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Abstract: The paper presents the results of an experimental investigation and statistical analysis of
the data streams generated by popular Internet services. It is found that every investigated Internet
service generates data streams of a specific type, possessing specific statistical characteristics. On this
basis, it is possible to develop an analog of the classical metrology approach for the data streams
generated by Internet services. Furthermore, i the problem of the data streams superposition “at the
source” (i.e., on a user’s computer or on a local network) is investigated. It is found that the data
streams are additive, with sufficient accuracy for engineering applications (but not exactly additive).
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1. Introduction

In publications on networks, including the Internet, it is standard to mention the
sources of traffic (see, e.g., [1]). A description of the sources is given in rather general
terms (see, e.g., [2]), without details, which are necessary in order to proceed to any
quantitative calculations. The data from [3] indicate that the main portion of the data
volume is Internet video. This information, interesting from the common point of view,
provides no information to someone analyzing network traffic that is measured in a specific
place, for example, at a research university or a banking data processing unit. Therefore, in
many cases, a more detailed concept of traffic sources is required.

Most of the theoretical publications are devoted to fairly abstract probabilistic models,
such as Markov chains, in which the data source is an abstract generator of random events,
which, as a rule, models the generation of packets. Experimental results are available mainly
for backbone data transmission networks, which are quite far from what could be taken
as a specific data source in the usual sense (although not in the sense of a mathematical
model). This situation motivates a study of the traffic, as a result of the activity of physical
sources, i.e., activities not of abstract models but of real objects. We call both people and
computer programs “real objects”, which exist and act in accordance with their own rules
and/or wills, rather than as abstract models.

In the classical teletraffic theory [4-7], the primary source is “someone who places
a call”. In network communications, the primary source is “someone starting a network
service”. In packet technology, the user does not generate any stream directly. The user
only starts a network service, which is a computer program. The program, after being
launched, transmits and receives data streams in accordance with its own rules.

In the classical theory [4-7], any user (even if the user is very different from the others)
does the same: occupies a channel for use. In this sense, all users are equivalent, and the
traffic is homogeneous. Non-homogeneity of traffic can result from the discrepancy in time
that each user occupies the channel, but this issue has been solved within the framework of
the classical teletraffic theory (see, e.g., [8,9]).
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In packet data technology, data are generated by programs. A simple look at the traffic
generated by different programs is enough to conclude that these services generate very
different data streams, which cannot be considered as equivalent, so the resulting data
stream is extremely heterogeneous, see Figure 1. However, another question naturally
arises: what about the data streams generated by the same service? Maybe there is some
equivalence of data streams generated by the same service?
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Figure 1. Typical fragment of traffic.

The answer to the latter question may be affirmative. However, before proceeding
any further, we need to make the following important remark. In general, the analysis
of a process depends on the scale of the consideration. This also applies to data flow
analysis. The problem of the data streams’ equivalence may be effectively resolved with
some specific choice of scale. In the theory of multi-traffic, the time scales displayed in
Figure 2 are distinguished.
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Figure 2. Time scales in multi-traffic theory.
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The data flows generated by a specific service during a session belong to the scale
of “minutes”. In Figure 2, the scale of “seconds” corresponds to “bursts” [10-12], and
the scale of “microseconds” corresponds to “packets”. We are not concerned with the
scale of packets, although simulating communication systems at this scale is very popular
nowadays [13,14]. There are toolkits for measuring data flows at both such scales, for
example, Tmeter [15]. Thus, the main question is formulated as follows: is it possible to
identify a given service on the level of “minutes” and “seconds” or is that the same as
“sessions”(“calls” in Figure 2) and “bursts”? This question correlates with the classical
metrology [16] approach: one should classify the random processes and determine their
numerical characteristics [17] as well as the modern modifications of the classical metrology
approaches (see, e.g., [18]).

The data streams that circulate on the Internet are the result of both the operation
of Internet services and the activities of the people who use them. The period of human
activity at the computer is several hours, and the cycle of this activity is a day, a work shift,
exercising a single duty, etc. This initiates the introduction to the scheme in Figure 1 at one
more level: a workday. This level accounts for the human factor. There is always a data
flow not related directly to a user’s activity: the service data flow. However, this flow is a
small part of the total, and, thus, we shall neglect it in this paper.

