
Citation: Oliveira, D.F.; Gomes, J.P.;

Pereira, R.B.; Brito, M.A.; Machado,

R.J. Development of a Self-diagnostic

System Integrated into a

Cyber-Physical System. Computers

2022, 11, 131. https://doi.org/

10.3390/computers11090131

Academic Editor: Osvaldo Gervasi

Received: 22 July 2022

Accepted: 25 August 2022

Published: 29 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Project Report

Development of a Self-diagnostic System Integrated into a
Cyber-Physical System
Domingos F. Oliveira 1,2,* , João P. Gomes 3, Ricardo B. Pereira 4, Miguel A. Brito 2,* and Ricardo J. Machado 2

1 Department of Informatics and Computing, University Mandume Ya Ndemufayo, Lubango 3FJP+27X, Angola
2 Centro Algoritmi, Department of Information Systems, University of Minho, 4800-058 Guimarães, Portugal
3 Department of Information Systems, University of Minho, 4804-533 Guimarães, Portugal
4 Department of Informatics, University of Minho, 4710-057 Braga, Portugal
* Correspondence: dfilipe@umn.ed.ao (D.F.O.); mab@dsi.uminho.pt (M.A.B.)

Abstract: CONTROLAR provides Bosch with an intelligent functional testing machine used to test
the correct functioning of the car radios produced. During this process, the radios are submitted to
several tests, raising the problem of how the machine detects errors in several radios consecutively,
making it impossible to know if the device has a problem since it has no module to see if it works
correctly. This article arises from the need to find a solution to solve this problem, which was to
develop a self-diagnostic system that will ensure the reliability and integrity of the cyber-physical
system, passing a detailed state of the art. The development of this system was based on the design
of an architecture that combines the KDT methodology with a DSL to manage and configure the tests
to integrate the self-diagnostic test system into a CPS. A total of 28 test cases were performed to cover
all its functionalities. The results show that all test cases passed. Therefore, the system meets all the
proposed objectives.

Keywords: cyber-physical systems; self-diagnosis; test automation; web application

1. Introduction

The production of many industrial organisations is supported by cyber-physical
systems (CPS), which are the integration of computing, networking and physical processes,
and which must therefore achieve maximum performance in production, as the use of CPS
is necessary for the success of production within an organisation.

A CPS integrates the dynamics of the physical processes with the software and the net-
work, providing abstractions, modelling techniques, design and analysis for the integrated
whole. These systems must remain reliable and guarantee their functionality [1]. However,
to ensure that these systems function correctly, a regular diagnosis of them is required.
CPS tests require highly qualified engineers to design them since their computational part
is programmed in low-level languages [2,3]. Traditional test systems are tailored to each
case, requiring a very costly and time-consuming effort to develop, maintain or reconfigure.
The current challenge is to develop innovative and reconfigurable architectures for testing
systems using emerging technologies and paradigms that can provide the answer to these
requirements [4]. The challenge is to automate the maximum number of tasks in this
process and get the most out of the test system, be it a CPS or just software.

CONTROLAR is a company dedicated to developing hardware and software for the
industry, with a tremendous vocation in the automobile electrical components industry
and excellent know-how in developing industrial automation and functional and quality
test systems for electronic devices. One of its business areas is system testing, which is
based on the development and integration of available test systems, monitoring data for
the validation of electrical characteristics and quality tests, and using data collection boards,
generators, and specific equipment for signal and data acquisition and analysis.

Computers 2022, 11, 131. https://doi.org/10.3390/computers11090131 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers11090131
https://doi.org/10.3390/computers11090131
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-2890-0655
https://orcid.org/0000-0003-4235-9700
https://orcid.org/0000-0002-3626-2569
https://doi.org/10.3390/computers11090131
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers11090131?type=check_update&version=3


Computers 2022, 11, 131 2 of 29

For this purpose, a partnership was developed from the Consortium’s union of skills
and knowledge between CONTROLAR, the University of Minho [5,6], the Computer
Graphics Centre [7], and the research project called Test System Intelligent Machines
(TSIM). This project aims to ensure value creation in CONTROLAR’s products (as a current
supplier of Bosch) and its adaptation to the reality of Bosch Industry 4.0. Furthermore,
the aim is to develop tools that make CONTROLAR’s automatic test equipment more
flexible, efficient and intelligent.

