruning feedforward neural networks, and we approximate the 𝐿 regular-
ization by smoothing function. We analyzed some weak and strong theoretical results un-
der this condition, and the computational results validated the theoretical findings. The
proposed algorithm has the potential to be extended to train neural networks. In the

Figure 5. The performance results of five different algorithms based on function approximate
problem: (a) The curve of error function, (b) The curve of norm of gradient.

Computers 2023, 12, 4 11 of 15

Table 3. Numerical results for function approximation problem.

Learning Algorithms Average Error Norm of Gradient Time (s)

BGL1/2 0.0388 0.3533 4.415500

BGL1 0.0389 0.3050 4.368372

BGL2 0.0390 0.3087 4.368503

BGSL1/2 0.0386 0.2999 4.349813

BGSL1 0.0379 0.2919 4.320198

5. Discussion

Tables 2 and 3, respectively, show the performance comparison of the average error
and the average norms of gradients under our five methods over the 10 trials. Table 2
shows the results of N-dimensional parity problems using the same parameters, while
Table 3 shows the results of function approximation problems using the same parameters.

The comparison convincing in Tables 2 and 3 shows that the BGSL1 is more efficient
and has better sparsity-promoting properties than BGL1/2, BGL1, BGL2 and even than the
BGSL1/2. In addition to that, Tables 2 and 3 show that our proposed algorithm is faster
than that of all numerical results. L1/2 regularization is sparser than the traditional L1
regularization solution. Recently, in ref. [34], the BGSL1/2 also shows that the sparsity
is better than that of BGL1/2. The results of ref. [33] show that the L1/2 regularization
has been demonstrated to have the following properties: unbiasedness, sparsity, and
oracle properties.

We obtained all three numerical results for five different methods using one hidden
layer of FFNNs. Our new method proposed a sparsification technique for FFNNs can be
extended to encompass any number of hidden layers.

6. Conclusions

L1 regularization is thought to be an excellent pruning method for neural networks.
L1 regularization, on the other hand, is also an NP-hard problem. In this paper, we propose
BGSL1, a batch gradient learning algorithm with smoothing L1 regularization for training
and pruning feedforward neural networks, and we approximate the L1 regularization
by smoothing function. We analyzed some weak and strong theoretical results under
this condition, and the computational results validated the theoretical findings. The pro-
posed algorithm has the potential to be extended to train neural networks. In the future,
we will look at the case of the online gradient learning algorithm with a smoothing L1
regularization term.

Funding: The researcher would like to thank the Deanship of Scientific Research, Qassim University
for funding the publication of this project.

Data Availability Statement: All data has been presented in this paper.

Acknowledgments: The tresearcher would like to thank the referees for their careful reading and
helpful comments.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

To prove the strong convergence, we will use the following result, which is basically
the same as Lemma 3 in [38]. So its proof is omitted.

Lemma A1. Let F : Θ ⊂ Rn → R be continuous for a bounded closed region Θ, and Θ0 =
{z ∈ Θ : F(z) = 0}. The projection of Θ0 on each coordinate axis does not contain any interior
point. Let the sequence

{
zk
}

satisfy:

Computers 2023, 12, 4 12 of 15

(a) lim
k→∞

F
(

zk
)
= 0;

(b) lim
k→∞
‖zk+1 − zk‖ = 0.

Then, there exists a unique z∗ ∈ Θ0 such that lim
k→∞

zk = z∗.

There are four statements in the proof of Theorem 1, each one is shown in (I)–(IV).
We use the following notations for convenience:

σk = ∑M
j=0 (∆wk

j)
2

(A1)

From error function (10), we can write

E
(

Wk+1
)
=

1
2 ∑L

l=1 fl

(
wk+1

0 ·F
(

Vk+1ξ l
))

+ λ ∑M
j=0 h(wk+1

j) (A2)

and
E
(

Wk
)
=

1
2 ∑L

l=1 fl

(
wk

0·F(Vkξ l)
)
+ λ ∑M

j=0 h(wk
j) (A3)

Proof to (I) of Theorem 1. Using the (A2), (A3), and Taylor expansion. We have

E
(

Wk+1
)
− E

(
Wk
)

= ∑L
l=1

[
fl

(
wk+1

0 ·F
(

Vk+1ξ l
))
− fl

(
wk

0·F
(

Vkξ l
))]

+λ ∑M
j=0[h(w

k+1
j)− h(wk

j)]

= ∑L
j=1 f ′l

(
wn

0 ·F
(

Vkξ l
))[

F
(

wn
0 ·
(

Vk+1ξ l
))
− F

(
wn

0 ·
(

Vkξ l
))]