A user sends no data directly to the Internet, but only starts services or programs
creating and/or transferring data to the network. The immediate sources of data are the
services initiated by the user.

The Internet is based on data packets technology [13,14,19], and an analysis of the data
flow on the Internet theoretically can be based on the study of packets and the protocols
of Internet services, for both local and global networks. Unfortunately, keeping track of
all possible interactions of these protocols, both among themselves and with the users
and a per-packet study of the data flows, are so complex and subject to so many random
influences that the analysis of data flow at the microscale (at the scale of data packets)
becomes extremely complicated. It is why we do not use the level “microseconds” in
Figure 1. In this context, the macroscopic approach is justified: we consider the overall
data flow over certain time intervals, for example, seconds, and analyze data flows during
the session.

Even on a single computer, multiple services may be run. This raises the ques-
tion of the interaction of multiple data flows. The latter problem may also be solved
by macroscopic analysis.

The aim of this paper is to examine the data flows generated by typical Internet
services and the interaction of these flows “at the source”: at a single computer and on the
local network.

The basic tool used in this investigation is a series of reliable and reproducible experi-
ments together with the standard statistical methods.

In this paper, the authors present experimental data concerning the output data flows.

2. Data Flow Generated by Popular Internet Services

The main characteristics of data flows are intervals between the events (measured in
seconds) and the rate of data exchange (or the data rate, measured in bytes or Kbytes/s.).
Hereafter, K means Kbytes/s.

Figure 1 displays a typical fragment of traffic from a single computer when various
Internet services are used. The traffic has a strongly inhomogeneous structure: one can
distinguish continuous (marked in gray) and discrete fragments of traffic (marked in white
or black). The discrete fragments also have various shapes. In Figure 1, one can see
fragments that may be identified as independent events (marked in gray or black) and
fragments that may be identified as quasiperiodic (marked in white).

We discuss the data flows generated by several widely used Internet services and
network applications (information about other Internet services and network applications
may be found in [19]).
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3. E-Mail Client

The proposed approach is universal and can be applied to arbitrary “sources” of the
data stream. It is critically important whether the “source” creates a data flow possessing
specific, exactly identified characteristics. In this section, we present our idea in detail,
using the example of e-mail. In the next sections, we discuss other Internet services briefly.

We use the following definitions [20]. We call the data stream generated by a specific
Internet service in one session the elementary (primitive) data flow from the service. We
call the data stream, which is the result of a specific Internet user, the elementary (primitive)
data flow from the user.

3.1. Elementary Data Flow from an E-Mail Service

Figure 3 shows the output data rate corresponding to a single e-mail service. The
fragments of traffic, marked at the bottom of the figure in black, correspond to the writing
of two e-mails (“Session 1” and “Session 2”). The fragments of traffic marked in gray
correspond to transmitting e-mails. The fragments of traffic, shown with gray dotted lines,
correspond to no user activity. The traffic in this period is determined by the interaction of
the user computer with the network.
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Figure 3. The output data rate corresponding to typing and sending two e-mails. Experimental data.

The numerical characteristics of the traffic are presented in Table 1.

Table 1. Characteristics of N-bursts.

Parameter Name Parameter Value
Rate in the first burst 1.2-29K/s
Time interval between the bursts 64-68 s
Burst duration 0-2s

The traffic of one single email session (“CALL” in Figure 1) has a typical form, see
Figure 3. It consists of two types of the fragments, marked by us as M and N. First, there
are spike-like bursts N that are produced, while the session ends with the ‘final burst” M.
The “final bursts” for different email sessions coincide with the first-order approximation.

The fragments of shape N are given by random variables and require statistical
analysis. Keeping in mind that our purpose is the modeling of data flows, we have proposed
several hypotheses about the possible distributions. Our first hypothesis (Hypothesis 1)
is the following: N-bursts come at independent time intervals. Our second hypothesis
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(Hypothesis 2) is the following: N-bursts have independent amplitudes. By using the
Kolmogorov-Smirnov test, we made sure that Hypothesis 1 is true. However, Hypothesis
2 fails. In Figure 3, one can observe that the amplitudes of N-bursts are likely to increase
over time. The timeline in Figure 3 is oriented leftwards, which is a particular feature of
Tmeter [15]. Our third hypothesis (Hypothesis 3) is the following: the amplitudes have
independent increments over the sequence of N-bursts. It turns out that Hypothesis 3
is true.