One of the products CONTROLAR supplies to Bosch today is the Intelligent Functional
Test Machine [8]. This machine is a CPS developed to perform different functional tests on
electronic devices and components. Bosch uses this machine at the end of the production
line to ensure the correct functionality of the car radios.

1.1. Problem Definition

As stated above, one of the products CONTROLAR supplies to Bosch is the Intelligent
Functional Testing Machine [8], a CPS developed to perform different levels of functional
tests on electronic devices and components. Bosch uses this machine at the end of the
production line to ensure the correct functionality of the car radios. Therefore, the car
radios are subjected to various tests while using this machine.

The problem appears when the machine detects errors in several radios, indicating
that the production line had failed in one of its segments, causing possible errors in all
radios of that line. Thus, a scenario in which all car radios come with errors means that
something has failed in production. This is unacceptable for the company since it will
cause unexpected delays. Moreover, it becomes necessary to repair all the car radios, which
brings with it an increase in costs. When this happens, the organisation tends to attribute
the problem to the machine and not to its products, leading to attempts to discover the
problem with the machine.

Another problem is that the machine has no module to understand whether it is
working correctly or not. The only way to know is by changing the machine construction’s
physical connections and internal properties to try to understand the malfunction. Most
of the time, this happens because they try to look for errors in the machine and usually
always end up causing damage to it without realising it because they do not know all the
details of its construction and start changing many until they make the machine wholly
unusable and without finding the problem. The likely result of these actions is the need to
repair the machine or even replace it, which causes financial losses.

1.2. Motivation and Objectives

This work arises from the need to find a solution to solve the stated problem. It is also
an innovative solution with contributions to the world of research in CPS and self-diagnosis
tests systems. The answer is to integrate a self-diagnosis system in the machine that can
test the device’s functionality. When these car radio failures appear, Bosch can be sure if the
problem is really on the machine or in the production line of the car radios. As the device is
a CPS, it allows the integration of a software system that can control and manage all of its
actions. Therefore, it is necessary to develop a testing system to order the tests and their
execution, detecting internal machine failures. However, before we can create a plan, it is
essential to find the correct architecture for a testing system. This architecture should be as
suitable as possible to the problem we are facing and as generic as possible regarding what
a testing system is.

Developing a self-diagnostic system for integration into a CPS capable of performing
CPS self-diagnostics in real-time, thus ensuring its integrity, is the main objective of the
paper. As specific objectives, regarding the analysis and specifications of the system, we
develop and propose a new architecture for test management and configuration as well as
a new architecture for the self-diagnostic test system, offer an architecture to integrate the
self-diagnostic test system into a CPS, develop a self-diagnostic test system and validate
the self-diagnostic test system.



Computers 2022, 11, 131 3 of 29

Regarding integration of the self-diagnosis tests system with the CPS, the work/re-
search methodology should go through the study of the problem, a survey of state of the art,
reflection on the technologies to be used in the development, development of the system
architecture and finally, the development, validation and integration of the system.

1.3. Contribution

The contribution of the work involves finding a solution to the problem presented,
an innovative solution with donations to the current state of the art, on a modular and
extensible architecture for self-diagnostic testing systems that combines the keyword-driven
testing methodology with a domain-specific language to manage and configure the system
tests. This is essential because this architecture can be applied to any self-diagnostic testing
system without restricting any type of test, physical or logical, and can also be extended
to the CPS. We also contribute an architecture to develop and integrate the self-diagnostic
testing system into a CPS. This contribution is vital because it proves the modularity of
the self-diagnostic testing system architecture, demonstrating how we can extend it into
a CPS and finally a self-diagnostic test system ready to be integrated into a CPS. This
contribution allows us to validate the proposed architectures and the usefulness of the
developed method in the self-diagnosis of CONTROLAR machines.

