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Abstract: Face swapping technology is approaching maturity, and it is difficult to distinguish between
real images and fake images. In order to prevent malicious face swapping and ensure the privacy and
security of personal photos, we propose a new way to disable the face detector in the face detection
stage, which is to add a black line structure to the face part. Using neural network visualization,
we found that the black line structure can interrupt the continuity of facial features extracted by the
face detector, thus making the three face detectors MTCNN, S3FD, and SSD fail simultaneously. By
widening the width of the black line, MTCNN, S3FD, and SSD are able to reach probability of failure
levels up to 95.7%. To reduce the amount of perturbation added and determine the effective range of
perturbation addition, we firstly experimentally prove that adding perturbation to the background
cannot interfere with the detector’s detection of faces.

Keywords: filtering method; image discrimination and classification; human image processing; face
detection; adversarial attack

1. Introduction

Disinformation has flooded social media recently, affecting people’s ability to judge
some events correctly. False information mainly includes fake text information and fake
videos. For example, using deepfake technology to change the faces of politicians and
make inappropriate speeches is enough to cause a crisis. Although existing research
has been able to identify fake videos well [1], when users browse short videos on social
software, they will immediately choose to believe them instead of using other programs
to identify the authenticity. Therefore, it is imperative to prevent the occurrence of face
swapping fundamentally.

The currently popular face-swapping program, faceswap, can replace a face in a video
through three steps: face detection and positioning, training of the deepfake [2] model, and
face fusion. By analyzing the face-swapping process of faceswap, we propose that if the face
detector fails to detect a face in the image, the face-swapping behavior can be prevented.

faceswap provides three optional face detectors: the Multi-Task Cascaded Convolutional
Neural Network (MTCNN) [3], the Single Shot Scale-invariant Face Detector (S3FD) [4],
and the Single Shot Multi-Box Detector (SSD) [5] based the OpenCV deep neural network
module [6] in face detection and positioning. After face detection on the image, the user
can manually delete some misrecognized faces. From this, we believe that the failure of
the face detector should be the generation of no bounding box at all, rather than merely
shrinking or shifting the bounding box.

An adversarial attack involves adding some imperceptible, subtle perturbations to the
input data to make the model give a wrong output with high confidence [7]. The attack
target can be a classification model or a target detection model. The attack range is generally
the entire image when attacking a classification model. Although no research has pointed
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out that only the attack target is effective, when attacking the target detection model, the
area where the target is located is generally selected for attack. In the research on attacking
face detectors, we found that some studies reduce the detection probability of faces by
increasing the detection probability of non-face areas [8]. Therefore, before experimenting,
it is necessary to find the effective attack range in the image.

Adversarial attacks can quickly attack SSD and S3FD based on Region Convolutional
Neural Networks (RCNN) [9]. Even without adjusting the parameters, the added per-
turbation is difficult to detect by humans [10]. However, since MTCNN uses the image
pyramid [11] to process the input image, its defense capability far exceeds the above two
face detectors. The image pyramid is a method of reducing an image and can reduce the
original image to multiple sizes. It prevents the perturbation at the original size from
interfering with the detection results of images at other sizes. The most effective way to
attack MTCNN currently in the field of physical attacks is for the researcher to wear a
black hat and research, or wear a mask, and then put two black and white patches on
the face. However, such images cannot be exploited and uploaded to social media. In
the digital field, researchers interpolate the perturbations at different sizes according to
the characteristics of the image pyramid, and finally obtain effective perturbations [12].
However, this method cannot attack three face detectors simultaneously.

We analyze and verify the effective range of attacking face detectors, propose a black
line structure that can simultaneously invalidate MTCNN, S3FD, and SSD face detectors,
and, through neural network visualization, the reasons that the black line structure is
effective are analyzed.

This article’s remainder is structured as follows: Section 2 introduces the related works
and analyzes and compares its principles. Section 3 describes our experiments, which are
the face–background correlation analysis experiment, the black line structure experiment,
and the black line structure validity analysis and discussion. Section 4 will summarize and
refer to future work.