Thus, we can suggest the following identification for the output data flow of an
email application:

- M-burst that is not random flow;

- N-bursts that are random flow, which can be identified by the distribution of time
intervals between the bursts, the first N-burst amplitude, and the distribution of
amplitude increments over the sequence of N-bursts.

The statistical analysis of about 200 e-mails (from 3 to 10 bursts in every e-mail) leads
to the conclusion that:

- the rate increments are normally distributed with the mean of 500 bytes/s and stan-
dard deviation of 600 bytes/s;

- the initial speeds are distributed according to the normal law with a mean of
2500 bytes/s and standard deviation of 700 bytes/s.

We suggest entering “the passport data” of the elementary data flow from an Internet
service. The proposed passport data will be useful if one can reproduce the data stream
(traffic) from an Internet service based on its passport data. We have computed “the
passport data” for an e-mail service. Now, we try to numerically reproduce the traffic from
the e-mail service sessions. The numerically reproduced traffic is shown in Figure 4. The
agreement between the experimentally measured traffic in Figure 3 and the numerically
reproduced traffic in Figure 4 is good. The numerically reproduced traffic is shown in
Figure 4. The agreement between the experimentally measured traffic in Figure 3 and the
numerically reproduced traffic in Figure 4 is good.

9000
2000
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G000
5000
4000

2000
2000
1000
0

1537 1473 14091345 1281 1217 1153 1089 1025 061 807 833 769 705 641 577513440 385321 257 193 120 65 1

Figure 4. Simulating the data flow of two e-mail sessions by a computer program.

3.2. User Activity When Using E-Mail

The total traffic depends on the elementary data stream from every e-mail service and
user activity. The study of the user activity is the subject of study of physiology, social
science, and similar sciences. As we see, the computation of the traffic is an interdisciplinary
problem that should be based on the methods of both technical and socioeconomic sciences.
Keeping in mind the methodological nature of this paper, we collected data on the typing
of small e-mails during correspondence in student groups.The characterictics of the user
activity are the time interval between typing each e-mail and the time of typing an e-mail.
The corresponding numerical values are presented in Table 2.
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Table 2. Characteristics of the users’ activity.

Parameter Name Parameter Value

Time interval between typing each e-mail 10 min
Time of typing an e-mail 6-7 min

4. Organization of Experimental Numerical Simulation

The data flow from one service during one session is called an elementary service flow.
In this section, this is the data flow from an e-mail service when one is typing and sending
one e-mail. If one knows the passport data of the elementary stream and the users’ activity,
one can compute the data stream from an arbitrary number of users.

4.1. Organization of the Experiment
Our computer program is written in the C language and includes:

- Aprocedure for modeling an elementary data stream e-mail;
- A procedure for modeling user activity when using e-mail;

- A procedure for summing elementary streams;

- Auxiliary statistical procedures.

4.2. Numerical Experiment Results

Numerical simulation of the data flow generated by an e-mail service was carried out
for number of users from 2 to 2000. In the numerical experiment, the time of continuous
work of users in the specified mode (Table 1) is taken as equal to 4 h (half of the workday).
The number of users in the numerical experiment varies from 2 to 2000. The actual
maximum number of users should be about 1000, because the number of workstations
(end-user computers) connected to the Ethernet network is 1024 [21]. Below are the results
of the statistical processing of the experimental data. One clearly sees several stages
of the transformations of the graph of the density distribution of the data transfer rate.
Figures 3-7 present graphs of the distribution density of the data transfer rate for 1 to
10 users. The abscissa axis shows the total data transfer rates in K, the ordinate axis shows
their probabilities.
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Figure 5. The data rate density computed from computer simulation: 1, 5, and 10 users. E-mailing.

Stage 1. Bimodal data rate distribution density is shown in Figure 5. The left peak of
the graph in Fig.5 corresponds to cases of an empty (not busy) channel (traffic = 0).