1.4. Document Structure

The paper’s first sections aim to look at state of the art in CPS and self-diagnostic
systems to understand if there are already strategies or architectures for these two systems
to be brought together. It also examines the state of the art in test automation and KDT
methodology and analyses and compares some current tools that use this testing methodol-
ogy. The third section analyzes and specifies the requirements and structure of the system
and defines the technologies used for its implementation. The fourth section explains the
architecture defined for the design. This process was divided into three stages, starting
with the definition of an architecture for the management and configuration of the system
tests, which will then be integrated into the architecture of the self-testing system. Finally,
the CPS architecture is composed, integrating all its components and the two architectures
previously defined. The fifth section describes the system’s implementation, explains each
of the elements involved, and presents a validation of the procedure performed through
several of the test cases executed. Finally, the last section contains the project’s conclusions,
summarising all the work done and presenting future work.

2. State of the Art

This section reviews the state of the art in CPS, test automation, the keyword-driven
testing (KDT) framework, and a brief introduction to the concept of domain-specific lan-
guage (DSL) and, more specifically, how to apply this concept with another tool for language
recognition (ANTLR) is given.

2.1. Cyber-Physical Systems

CPS are integrations of computing, network, and physical processes, integrating
the dynamics of physical processes with software and the web, providing abstractions
and modelling, design, and analysis techniques for the integrated whole. However, to
realize their full potential, the main conceptions of computing need to be rethought and
improved [1].

Currently, CPS requires solutions that support it at the device, system, infrastructure,
and application level. This is a challenge that includes an engineering approach and a
fusion of communication, information and automation technologies [9]. For the effective
orchestration of software and physical processes, semantic models are needed to reflect
the relevant properties to both [1]. The current challenge is to develop innovative, agile,
and reconfigurable architectures for control systems, using emerging technologies and
paradigms that can provide the answer to requirements [4]. It is still necessary to maintain



Computers 2022, 11, 131 4 of 29

a balance between the needs and the notion of lightweight and safe solutions [10]. Software
development for this area presents a challenge [11].

The communication infrastructure is essential for testing. Most focus on communications-
oriented research, privacy and security of the infrastructure [12,13]. Tests must be designed
to provide a remote interface [14]. Verification and composition testing methods must also
be adapted to the CPS. Creating an automated or semi-automatic process to assess the
results of system tests is a challenge in CPS testing [15]. There are still many limitations to
the broader industrial application of CPS testing [16]. The challenge will be to automate
the maximum number of tasks and get the most out of CPS.

2.2. Text Automation

Automating testing is critical to the quality of the final product. Thus, software
developers are required to have a set of quality standards during all phases of project
development because organizations, when adopting software, rely on quality criteria since
one of the pillars in ensuring software quality is testing [17].

In the development market, the current concern is to create quality software, as the
goal of a software tester is to define the implementation of this software that meets all
specifications and expectations and the automation of testing while being aware of when
and where testing should be performed, thus giving the team more time to plan to test.
In addition, automation results in the mechanization of the entire process of monitoring
and managing the testing and evaluation needs associated with software development [18].

2.3. Fault Detection

Fault detection is the examination of faults present in machinery components. A recent
study found that most research on fault detection focuses on incipient faults so that the
next stage of the FDD process can be performed [19].

The purpose of fault detection is the “detection of the occurrence of faults in the
functional units of the process, which lead to undesired or intolerable behaviour of the
whole system”. Most of the modern automated fault detection methods are model-based,
be it first principle models, rule-based models (if-then rules), or machine-learning models
based on several measured variables. Fault detection can also be carried out manually.
In fact, conventional complaint-driven maintenance can be regarded as a form of manual
fault detection-based maintenance, as complaints are derived from observed state X such as
temperature or parameter Φ such as window operability from the occupants. Besides iden-
tifying abnormal operations, fault detection can provide valuable information for further
fault diagnostics [20].

2.4. Keyword-Driven Testing

KDT is a type of automation testing methodology known as table testing or action-
based testing that uses a table (spreadsheet) format to define keywords or action words
that represent the content of the tests. KDT presents itself as a valuable test method to
support testing requirements in industrial control software [16]. However, recent results
from researchers have shown that the KDT test design is complex, with multiple levels
of abstraction, and that this design favours reuse, which has the potential to reduce the
changes required during evolution [21]. Furthermore, keywords change at a relatively
low rate, indicating that only localised and refined changes are made after a keyword
is created. However, the same results also showed that KDT techniques require tools to
support keyword selection, refactoring, and test repair [22].