2. Related Works
2.1. Face Detection
2.1.1. Multi-Task Convolutional Neural Network

MTCNN consists of three networks: Proposal Network (P-Net), Refine Network (R-
Net), and Output Network (O-Net). P-Net mainly obtains the candidate bounding box
of the face region, calibrates the candidate bounding box, merges highly overlapping
candidate bounding boxes through non-maximum suppression (NMS) [13], and passes the
result as input data to R-Net. R-Net removes the false-positive regions through bounding
box regression and the NMS, but the network structure is slightly different from P-Net,
with an additional fully connected layer. O-Net has one more volume-based network than
R-Net, so the processing results will be more refined, and the data used are the output
data of R-Net. O-Net will eventually output a face bounding box and five facial keypoints,
including eyes, mouth corners, and nose.

P-Net is the fully convolutional network structure (FCN) [14], which can simultane-
ously process images of various sizes. The data will be processed using image pyramids
before being passed to P-Net. The image pyramid is controlled by two parameters, the
minimum size and the scaling factor. The minimum size represents the side length of the
minimum image, and the scaling factor is the ratio of scaling the image each time.

2.1.2. Single Shot Multi-Box Detector

SSD uses the feature pyramid to enhance the detection ability of the model, and all six
networks inside the model can contribute to the final detection result. Moreover, SSD uses
the FCN to extract the information transmitted by the feature pyramid, which improves
the calculation speed.
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2.1.3. Single Shot Scale-Invariant Face Detector

Due to the weak ability of SSD to detect small faces, the researchers based on SSD
proposed a small face detection algorithm, S3FD. They set the minimum stride to 4 and in-
troduced a scale-compensated anchor matching strategy to increase the number of positive
anchors to improve the detection ability of small faces.

2.1.4. Convolutional Neural Networks

Lecun [15] borrowed ideas from Fukushima [16] and proposed the original version of
the convolutional neural network, LeNet [17], in 1998. The essence of the convolutional
neural network is a feature extraction method. The sliding filter can share the weights
while ensuring the local receptive field’s information integrity, and the pooling layer can
effectively reduce the amount of calculation.

In face detection work, MTCNN, SSD, and S3FD have different characteristics, but
they all use the convolutional neural network for image feature extraction. This method
of feature extraction using a sliding window can continuously and completely extract
image information.

2.2. Interpretability of Neural Networks

The neural network works in an end-to-end manner, and we can achieve the desired
results without understanding its complex internal work. However, to be able to use neural
networks better, researchers began to explore methods that can explain the internals of
neural networks [18–21]. These methods can help us to understand which pixels in the
image affect the model’s decision making. The iNNvestigate project [22] integrates 13 types
of neural network visualization methods, which are used in the present work to accurately
visualize our results and to conduct comparative analysis.

2.3. Neural Style Transfer

Neural style transfer involves splitting an image into content and style and combining
the content with the style of another image to obtain a new image. When a multi-layer
convolutional neural network performs feature extraction on an image, the features ex-
tracted by each network layer are different [23]. The high-level network extracts content
information, and the low-level layer extracts texture information—that is, style information.

3. Experiment and Discussion
3.1. Correlation of Background and Face (Experiment 1)

Li et al. [8] attacked the face dataset by adding perturbations to the entire image to
make the face detector fail and detect non-human face parts so that the face replacement
cannot obtain valid data. However, faceswap does not need to use the dataset, but two se-
lected videos. Moreover, we believe that adding perturbation to the whole image may cause
unnecessary pollution to the image. We will demonstrate through this experiment whether
it is necessary to add perturbations to the background when attacking the face detector.