Stage 2. At 20 users, the channel is not empty at any time. As a result, the peak
corresponding to the empty channel disappears. The traffic corresponding to stages 1 and 2
is shown in Figure 6a,b, respectively. In the Figure 6, the abscissa axis indicates the time in
seconds, while the ordinate axis indicates the transmission rate K/s. Figure 6a,b display
three successive time fragments, one under the other, each % hlong.
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Stage 3. The most typical stage, because the number of users of networks usually
ranges from several tens to several hundreds. Examination of the traffic in this case, the
type of the corresponding data rate distribution and its parameters, is the main content of
this work.

Stage 4. When the number of users is more than 1000, the plot of the distribution
density of the data transfer rate begins to demonstrate a similarity with the plot of the
normal distribution. However, this converges to the normal law very slowly. In reality, the
number of users of local networks does not reach the threshold when the normal law is
applicable. This happens since the maximum number of stations connected to the Ethernet
network is 1024. As shown below, for the number of users in the range of 10-1000, a good
approximation of the distribution density of the data transfer rate is the gamma distribution
with parameters that depend on the number of users.

GO 4 IULASRE HUTTLALAL  LLL T b (g
A kil LA LU SRR T A Rl
(b)

Figure 6. (a) Traffic for 5 users, computer simulation, where traffic is zero about 50% of the time. (b)

Traffic for 5 users, computer simulation, where traffic is not zero most of the time.

5. Construction of the Data Rate Distribution by Using the Computer Simulation

Figures 7-15 display the distribution function for the number of users in the range of
20 to 2000.
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Figure 7. The gamma function and the density, determined by using computer simulation. The
number of users is 20.
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Figure 8. The gamma function and the density, determined by using computer simulation. The
number of users is 50.
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Figure 9. The gamma function and the density, determined by using computer simulation. The
number of users is 100.
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Figure 10. The gamma function and the density, determined by using computer simulation. The
number of users is 200.
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Figure 11. The gamma function and the density, determined by using computer simulation. The
number of users is 500.
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Figure 12. The gamma function and the density, determined by using computer simulation. The
number of users is 700.
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Figure 13. The gamma function and the density, determined by using computer simulation. The
number of users is 900.
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Figure 14. The gamma function and the density, determined by using computer simulation. The
number of users is 1000.
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Figure 15. The gamma function and the density, determined by using computer simulation. The
number of users is 2000.

To propose a hypothesis about the type of distribution, skewness and excess kurtosis
(kurtosis in the tables below) were calculated. The results are presented in Tables 3 and 4.

Table 3. Skewness and kurtosis of empirical distribution functions.

Number of Users 20 30 50 100 200 300 400
skewness 1.669 1.324 1.047 0.727 1.150 0.990 1.245
kurtosis 1.622 0.818 0411 1.081 0.003 0.559 0.054

Table 4. Skewness and kurtosis of empirical distribution functions.

Number of Users 500 600 700 800 900 1000 2000
skewness 1.245 1.568 1.502 1.564 1.722 1.564 1.850
kurtosis 0.054 1.276 0.918 1.099 2.087 1.234 2.396

It follows from Tables 3 and 4 that the distribution should be selected among the asym-
metric distributions. The distributions determined from the simulation have a characteristic
form similar to the graphs of the gamma distribution. The gamma distribution density
function is given by the following formula.

1
BT (a)

x“ilefg, x>0, 1)

fxa,B)=
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where « and B are the parameters [21].

The numerical values of « and  were carried out by the least squares method (the
mean square deviation of the empirical distribution functions from the function f(x;«, B)
(1) was minimized). The computed parameters are presented in Table 5.

Table 5. Parameters « and , depending on the number of users.

Number of Users

20

30 50 100 200 300 400 500 600 700 800 900 1000 2000

3.8 4 9.9 19 25 254 272 49 56.9 60 64 71 90

1.8

2.3 3.7 3 3 3.6 4.6 43 3.6 3.6 4 42 41 6.5

The graphs of the function f(x;a, B) (1) for the parameters indicated in Table 5 and
the graphs of the density, determined by using the computer simulation, are shown in
Figures 7-15. The abscissa axis shows the data rates in K/s, while the ordinate axis shows
their probabilities.