Current Tools

For the development of work, we used some test automation tools that implement the
keyword-driven testing framework, such as Selenium [23], QuickTest Professional [24,25],
TestComplete [26], SilkTest [27,28], Ranorex [29] and the Robot Framework [30].



Computers 2022, 11, 131 5 of 29

2.5. Domain-Specific Language

DSL is a language intended for use in the context of a particular domain and is quite
powerful for representing and addressing problems and solutions in that sphere [31]. Used
to generate source code from a keyword, plus code generation from a DSL is not mandatory.
Some researchers have used DSL in CPS and left their testimony on how the specification
language hides the implementation details. Specifications are automatically enriched
with performance through reusable mapping rules. These rules are implemented by
developers and specify the order of execution of modules and how input/output variables
are implemented [32]. This enables the reuse of software components and improves
software productivity and quality [33].

ANTLR

ANTLR is a parser generator [34] because it takes a text and turns it into an organised
structure, a tree, called an abstract syntax tree (AST) [35], which is like a story describing
the content of the code (logical representation), created by joining the various parts [36].
Figure 1 shows this.

Figure 1. Diagram of a language processor.

The Parsing process shown in Figure 1 goes through three phases: lexical analysis,
syntactic analysis and transformations.

ANTLR is a parser generator that parses the input dynamically at runtime using a top-
down left-to-right parser, building a leftmost derivation of the information and looking at
any number of tokens in advance when selecting between alternative rules [37]. In addition,
the Visitor pattern allows us to decide how to traverse the tree and which nodes we will
visit, allowing us to define how many times we see a node [38].

2.6. REST

REST is an architectural style between web applications, facilitating communication
between systems [39]. It is a protocol developed specifically to create web services, which
aims to be platform- and language-independent, using the Hypertext Transfer Protocol
(HTTP) for communication between servers. This protocol is based on six fundamental
principles, namely a client-server architecture, statelessness, caches, a uniform interface, a
layered system, and the code on demand [40,41].

2.7. Discussion

In general, this section approaches this paper’s state of the art, namely the current state
of research development in CPS, and exposes the proven importance of test automation.
Then, the concepts of the KDT framework are presented. DSL is also addressed, in addition
to how ANTLR works internally. We also cover the REST protocol widely used in web
services development.

This review revealed that, although there are several tools dedicated to the manage-
ment and execution of tests, none of them are intended for self-diagnostic testing of CPS.
Therefore, this work will aim to take advantage of the best features of self-testing systems
to develop a strategy oriented to CPS self-diagnosis.



Computers 2022, 11, 131 6 of 29

3. Analysis and Specification

The purpose of this section is to provide a detailed analysis of the requirements that
the system must satisfy, which are also accompanied by the needs of CONTROLAR since
the system will be developed for application in its CPS.

3.1. Requirements

Based on the objective of the work, which is to build a system that allows CPS self-
diagnosis by performing tests on it, this system should therefore also be able to manage
the tests performed and the results obtained. Based on this assumption, a set of system
requirements are extracted, organised into general needs, specific requirements, and user
categories and permissions.

3.2. System Structure

After elaborating on the system requirements, we present an overview of the system
structure. In the requirement analysis, the solution chosen for the design of this system
is a client-server architecture based on the REST model. The client-server model aims to
divide tasks to reduce the system load. The server will offer a series of services to a specific
user, an Application Programming Interface (API), and will perform the tasks requested by
the user and return the data. On the other hand, the client is responsible for requesting a
specific service from the server through messages.

The system will consist of the client and server, where the client will communicate with
the server through HTTP requests, and the server will respond through HTTP responses.
The server will be responsible for connecting to the database, making the transactions or
queries and returning the results.

3.3. Technologies to Use

After analyzing the requirements and the structure of the system, this section describes
the chosen technologies for the system development and implementation. The system
can be divided into two main components, the client-side (frontend) and the server-side
(backend).