3.1.1. Method and Results

To make the comparison of experimental results explicit, the threshold of P-Net in
MTCNN is set to 0.9 to reduce the candidate boxes. As shown in Figure 1, we use P-
Net to detect the image roughly and obtain bounding boxes of the face and background
parts. Afterward, neural style transfer combines facial features with background content
to enhance the number of facial features in the background bounding box, as shown in
Figure 2. We use P-Net for detection, and Figure 3 shows the final result.
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Figure 1. Use of MTCNN’s P-Net network for rough detection and extraction of the bounding box
content. Three non-face regions are extracted from the detected bounding boxes, as well as an image
of a face region. The non-face regions contain characters that are caused by the wrong detection of
the detector. This experiment only considers him to be a part of the background and has nothing to
do with its actual meaning.

Figure 2. The images of the face region and the images of the three non-face regions are style
transferred and restored to their original positions.

Figure 3. After the transfer of the local style, the original image and the image are used for face
detection using MTCNN. Although the detection probability of the part of the style transfer increases,
the number of face detection bounding box does not decrease.

3.1.2. Discussion

The results show that the detected bounding boxes increase significantly in the back-
ground region fused with facial features, but there is no change in the facial area. Thus,
when attacking the face detector, only the face in the image needs to be attacked, and it is
meaningless to add perturbation to the background. It is not difficult to understand that
when detecting a multi-face image, the feature information provided by each face in the
image is independent.
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3.2. Adding Black Line Structure (Experiment 2)

As shown in Figure 4, the use of black patches to block facial keypoints such as eyes
can still be detected by the three face detectors. However, masking the areas between facial
keypoints with black line segments can disable the face detector. We found that MTCNN,
SSD, and S3FD are based on CNN and use a slider window to extract image features, and
the black line segments are likely to interrupt the continuity of features, thus causing the
failure of these three face detectors. To demonstrate the effectiveness of the black line
structure, we conduct experiments.

Figure 4. Blocking part of the facial area and performing face detection through face detectors SSD,
S3FD, and MTCNN.

3.2.1. Datasets

We choose the CelebFaces Attribute (CelebA) [24] dataset and Flickr-Faces-High-
Quality (FFHQ) [25] dataset. The CelebA dataset is openly provided by the Chinese
University of Hong Kong and is widely used for face-related computer vision training tasks.
We extracted 10,000 images from 202,599 for this research. The FFHQ dataset was created
as a benchmark for GAN. NVIDIA open-sourced it in 2019. It is a high-quality face dataset.
We randomly extracted 6000 images from among 70,000 images for this experiment. In this
way, we have an actual multi-scene face dataset and a dataset enhanced by GANs to ensure
the universality of this experiment.

3.2.2. Method

Among the three networks of MTCNN, the threshold is 0.6 for P-net, 0.6 for R-Net,
and 0.7 for O-Net. The minimum size of the image pyramid is 21 pixels, with a scaling
factor of 0.709. The threshold for SSD and S3FD is 0.6. These parameters are verified in a
large number of experiments.

As shown in Figure 5a, a few simple hand-drawn black lines can make the three face
detection algorithms fail. There are many such images, but the position and thickness of
the black line in each image are different. Thus, we propose a normalization method to add
black lines, as shown in Figure 5b.
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Since we need to use the locations of facial keypoints, we use MTCNN to find bounding
boxes and facial keypoints. We use black line segments to connect the upper left vertex
of the bounding box to the left eye, the upper right vertex to the right eye, the lower left
vertex to the left corner of the mouth, and the lower right vertex to the right corner of the
mouth. Finally, we connect the eyes and the corners of the mouth to form a rectangle. Due
to the different sizes of the CelebA and FFHQ data, we added a black line structure with
pixel widths of 6 pixels, 8 pixels, and 10 pixels to the CelebA data and a black line structure
with a pixel width of 4 pixels, 6 pixels, and 8 pixels to the FFHQ data, respectively.

For the detection results, we must be consistent with the limits of faceswap. If no
bounding box is detected at all, the attack is considered successful.

Figure 5. Image (a) is a manually added black line break. Image (b) is a presentation image of the
black line structure. Both images are from the FFHQ dataset.