An application. In Figure 15, the graphs, for the first time, become similar to the normal
distribution, but 2000 users are impossible on a local network. As a result, we conclude
that the data rate initiated by e-mail users is described by the gamma distribution.

An application. The results of the statistical analysis presented above have numerical
applications. For example, these results provide us with the information about the maximal
data stream the function of the user number. This information is useful to estimate the
necessary local network capacity and the data stream from this local network to the global
network. The maximum data rate is marked in Figures 7-14 by an asterisk, and the
corresponding numerical values of the rate (in K) are presented in Table 6.

Table 6. The maximum data rate, depending on the number of users.

Number of Users

20

50 100 200 500 700 900 1000

max data rate, K

25

50 70 110 200 320 410 440

6. Justification of the Constructed Density of the Data Flow Rate

Visually, there is a good match between the plots of the distribution functions deter-
mined from the computer simulations and the plots of the distribution density functions
of the gamma distribution in Figures 7-15. We present the statistical justification for this
conclusion. We propose the following hypothesis: the data rate determined from our
computer simulation has a gamma distribution with the parameters indicated in Table 5.

To verify /reject this hypothesis, we use the Kolmogorov—-Smirnov test [22], which
consists of the following: as a measure of the discrepancy between the theoretical and
statistical distributions, the maximum value of the modulus of the difference between
the statistical distribution function F*(x) and the corresponding theoretical distribution
function F(x) is considered:

D = max|F*(x) — F(x)| )

The critical value of the Kolmogorov-Smirnov test is calculated by the formula
A = Dy/n, where n is the number of relative empirical frequencies. The probability P(A) is
determined from the table from [22] (P(A) is the probability that, due to purely random
reasons, the maximum discrepancy between F*(x) and F(x) will be no less than the one
that is actually observed [22]). If P(A) is close to 1, then the hypothesis of the gamma
distribution of the computer-simulated data transfer rate is accepted. At a value close to
zero, this hypothesis is rejected, see [22] for details.

The calculated values A and P(A) are presented in Table 7.
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Table 7. Critical value of the Kolmogorov-Smirnov test A and values of distribution
probabilities P(A).

Number of Users 20 30 50 100 200 300 400 500 600 700 800 900 1000
A 0.741 0567 0.665 0.277 0.634 0.375 0.553 0.525 0.518 0.535 0.531 0.497 0.423
P(A) 0711 0964 0.864 1 0.864 1 0.964 0.964 0.964 0.964 0.964 0.997 0.997

Since the probabilities P(A) from Table 7 are close to 1, then we accept the hypothesis
of the gamma distribution of the simulated frequencies.

7. Other Internet Services: Internet Browsing, File Transfer, etc.

The detailed exposition of the proposed approach was presented for an Internet e-mail
service. Briefly, we discuss some other Internet services.

7.1. Internet Browsing

Figure 16 shows the output data rate corresponding to browsing webpages. Here,
the events are discrete in nature. The time between the events is determined by the
user’s activity.

1EK

J)l'l ' lu IJ'I

Figure 16. The output data rate corresponding to browsing five webpages.

We present the results of the statistical analysis of the data rates. There were held
views of webpages in the search mode—users searched for thematic information. Each
user visits no more than one site per 10 s. The experimental data rates were in the range of
from 2000 to 40,000 bytes/s. The expected value of the data rate is 15,589.

Figure 17 displays the experimental distribution function of the data rate. The graph
of the Poisson function with the same expected value is displayed. We observe that the
experimental distribution function is significantly different than the Poisson distribution.
A better approximation for the experimental distribution function is given by the Weibull
distribution function with parameters « = 2 and 3 = 8. For the data presented in Figure 17,
the sample variance is equal to 9395.617, the asymmetry coefficient is equal to 0.761881,
and the kurtosis is equal to 0.32556. The experimental distribution is strongly asymmetric.

The asymmetry of the experimental distribution function and a slow decay in the right
part of the chart are clearly seen in Figure 17. Thus, the shape of the distributions with
“heavy tails” occurs at the level of an elementary data stream, which is a stream from a
single computer.