+λ ∑M
j=0

[
h′(wk

j) +
1
2 h′′
(

tk,j

)
∆wk

j

]
·∆wk

j

+ 1
2 ∑L

l=1 f ′′l (sk,l)
[
wk+1

0 ·F
(

Vk+1ξ l
)
− wk

0·F
(

Vkξ l
)]2

= ∑J
l=1 f ′l

(
wk

0·F
(

Vkξ l
))(

F
(

Vkξ l
))

∆wk
0 + λh′

(
wk

0

)
·∆wk

0

+∑L
j=1 f ′l

(
wn

0 ·F
(

Vkξ l
))[

F
(

Vk+1ξ l
)
− F

(
Vkξ l

)]
·wk

0

+λ ∑M
j=1 h′(wk

j)·∆wk
j +

λ
2 h′′

(
tk,j

)
∑M

j=0 (∆wk
j)

2

+∑L
j=1 f ′l

(
wn

0 ·F
(

Vkξ l
))[

F
(

Vk+1ξ l
)
− F

(
Vkξ l

)]
·∆wk

0

+ 1
2 ∑L

l=1 f ′′l (sk,l)
[
wk+1

0 ·F
(

Vk+1ξ l
)
− wk

0·F
(

Vkξ l
)]2

≤ −
(

1
η −

λ
2 h′′

(
tk,j

))
∑M

j=0 (∆wk
j)

2

+ 1
2 ∑L

l=1 f ′′l (sk,l)
[
wk+1

0 ·F
(

Vk+1ξ l
)
− wk

0·F
(

Vkξ l
)]2

+∑L
l=1 f ′l

(
wk

0·F
(

Vkξ l
))[

F
(

Vk+1ξ l
)
− F

(
Vkξ l

)]
∆wn

0

+ 1
2 ∑M

j=1 ∑L
l=1 f ′l

(
wk

0·F
(

Vkξ l
))

wk
0j f ′′l

(
tk,j,l

)
(∆wk

j ·ξ l)
2

(A4)

where tk,l ∈ R is between wk+1
0 ·F

(
Vk+1ξ l

)
and wk

0·F
(

Vkξ l
)

and tk,j,l ∈ R is between

wk+1
j ·ξ l and wk

j ·ξ l . From (16), Proposition 1 and the Lagrange mean value theorem. We have

Computers 2023, 12, 4 13 of 15

‖F
(

Vk+1ξ l
)
− F

(
Vkξ l

)2
‖

=

∥∥∥∥∥∥∥∥∥

f
(

wk+1
1 ·ξ l

)
− f

(
wk

1·ξ l
)

...
f
(

wk+1
q ·ξ l

)
− f

(
wk

q·ξ l
)

∥∥∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥∥∥

f ′
(

t̃1,j,l

)(
wk+1

1 − wk
1

)
·ξ l

...
f ′
(

t̃i,j,l

)(
wk+1

q − wk
q

)
·ξ l

∥∥∥∥∥∥∥∥∥

2

≤ C2 ∑M
j=1 (∆wk

j)
2

(A5)

and
‖F(x)‖ ≤

√
B ∑

t∈R
| f (t)| ≤ C2, (A6)

where t̃k,j,l ∈ R (1 ≤ i ≤ B) is between wk+1
j ·ξ l and wk

j ·ξ l . According to Cauchy-Schwarz
inequality, Proposition 1, (16), (A5) and (A6). We have∣∣∣∣ 1

2 ∑L
l=1 f ′′l (tk,l)

(
wk+1

0 ·F
(

Vk+1ξ l
)
− wk

0·F
(

Vkξ l
))2

∣∣∣∣
≤ C2

2 ∑L
l=1

(
wk+1

0 ·F
(

Vk+1ξ l
)
− wk

0·F
(

Vkξ l
))2

≤ C2
2 ∑L

l=1 2
(

C2
2

(
∆wk

0

)
+ C2

5

(
F
(

Vk+1ξ l
)
− F

(
Vkξ l

)))2

≤ C6 ∑L
l=1

((
∆wk

0

)2
+ C2 ∑M

j=1 (∆wk
j)

2
)

≤ LC6(1 + C2)∑M
j=0

(
∆wk

j

)2

≤ C7 ∑M
j=0 (∆wk

j)
2
,

(A7)

where C6 = C2 max
{

C2
2 , C2

5
}

and C7 = LC6(1 + C2). In the same way, we have∣∣∣∑L
l=1 f ′l

(
wk

0·F
(

Vkξ l
))(

F
(

Vk+1ξ l
)
− F

(
Vkξ l

))
∆wk

0

∣∣∣
≤ C3

2 ∑L
l=1

((
∆wk

0

)2
+ C2 ∑M

j=1 (∆wk
j)