3.3.1. Backend Technology

This system component will include the API server and the database used to ensure the
consistency of the system data. Once it was decided that the system should be implemented
as a web application, it made sense to use a platform that runs on the web and the JavaScript
language Pluralsight2021JavaScript. For this, Node.js Foundation2021Node.js was chosen.
Using Node.js will allow the application to be fast and scalable, and for this to happen,
the platform relies on non-blocking I/O, asynchronous event-driven programming and a
single thread.

For data consistency, the MongoDB database was chosen, which is a document
database; it stores data in JavaScript Object Notation (JSON)-type documents. As the
data will always be traded as JSON documents, the use of MongoDB will maintain this
consistency in a more natural, expressive and powerful way than any other model [42]. It
manages relationships between data, provides schema validation, and translates between
objects in code and the representation of those objects in MongoDB. For example, in Figure 2,
we can see this mapping of objects between Node.js and MongoDB through Mongoose.



Computers 2022, 11, 131 7 of 29

Figure 2. Object Mapping between Node.js and MongoDB managed via Mongoose.

3.3.2. Frontend Technology

For this system, the tool chosen was React.js [43] due to its ability to interact with
applications developed with the technologies selected for Backend [44]. In React.js, it is easy
to create an interactive UI because it projects simple visualizations for each application state
and efficiently updates and renders the right components when their data changes [45].
Moreover, React.js allows the creation of encapsulated components that manage their
condition. Through the composition of these components, it is possible to create more
complex interfaces with less complexity in the code.

Since the component’s logic is written in JavaScript instead of models, we can easily
pass data through the application and maintain the state outside the DOM [46]. Further-
more, the React virtual DOM allows the implementation of some intelligent alternative
solutions that guarantee the quick rendering of the components, which is necessary since
the data must be presented immediately and effectively. In these situations, React finds an
ideal way to update the UI, and all one needs to do is provide the data flow through the
API [47]. The React virtual DOM acts as an intermediate step whenever there are changes
in the web page. It allows the renderings to be faster and more efficient, making the pages
highly dynamic. We can see the difference between Real DOM and React Virtual DOM in
Figure 3.

Figure 3. Real DOM and React Virtual DOM.

3.4. Discussion

The requirements for the development of the system are divided into three to facilitate
better interpretation. First, a basic structure was defined, separating it into the API Server
responsible for accessing the data and implementing the logic and the client, accountable
for the user interface. We present and explain the technologies chosen for the development
of the system. MongoDB, Express and Node.js were selected for the server side, and for the
client side, React.js was chosen.

4. Architecture

For a better understanding, we present the general architecture of the CPS, which
comprises several components. Its modelling was divided into three phases. In the first
phase, the part of the architecture that concerns the management and configuration of the
system tests is explained after the presentation of the general architecture of the CPS.



Computers 2022, 11, 131 8 of 29

4.1. Test Management and Configuration Archicture

The architecture we propose in this section aims to automate and facilitate new tests.
We use the KDT methodology in conjunction with a DSL in this architecture. To fully
understand the architecture and how its components interconnect, it will be explained how
KDT and DSL are applied and later how they are integrated into the same architecture.

4.1.1. Keyword-Driven Testing Methodology

KDT will be used to abstract low-level code scripts, associating each hand with a
keyword that represents it as descriptively and explicitly as possible, making it easier for
the user. We will also associate each keyword with metadata related to the corresponding
test stored in a database. Figure 4 represents the approach taken in using KDT. The names
given to the difficulties in the figure are only fictitious to show that the words given to the
keywords should be as descriptive as possible.

Figure 4. KDT approach.

In Figure 4, we see a stack of scripts that represent the primitive test in the system
that focuses only on testing features, as long as they can be well-identified only by a word
that can serve as a keyword. We also see the representation of a database that will store
all the information and metadata about the tests existing in the system. Connected to
the database and the stack of scripts, we see a table with keywords representing all the
information related to a trial, which is the most relevant element in the figure because it is
where we can tell all the data from the stack of scripts and the database. This is done with
just one word that concedes testers with little programming knowledge to interpret what
each test does or means. Finally, we have the link between the tester and the keywords
table that demonstrates they will only have access to the keywords without knowing any
implementation details.