7.2. File Transfer over the Internet

Figure 18 shows the data rates corresponding to the transfer of files to a remote
computer. The sizes of files are in the range 100 to 2000 K, and increase with a step of 100 K.
The three series of experiments are displayed; every series is marked in gray.
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Figure 17. Experimental density function for the data rate and the Poisson and Weibull
density functions.
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Figure 18. Experimental data rates corresponding to file transfer.

An application. The average data rate depends on the file size. The result of the
statistical processing of the data presented in Figure 18 is shown in Figure 19 (the file size
being displayed on the horizontal axis and the transmission rate on the vertical axis).
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Figure 19. The average data transfer rate as a function of file size.
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8. Superposition of Data Streams Generated by Internet Services

The problem of the superposition of data streams on computer networks is funda-
mental for the simulation and computation of the data streams on the computer networks.
This problem is a non-trivial one. On one hand, the assumption that the data streams
are accurately summed up on the “nodes” of the network is widely used. On the other
hand, various methods of data compression [23] are widely used. Thus, the problem of the
data flows interaction should be considered in relation to a particular data-transmission
technology. We investigate this issue, as applied to the typical services and typical local
Internet networks.

8.1. Superposition of Data Streams on a Single Computer

The problem of the interaction of data flows already arises for a single computer, while
working with several Internet services.

Figure 20 shows the traffic when a user runs several Internet programs simultaneously,
in this case the audio communication program Skype and a web browser. Fragment 1
corresponds to using Skype solely, Fragment 2 corresponds to browsing an Internet page
without the use of Skype, and Fragment 3 corresponds to browsing an Internet page during
a Skype talk.

16K

s

0K 3 2

Figure 20. Summation of the data rates on a single computer.

As can be seen, the transfer rates are summed (the transmission rate for process 3,
with a slight error, is the sum of the rates for processes 1 and 2). This fact has been verified
for numerous data streams. It holds valid until the channel capacity is not exceeded.

8.2. Superposition of Data Streams from Different Computers

Figure 21 shows a typical local network. Data flows are initiated by users in different
time moments. The output streams arrive at a server computer, which creates an output
stream from the server to the Internet.

computer1

&

computer 2 j— |
commutator

)

J

computer 3 |-—

(

time ) time
Figure 21. Superposition of data streams from different computers on a server.

We present the results of our experimental measurements of the output data rates on
user computers on a network and the server, by using Skype as a working example.
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Figure 22 shows the output streams from two computers during independent Skype
sessions. Figure 23 shows the output stream from the commutator during the same period
of time. The gray bars mark the superposition of the streams.
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Figure 22. Output streams (Skype sessions) from two computers.
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Figure 23. The output stream from commutator (server).

To calculate the sum of the data rates presented in Figure 22 and compare it with the
data rate of the output stream on the commutator (displayed in Figure 23), we carried
out a digitization of the graphs in Figures 22 and 23. Three arrays were made: the data
rate X [i] corresponding to the first computer, the data rate X,[i] corresponding to the
second computer, and the data rate Xy[7] corresponding to the server (a commutator device
that was installed on the server). One can easily perform arithmetic operations with the
elements of these arrays.

The graph of the sum X [i] + X;[7], the graph of the experimentally measured output
data rate from the server Xy[i], and the difference Xi[i] + X5[i] — Xy[{] are shown in
Figure 24.

12

8 X1+X

-

4 —_ XD

2

. —_— X1+X2_XD

WD g BN D g BND D g BN D g @
= D Mt Mo e O LW oo M NN e DR
oo m o v oo 00 D0 00 0 00 0O 00 00 00 0 o~
MM MmMmMEPeEA MMM MmMMM™BMM " MM~ m
LR T T -]
e A I I R I R I I R R I R B ]

Figure 24. Comparison of the data streams.
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8.3. Superposition of Three Data Streams

Figure 25 presents the output streams of three computers during Skype sessions. These
sessions overlap in time (the overlapping periods of sessions are marked in gray).
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Figure 25. Output streams from three computers (data rates).

Figure 26 shows the output stream on the commutator (server) for the same period
of time.
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Figure 26. Output stream from a server (data rate).