2
)

≤ 1
2 LC3(1 + C2)∑M

j=0 (∆wk
j)

2

≤ C8 ∑M
j=0 (∆wk

j)
2
,

(A8)

where C8 = 1
2 LC3(1 + C2). It follows from Propositions 1 and 2 that∣∣∣∣∣ 1

2

M
∑

j=1

J
∑

l=1
f ′l
(

wk
0·F
(

Vkξ l
))

wk
0j f ′′j

(
tk,j,l

)
(∆wk

j ·ξ l)
2
∣∣∣∣∣

≤ 1
2 LC2

3C2
4C5 ∑M

j=0 (∆wk
j)

2

≤ C9 ∑M
j=0 (∆wk

j)
2
,

(A9)

where C9 = 1
2 LC2

3C2
4C5.

Let C1 = C7 + C8 + C9.
A combination of (A4) to (A9), and from h(x) it easy to obtained h(t) ∈

[3
8 m,+∞

)
,

h′(t) ∈ [−1, 1], h′′ (t) ∈
[
0, 3

2m
]
, and A = 3/2ω. We have

E
(

Wk+1
)
− E

(
Wk
)
≤ −[1

η −
λ
2 h′
(

tk,j

)
]∑M

j=1 (∆wk
j)

2
+ C1 ∑M

j=1 (∆wk
j)

2

≤ −[1
η −

λ
2A− C1]∑M

j=1 (∆wk
j)

2 ≤ 0.
(A10)

Computers 2023, 12, 4 14 of 15

Conclusion (I) of Theorem 1 is proved if the Proposition 3 is valid. �

Proof to (II) of Theorem 1. Since the nonnegative sequence
{

E
(

Wk
)}

is monotone and
bounded below, there must be a limit value E∗ < 0 such that

lim
k→∞

E
(

Wk
)
= E∗.

So conclusion (II) is proved. �

Proof to (III) of Theorem 1. Proposition 1, (A10) and let µ > 0. We have

µ =
1
η
− λA− C1 (A11)

Thus, we can write

E
(

Wk+1
)
≤ E

(
Wk
)
− µρn ≤ · · · ≤ E

(
W0
)
− µ ∑n

q=0 ρn, (A12)

when E
(

Wk+1
)
> 0 for any k ≥ 0 and set k → ∞, then we have

∑∞
q=0 ρn ≤

1
µ

E
(

W0
)
< ∞.

This with (12), (14) and (A1). We have

lim
k→∞
‖∆Wk‖ = lim

k→∞
‖Ew

(
Wk
)
‖ = 0 (A13)

�

Proof to (IV) of Theorem 1. As a result, we can prove that the convergence is strong.
Noting Conclusions (IV), we take x = W and h(x) = Ez(x). This together with the
finiteness of Θ0 (cf. Proposition 4), (A13), and Lemma 1 leads directly to conclusion (IV).
This completes the proof. �

References
1. Deperlioglu, O.; Kose, U. An educational tool for artificial neural networks. Comput. Electr. Eng. 2011, 37, 392–402. [CrossRef]
2. Abu-Elanien, A.E.; Salama, M.M.A.; Ibrahim, M. Determination of transformer health condition using artificial neural networks.

In Proceedings of the 2011 International Symposium on Innovations in Intelligent Systems and Applications, Istanbul, Turkey,
15–18 June 2011; pp. 1–5.

3. Huang, W.; Lai, K.K.; Nakamori, Y.; Wang, S.; Yu, L. Neural networks in finance and economics forecasting. Int. J. Inf. Technol.
Decis. Mak. 2007, 6, 113–140. [CrossRef]

4. Papic, C.; Sanders, R.H.; Naemi, R.; Elipot, M.; Andersen, J. Improving data acquisition speed and accuracy in sport using neural
networks. J. Sport. Sci. 2021, 39, 513–522. [CrossRef]

5. Pirdashti, M.; Curteanu, S.; Kamangar, M.H.; Hassim, M.H.; Khatami, M.A. Artificial neural networks: Applications in chemical
engineering. Rev. Chem. Eng. 2013, 29, 205–239. [CrossRef]

6. Li, J.; Cheng, J.H.; Shi, J.Y.; Huang, F. Brief introduction of back propagation (BP) neural network algorithm and its improvement.
In Advances in Computer Science and Information Engineering; Springer: Berlin/Heidelberg, Germany, 2012; pp. 553–558.