4.1.2. Domain-Specific Language

Using KDT does not bring advantages since we need something to design a test
execution flow. For this, we have DSL, facilitating a friendly language for testers without
the need for programming knowledge. The proposed language is simple but allows for
new scripts with new execution flows and logic rules applied. This is achieved only by
using the keywords defined by KDT and some terminal symbols defined in DSL. Table 1
shows the designated DSL terminal signs and what they represent.



Computers 2022, 11, 131 9 of 29

Table 1. DSL Symbols.

Symbol Description

keyword Catches the keywords in the script

− >
Catches the “next”symbol, which means that after that symbol, the next block to

be executed arrives
( Catches the opening parenthesis
) Catches the closing parenthesis
? Catches the conditional expressions from the script
: Catches the next block of code to be executed when a condition is false

& Catches the logical operator that means intersection
| Catches the logical operator that means union
; Catches the end of the script

4.1.3. Proposed Architecture

A final abstraction of all these processes is necessary to achieve the full potential of
the integration between KDT and DSL. Figure 5 presents the architecture that guarantees
to abstract the entire complex process of creating new tests for the system, thus giving the
possibility to users less endowed with programming knowledge to build new tests.

Figure 5. Proposed architecture for KDT with DSL.

By the illustration of Figure 5, it becomes possible to verify two tables representing the
keywords and symbols used to form new test scripts, presenting as ingredients keywords
that correspond to the defined tests and are available in the system to be used in the creation
of new tests.

It is still possible to verify by the same Figure 5, the link between the existing difficulties
with the keywords table, since the elements of the table symbols present the terminal
symbols of the defined in the DSL. This allows us to give an organization and logic to the
new tests, and, in this way, by the available elements in the two tables, it becomes possible
to write the new test script, which demonstrates the links between the component Write
Script and the tables.



Computers 2022, 11, 131 10 of 29

As soon as a new test script is written, the DSL will analyse it using a lexer and parser
and verify that it is syntactically and lexically well written. This step is represented in the
compile connection. If the script complies with the defined rules, the DSL will compile
that script and generate the code for a new test. However, for that, it needs access to the
principle of the tests used through the keywords, which is represented with the connection
Get Tests. The DSL will generate the code for a new test at the end of this process. This is
described in the Generate Code link. The new test is available for execution in the system
from that moment.

4.2. Self-Diagnosis Test System Architecture

In this section, the architecture for the self-diagnosis tests system will be presented,
divided into a frontend, backend and database.

Proposed Architecture

Here, we have represented the corresponding architecture of the junction of the
frontend and the backend, which corresponds to the self-diagnostic testing system that will
be integrated into a CPS, as shown in Figure 6.

Figure 6. Architecture for self-diagnosis test system.

In this architecture are represented the three main tiers of the system. The frontend
tier, which communicates with the backend tier, is responsible for the system logic through
HTTP requests and responses. The backend tier communicates with the database tier,
which is responsible for the consistency of the system data, through appeals in the form of
queries and answers in the form of JSON documents, all processed and validated through
the object data modeling.

The most crucial point of this architecture, which distinguishes it from the rest, is the
inclusion and integration of the test management and configuration architecture, which,
along with the other components of the system, will allow the system to ensure its integrity
and functionality through real-time self-diagnostic testing and also configure new tests for
the system with much less complexity.

4.3. General Architecture for the Cyber-Physical System

The final CPS architecture is presented and explained, where we integrate all its
components with the self-diagnosis tests system. This architecture aims to allow the CPS
to obtain the ability to diagnose itself and, thus, be able to identify the failures in case
of any internal error. The final architecture of the system can be seen in Figure 7 and is
explained below.



Computers 2022, 11, 131 11 of 29

Figure 7. Architecture for a self-diagnosis test system integrated with the CPS.

In this architecture, we can quickly identify four groups of components. Three of them
will form an integral part of the CPS: devices under test, electronic test drivers and the
self-diagnosis test system. The last group, user types, will be an essential intervenient,
but it is not an integral part of the CPS.

The devices under test group contains the devices that can be subjected to tests: the
car radios and the machine itself. The elements car radio and TSIM machine represent the
two types of devices.