To calculate the sum of the data rates presented in Figure 25 and to compare it with
the data rate presented in Figure 26, a digitization of these graphs was carried out. There
were built four numeric arrays: output data rate Xi[i] from the first computer, output data
rate X;[i] from the second computer, output data rate X3[i] from the third computer, and
output data rate Xo[7] from the server.

The graph of the sum of X;[i] + Xp[i] + X3[i], the graph of the experimentally measured
output stream on the server Xy[i], and the difference of Xj[i] + Xo[i] + X3[i] — Xo[i] are shown in
Figure 27. The average value of the relative deviation (X [i] + X5[i] + X3[i] — Xo[i])/ Xo[i] does
not exceed 5%.



Computers 2022, 11, 138

17 of 18

20

15

10

17:33:52

17.33:48
17:33:44
17:33:40
17.33:36
17:33:32

17.33:28
17:33:24
17:33:20
17:33:16
17.33:12

— X1+X2 +X3—XO

17.33:08
17:33:04
17:33:00
17:32:56
17.32:52
17:32:48
17.32:44
17:32:40
17.32:36
17:32:32
17.32:28
17:32:24
17:32:20
17.32:16
17.32:12
17:32:08
17:32:04
17:32:00
17:31:56
17:31:52
17:31:48

Figure 27. Comparison of data streams.

9. Conclusions

The information about the individual characteristics of the data streams generated
“at the source”, the superposition of these streams, and a specific user’s activity allow for
computing the total data streams on the network.

The authors suggest analyzing the characteristics of traffic generated by Internet
services and to develop data rate “portraits” (or “passports”) of these services. The devel-
opment of the “portraits” (or “passports”) of services assumes a statistical investigation
of these services. Examples of such analysis are presented for the most common Internet
services. A detailed analysis is presented for an e-mail service.

The authors experimentally investigated the superposition of data streams on a local
network and found that the data rates are additive, with the relative error less than 5%.
The authors found that the additive rule is not satisfied exactly.

These results may be used for the development of models of the data streams, based
on the “passport data” for the Internet services and the statistical information about users’
activity. The models may be used to compute the total data flow on the local network,
depending on the users” activity: the types of services, the number of users, the users’
activity, etc. (see examples in the subsections titled “An application”).

Author Contributions: Conceptualization, methodology, experiments, formal analysis, software,
validation, investigation, writing—original draft preparation, N.A.F,; supervision, A.G.K,; resources,
S.LR. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Data Availability Statement: Not applicable.

Acknowledgments: N.A F. thanks V.I1.Meikshan (Siberian State University of Telecommunications
and Informatics) for the fruitful discussions.

Conflicts of Interest: The authors declare no conflict of interest.



Computers 2022, 11, 138 18 of 18

References

1. Liu, D,; Xu, X,; Liu, M,; Liu, Y. Dynamic traffic classification algorithm and simulation of energy Internet of things based on
machine learning. Neural Comput. Appl. 2021, 33, 3967-3976. [CrossRef]

2. Wiodarskl, P. Impact of Long-Range Dependent Traffic in IoT Local Wireless Networks on Backhaul Link Performance. In
International Conference on Computational Science—ICCS 2020; Springer: Cham, Switzerland; Berlin/Heidelberg, Germany, 2020;
pp- 423-435.

3. Data Volume of Global Consumer Internet Traffic from 2017 to 2022, by Subsegment. Available online: https://www.statista.
com/statistics /267194 /forecast-of-internet-traffic-by-subsegment/ (accessed on 1 June 2022).

4. Erlang, AK. Probability and telephone calls. Nyt Tidsskr. Mat. B 1909, 20, 33-39.

5.  Erlang, A.K. Losning af nogle problemer fra sandsynlighedsregningen af betydning for de automatiske telefoncentraler. Elek-
troteknikeren 1917, 13, 5-13.