7. Hoi, S.C.; Sahoo, D.; Lu, J.; Zhao, P. Online learning: A comprehensive survey. Neurocomputing 2021, 459, 249–289. [CrossRef]
8. Fukumizu, K. Effect of batch learning in multilayer neural networks. Gen 1998, 1, 1E-03.
9. Hawkins, D.M. The problem of overfitting. J. Chem. Inf. Comput. Sci. 2004, 44, 1–12. [CrossRef]
10. Dietterich, T. Overfitting and undercomputing in machine learning. ACM Comput. Surv. 1995, 27, 326–327. [CrossRef]
11. Everitt, B.S.; Skrondal, A. The Cambridge Dictionary of Statistics; Cambridge University Press: Cambridge, UK, 2010.
12. Moore, A.W. Cross-Validation for Detecting and Preventing Overfitting; School of Computer Science, Carnegie Mellon University:

Pittsburgh, PA, USA, 2001.
13. Yao, Y.; Rosasco, L.; Caponnetto, A. On early stopping in gradient descent learning. Constr. Approx. 2007, 26, 289–315. [CrossRef]

http://doi.org/10.1016/j.compeleceng.2011.03.010
http://doi.org/10.1142/S021962200700237X
http://doi.org/10.1080/02640414.2020.1832735
http://doi.org/10.1515/revce-2013-0013
http://doi.org/10.1016/j.neucom.2021.04.112
http://doi.org/10.1021/ci0342472
http://doi.org/10.1145/212094.212114
http://doi.org/10.1007/s00365-006-0663-2

Computers 2023, 12, 4 15 of 15

14. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

15. Santos, C.F.G.D.; Papa, J.P. Avoiding overfitting: A survey on regularization methods for convolutional neural networks. ACM
Comput. Surv. 2022, 54, 1–25. [CrossRef]

16. Waseem, M.; Lin, Z.; Yang, L. Data-driven load forecasting of air conditioners for demand response using levenberg–marquardt
algorithm-based ANN. Big Data Cogn. Comput. 2019, 3, 36. [CrossRef]

17. Waseem, M.; Lin, Z.; Liu, S.; Jinai, Z.; Rizwan, M.; Sajjad, I.A. Optimal BRA based electric demand prediction strategy considering
instance-based learning of the forecast factors. Int. Trans. Electr. Energy Syst. 2021, 31, e12967. [CrossRef]

18. Alemu, H.Z.; Wu, W.; Zhao, J. Feedforward neural networks with a hidden layer regularization method. Symmetry 2018, 10, 525.
[CrossRef]

19. Li, F.; Zurada, J.M.; Liu, Y.; Wu, W. Input layer regularization of multilayer feedforward neural networks. IEEE Access 2017,
5, 10979–10985. [CrossRef]

20. Mohamed, K.S.; Wu, W.; Liu, Y. A modified higher-order feed forward neural network with smoothing regularization. Neural
Netw. World 2017, 27, 577–592. [CrossRef]

21. Reed, R. Pruning algorithms-a survey. IEEE Trans. Neural Netw. 1993, 4, 740–747. [CrossRef]
22. Setiono, R. A penalty-function approach for pruning feedforward neural networks. Neural Comput. 1997, 9, 185–204. [CrossRef]

[PubMed]
23. Nakamura, K.; Hong, B.W. Adaptive weight decay for deep neural networks. IEEE Access 2019, 7, 118857–118865. [CrossRef]
24. Bosman, A.; Engelbrecht, A.; Helbig, M. Fitness landscape analysis of weight-elimination neural networks. Neural Process. Lett.

2018, 48, 353–373. [CrossRef]
25. Rosato, A.; Panella, M.; Andreotti, A.; Mohammed, O.A.; Araneo, R. Two-stage dynamic management in energy communities

using a decision system based on elastic net regularization. Appl. Energy 2021, 291, 116852. [CrossRef]
26. Pan, C.; Ye, X.; Zhou, J.; Sun, Z. Matrix regularization-based method for large-scale inverse problem of force identification. Mech.

Syst. Signal Process. 2020, 140, 106698. [CrossRef]
27. Liang, S.; Yin, M.; Huang, Y.; Dai, X.; Wang, Q. Nuclear norm regularized deep neural network for EEG-based emotion recognition.

Front. Psychol. 2022, 13, 924793. [CrossRef]
28. Candes, E.J.; Tao, T. Decoding by linear programming. IEEE Trans. Inf. Theory 2005, 51, 4203–4215. [CrossRef]
29. Wang, Y.; Liu, P.; Li, Z.; Sun, T.; Yang, C.; Zheng, Q. Data regularization using Gaussian beams decomposition and sparse norms.