The electronic test drivers group is responsible for the primitive tests of the system,
which can be any test as long as they respect the same integration format. Therefore, each
element of this group must respect the following format:

• Executable driver —Provides an executable driver file to run that will contain several
primitive tests that can be run and test the devices under test;

• Metadata— Provides a metadata file containing all the information about the driver’s
tests.

The test self-diagnostic system group is where the system developed in this work
is represented, which will allow users to manage and execute system tests. The TEST
MANAGEMENT element is responsible for loading all the metadata of the primitive tests
available in the metadata files of the electronic test controller and stored in a database of
the system to be executed.

The link element with the database is the object database model that will link and
handle the queries and transactions to the database, which is the database element. This
test management is done through the KDT methodology, explained previously, and the con-
figuration of new test runs done through the developed DSL is also explained previously.

The tests will be performed by the business logic server, which will receive the exe-
cution orders from the end-user. This server will know what tests are available in each
driver since the TEST MANAGEMENT element has already collected the metadata of all
the drivers and, at that point, made all the tests contained in them available for execution.

The business logic server controls all data and system direction and defines the routes
and types of requests the client-side can make. It represents the services that will be
available, and this is called the API. The API framework is responsible for creating and
providing a rest API for any client to access, with its appropriate permissions, also defined
by the business logic server.

The user interface server represents the client-side, responsible for creating the web
interface for end-users. It makes HTTP requests specifying the services through routes it
wants to access to get the data it needs for its pages. Two types of interfaces are available,



Computers 2022, 11, 131 12 of 29

the execution interface, represented by the TESTS EXECUTION element, and the tests
and configuration management interface, represented by the SYSTEM CONFIGURATION
element, with its corresponding user, which brings us to the last group specified in the
architecture, the User Types.

This group is represented by the user types element and describes the different types of
users of the final system. The first and most basic user type is the operator. This industrial
operator works and commands the CPS and runs only the tests or test packages of the
system. The second type of user, already more sophisticated, is the test manager, responsible
for managing the whole system, using the appropriate interface for that purpose.

4.4. Discussion

Briefly, the system architecture is divided into three stages. In the first stage, the archi-
tecture for the management and configuration of the system tests was built. In the second
stage, the first architecture was presented as an encapsulated element that integrates the
architecture of the self-diagnostic testing system. Finally, the architecture of the CPS was
composed, which incorporates all the components of this system, including the architec-
ture of the self-diagnostic testing system, where the architecture of the self-diagnostic
testing system and the architecture for test management and configuration are the focus of
the project.

The defined architecture represents an innovation for research in self-diagnostic test-
ing systems and CPS as it will allow the joining of these two types of systems into one.
Although the focus of the architecture is the application in a CPS, it is also applicable to
any system since the test feed defines the type of tests that will be performed in the design
and is therefore generic to accept any level of testing.

This architecture follows the separation and structuring in microservices, allowing the
execution of the tests remotely or by any other system with access permissions to the API
provided by the server.

5. Implementation

This paper aims to create a self-diagnosis test system that will be an integrated appli-
cation in CONTROLAR’s cyber-physical machines that allow its self-diagnosis in real-time.
The proposed architecture for the self-diagnosis test system enables the management, con-
figuration and execution of system tests, presenting a modular and extensible model that
allows exploring different levels of tests to be performed on the devices under test.

5.1. Database

For the database, MongoDB was used, which is a document database. That is, it stores
the data in the form of JSON documents. According to the system’s data, five collections of
data have been identified to be held in the database: configurations, tests, reports, schedules
and packages.

The configuration collection contains attributes that may differ from machine to
machine and are necessary to ensure the correct operation of the system. Finally, the tests
collection stores all the metadata provided by those who create and make available the
primitive tests. These are imported into the system database and updated.

The reports collection stores all the reports of the execution of primitive tests or test
packages in the system. The schedules collection stores all the performances of primitive
tests or sets of tests scheduled for a specific time by the user. The same is not valid for the
packages collection, which stores all the metadata for the new test suites created in the
system from the primitive tests.