6.  Pollaczek, E Uber eine Aufgabe der Wahrscheinlichkeitstheorie. Math. Z. 1930, 32, 64-100. [CrossRef]

7. Kendall, D.G. Stochastic processes occurring in the theory of queues and their analysis by the method of the imbedded Markov
chain. Ann. Math. Stat. 1953, 24, 338-354. [CrossRef]

8.  Roberts, J.; Mecca, U.; Virago, J. (Eds.) Broadband Network Teletraffic: Performance Evaluation and Design of Broadband Multiservice
Networks, Final Report of Action COST 242; Springer: Berlin/Heidelberg, Germany, 1996.

9.  Akimaru, H.; Kawashima, K. Teletraffic: Theory and Applications (Telecommunication Networks and Computer Systems), 2nd ed.;
Springer: New York, NY, USA, 2012.

10.  Hui, J.N. Switching and Traffic Theory for Integrated Broadband Networks; Springer: New York, NY, USA, 2012; Volume 91.

11.  Willinger, W.; Leland, W.; Tagqu, M.; Wilson, D. On the Self-Similar Nature of Ethernet Traffic. IEEE/ACM Trans. Netw. 1994, 2,
1-15. [CrossRef]

12.  Schmid, S.; Wattenhofer, R. Dynamic Internet Congestion with Bursts. In High Performance Computing—HiPC 2006; Robert, Y.,
Parashar, M., Badrinath, R., Prasanna, V.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4297.

13.  Jeruchim, M.C.; Balaban, P.; Shanmugan, K.S. Simulation of Communication Systems: Methodology and Technigues; Springer: New
York, NY, USA, 2000.

14. Rorabaugh, C.B. Simulating Wireless Communication Systems; Prentice Hall: Hoboken, NJ, USA, 2004.

15. TMeter Freeware Edition. Available online: http://tmeter.ru/ (accessed on 1 June 2022).

16. Mekid, S. Metrology and Instrumentation: Practical Applications for Engineering and Manufacturing; Wiley-ASME Press: Hoboken, NJ,
USA, 2022.

17. Crowder, S.; Delker, C.; Forrest, E; Martin, N. Introduction to Statistics in Metrology; Springer: Cham, Switzerland;
Berlin/Heidelberg, Germany, 2020.

18. Loh, T.H. (Ed.) Metrology for 5G and Emerging Wireless Technologies (Telecommunications); The Institution of Engineering and
Technology: London, UK, 2022.

19. Kurose, J.E; Ross, K.W. Computer Networking: A Top—Down Approach, 6th ed.; Pearson: Boston, MA, USA, 2012.

20. Filimonova, N.A. Model of elementary stream in Internet. In Distributed Informational and Computational Resources,
26-30 November 2012; Siberian Branch of Russian Academy of Sciences: Novosibirsk, Russia, 2012.

21. Chowdhury, D.D. High Speed LAN Technology Handbook; Springer: Berlin/Heidelberg, Germany, 2000.

22.  Olofsson, P.; Andersson, M. Probability, Statistics, and Stochastic Processes, 2nd ed.; Wiley: New York, NY, USA, 2012.

23. Dumas, J.G.; Roch, J.L. Foundations of Coding: Compression, Encryption, Error Correction; Wiley: New York, NY, USA, 2015.


http://doi.org/10.1007/s00521-020-05457-7
https://www.statista.com/statistics/267194/forecast-of-internet-traffic-by-subsegment/
https://www.statista.com/statistics/267194/forecast-of-internet-traffic-by-subsegment/
http://doi.org/10.1007/BF01194620
http://doi.org/10.1214/aoms/1177728975
http://doi.org/10.1145/3371934.3371955
http://tmeter.ru/

	Introduction 
	Data Flow Generated by Popular Internet Services 
	E-Mail Client 
	Elementary Data Flow from an E-Mail Service 
	User Activity When Using E-Mail 

	Organization of Experimental Numerical Simulation 
	Organization of the Experiment 
	Numerical Experiment Results 

	Construction of the Data Rate Distribution by Using the Computer Simulation 
	Justification of the Constructed Density of the Data Flow Rate 
	Other Internet Services: Internet Browsing, File Transfer, etc. 
	Internet Browsing 
	File Transfer over the Internet 

	Superposition of Data Streams Generated by Internet Services 
	Superposition of Data Streams on a Single Computer 
	Superposition of Data Streams from Different Computers 
	Superposition of Three Data Streams 

	Conclusions 
	References