J. Inverse Ill Posed Probl. 2013, 21, 1–23. [CrossRef]
30. Zhang, H.; Tang, Y. Online gradient method with smoothing `0 regularization for feedforward neural networks. Neurocomputing

2017, 224, 1–8. [CrossRef]
31. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol. 1996, 58, 267–288. [CrossRef]
32. Koneru, B.N.G.; Vasudevan, V. Sparse artificial neural networks using a novel smoothed LASSO penalization. IEEE Trans. Circuits

Syst. II Express Briefs 2019, 66, 848–852. [CrossRef]
33. Xu, Z.; Zhang, H.; Wang, Y.; Chang, X.; Liang, Y. L1/2 regularization. Sci. China Inf. Sci. 2010, 53, 1159–1169. [CrossRef]
34. Wu, W.; Fan, Q.; Zurada, J.M.; Wang, J.; Yang, D.; Liu, Y. Batch gradient method with smoothing L1/2 regularization for training

of feedforward neural networks. Neural Netw. 2014, 50, 72–78. [CrossRef] [PubMed]
35. Liu, Y.; Yang, D.; Zhang, C. Relaxed conditions for convergence analysis of online back-propagation algorithm with L2 regularizer

for Sigma-Pi-Sigma neural network. Neurocomputing 2018, 272, 163–169. [CrossRef]
36. Mohamed, K.S.; Liu, Y.; Wu, W.; Alemu, H.Z. Batch gradient method for training of Pi-Sigma neural network with penalty. Int. J.

Artif. Intell. Appl. IJAIA 2016, 7, 11–20. [CrossRef]
37. Zhang, H.; Wu, W.; Liu, F.; Yao, M. Boundedness and convergence of online gradient method with penalty for feedforward neural

networks. IEEE Trans. Neural Netw. 2009, 20, 1050–1054. [CrossRef]
38. Zhang, H.; Wu, W.; Yao, M. Boundedness and convergence of batch back-propagation algorithm with penalty for feedforward

neural networks. Neurocomputing 2012, 89, 141–146. [CrossRef]
39. Haykin, S. Neural Networks: A Comprehensive Foundation, 2nd ed.; Tsinghua University Press: Beijing, China; Prentice Hall:

Hoboken, NJ, USA, 2001.
40. Liu, Y.; Wu, W.; Fan, Q.; Yang, D.; Wang, J. A modified gradient learning algorithm with smoothing L1/2 regularization for

Takagi–Sugeno fuzzy models. Neurocomputing 2014, 138, 229–237. [CrossRef]
41. Iyoda, E.M.; Nobuhara, H.; Hirota, K. A solution for the n-bit parity problem using a single translated multiplicative neuron.

Neural Process. Lett. 2003, 18, 233–238. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1145/3510413
http://doi.org/10.3390/bdcc3030036
http://doi.org/10.1002/2050-7038.12967
http://doi.org/10.3390/sym10100525
http://doi.org/10.1109/ACCESS.2017.2713389
http://doi.org/10.14311/NNW.2017.27.032
http://doi.org/10.1109/72.248452
http://doi.org/10.1162/neco.1997.9.1.185
http://www.ncbi.nlm.nih.gov/pubmed/9117898
http://doi.org/10.1109/ACCESS.2019.2937139
http://doi.org/10.1007/s11063-017-9729-9
http://doi.org/10.1016/j.apenergy.2021.116852
http://doi.org/10.1016/j.ymssp.2020.106698
http://doi.org/10.3389/fpsyg.2022.924793
http://doi.org/10.1109/TIT.2005.858979
http://doi.org/10.1515/jip-2012-0030
http://doi.org/10.1016/j.neucom.2016.10.057
http://doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://doi.org/10.1109/TCSII.2019.2908729
http://doi.org/10.1007/s11432-010-0090-0
http://doi.org/10.1016/j.neunet.2013.11.006
http://www.ncbi.nlm.nih.gov/pubmed/24291693
http://doi.org/10.1016/j.neucom.2017.06.057
http://doi.org/10.5121/ijaia.2016.7102
http://doi.org/10.1109/TNN.2009.2020848
http://doi.org/10.1016/j.neucom.2012.02.029
http://doi.org/10.1016/j.neucom.2014.01.041
http://doi.org/10.1023/B:NEPL.0000011147.74207.8c

	Introduction
	Network Structure and Learning Algorithm Methodology
	Network Structure
	Modified Error Function with Smoothing L1 Regularization (BGSL1)

	Materials and Methods
	Experimental Results
	N-Dimensional Parity Problems
	Function Approximation Problem

	Discussion
	Conclusions
	Appendix A
	References