3.2.3. Result

Tables 1 and 2 and Figure 6 show the results of this experiment. We use whether the
face detector returns bounding boxes as a benchmark for detection accuracy. Even if the
returned bounding box is inaccurate, the attack is counted as a failure. This is because the
faceswap program provides a manual calibration step; as long as there is a bounding box
returned, it will be provided to this step. Shown in the table and image is the probability
that a face in the image can be detected.

Table 1. The table shows the detection capabilities of the three face detectors on the original images in the
CelebA dataset and on images with black line structures of 6-pixel, 8-pixel, and 10-pixel widths added.

CelebA Original 6 Pixels 8 Pixels 10 Pixels

S3FD 99.67% 65.5% 49.4% 32.1%
SSD 99.71% 24.9% 15.08% 9.47%

MTCNN 99.79% 9.08% 7.49% 6.15%

Table 2. The table shows the detection capabilities of the three face detectors on the original images in
the FFHQ dataset and on images with black line structures of 4-pixel, 6-pixel, and 8-pixel widths added.

FFHQ Original 4 Pixels 6 Pixels 8 Pixels

S3FD 99.7% 58.7% 23.7% 9%
SSD 99.93% 22.4% 9.7% 4.3%

MTCNN 99.96% 11.7% 8.8% 7.2%
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Figure 6. Different unit pixel widths are used due to the other face sizes in the CelebA dataset and
the FFHQ dataset. The table shows the probability of the black line image being detected by MTCNN,
S3FD, and SSD.

3.2.4. Discussion

Experiments show that the black line structure can invalidate MTCNN, SSD, and S3FD,
with failures ranging from 34.5% to 95.7%. Even if the bounding box can be generated, it is
difficult to detect the entire face, as shown in Figure 7.

Figure 7. The image above shows some images with black line structure added but which can be
detected by the face detector.

We used iNNvestigate to perform neural network interpretability analysis on images
with a black line structure. In Figures 8–10, the images of successful and unsuccessful
attacks under different black line widths are compared. The first to third images in the
first column on the left are the images that the face detector cannot detect, and the fourth
to sixth images are the images that the face detector can detect. It can be found that the
effective black line structure is more obvious in the visualization and can segment the face.
The invalid black line structure is relatively blurred in the visualization, and the degree
of integration with the face is relatively high. Thus, we can be sure that when the facial
features are cut, the features read by the model cannot be associated with the information
of the facial keypoints, which will cause the face detector to fail. It also proves that breaking
the continuity of features between facial keypoints can invalidate the face detector.
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Figure 8. We selected two images from the CelebA dataset and added a black line structure with
widths of 6 pixels, 8 pixels, and 10 pixels. MTCNN cannot detect the first three pictures, and the last
three pictures are pictures that MTCNN can detect.

Figure 9. We selected two images from the FFHQ dataset and added a black line structure with
widths of 4 pixels, 6 pixels, and 8 pixels. S3FD cannot detect the first three pictures, and the last three
pictures are pictures that S3FD can detect.
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Figure 10. We selected two images from the FFHQ dataset and added a black line structure with
widths of 4 pixels, 6 pixels, and 8 pixels. SSD cannot detect the first three pictures, and the last three
pictures are pictures that SSD can detect.

4. Conclusions

We demonstrate that attacking the background is ineffective when attacking face
detectors and show the black line structures that may invalidate MTCNN, S3FD, and
SSD. However, it must be noted that although the black line structure can disable the face
detector, it does not meet users’ needs regarding uploads to social media because it does
block the face. Just as hand-painted black lines can achieve the same effect, there must be
excess disturbance in the parts covered by the black line structure. This research aims to
encourage more researchers to pay attention to the nature of adversarial attacks through
the success of the black line structure. At present, most of the mainstream face detectors
are based on CNNs. If the continuity of CNN extraction features is interrupted, it will be
possible to find a general method to attack face detectors. Next, we will add perturbation
to the black line area to find a balance that prevents face swapping and permits the use of
the image.
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