After specifying the data to be saved in each collection of the system’s database,
the next section will explain how the system interacts with the database through queries to
obtain the data for its operation.



Computers 2022, 11, 131 13 of 29

5.2. Backend

The backend is the system tier responsible for managing the database and making the
data available to the Ffrontend. Therefore, framed in the Model-View-Controller (MVC)
architecture, it is the controller of the system and establishes the connection between the
database and the user interfaces, thus guaranteeing the integrity of the data, not allowing
other components to access or change them.

The technology used to develop this server was Node.js combined with Framework
Express. This server is organized so that there is a division of the code according to its
function. Instead of all the code being in one file, it was divided into different files and
directories according to its purpose on the server. This will allow the reuse and modularity
of the developed code, facilitating its maintenance and understanding in the future.

Thus, the server structure is comprised of the models responsible for the collections
stored in the database, the controllers responsible for the execution of all system opera-
tions, the grammar, which corresponds to the DSL developed for the system, the routes
that forward the requests, from the client and lastly the app.js, activated through the
express module.

Each of these elements above plays a crucial role in the server logic and will be detailed
below for a better understanding.

5.2.1. Models

Models represent the collections stored in the database. Each model must then rep-
resent its collection and validate the data types of its attributes before transactions are
performed with the database. In these models, the “mongoose” module is imported, a data
modelling object that allows connecting to the database in an asynchronous environment
and sending and receiving data in JSON format, which will facilitate the use of the data in
the system, as illustrated in Listing 1.

Listing 1. Report Model.

const mongoose = requi re ( ‘ ‘ mongoose ’ ’ ) ;

const testsSchema = new mongoose . Schema (
{

i d _ t e s t : { type : mongoose . Schema . Types . ObjectID , required : t rue } ,
module : { type : Str ing , required : t rue } ,
name : { type : Str ing , required : t rue } ,
r e s u l t : { type : Str ing , required : t rue } ,
message : { type : Str ing , required : f a l s e } ,
runtime : { type : Number , required : t rue } ,
resu l tVa lue : { type : Str ing , required : f a l s e } ,

}
{ versionKey : f a l s e }

) ;

const reportSchema = new mongoose . Schema (
{

id_user : { type : Str ing , required : t rue } ,
date : { type : Str ing , required : t rue } ,
r e s u l t s : [ testsSchema ] ,

} ,
{ versionKey : f a l s e }

) ;

module . exports = mongoose . model ( " repor t " , reportSchema ) ;



Computers 2022, 11, 131 14 of 29

In line 1 of listing one, we see the import of the “mongoose” module. Next, be-
tween lines 3 and 14, we see the model in the form of an object representing the structure of
a test result with its attributes and data types. This object serves as an auxiliary structure,
in this case, to be introduced in the report model. Next, between lines 16 and 23, we see the
report model in the form of an object with its attributes and data types. Then, in line 20,
where the attribute “results” is specified, we see a list of things, which are objects with the
structure defined above, for the effects of each test. Finally, in line 25, we see the export of
the created model, making it available for use by other files. In this case, it will be used by
the controller, who will be responsible for the report collection operations.

5.2.2. Grammar

The DSL developed in this paper aims to create new test suites from the primitive
tests available in the system, with rules and logic applied, to be executed in the shortest
possible time. The language was created from the terminal symbols to identify by the lexer.
The parser was created for the rules of logic and sentence construction of the grammar
specified. The terminal symbols have been placed in Table 1. The structure of the lexer is
shown below in Listing 2:

Listing 2. Grammar Lexer.

l e x e r grammar TestLexer ;

NEXT : ’ − > ’ ;
AND : ’& ’ ;
OR : ’| ’ ;

IF : ’ ? ’ ;
ELSE : ’ : ’ ;

RPAREN : ’ ) ’ ;
LPAREN : ’ ( ’ ;

END : ’ ; ’ ;

KEYWORD : ( [A−Za−z ] + ( [ / _ − ] [A−Za−z ] + ) * ) ;

WS
: [ \r\n\ t ] −> skip ;

The structure of the Lexer is quite simple, starting with its identification and then
specifying all terminal symbols that must be recognized. These symbols are defined through
regular expressions, always ensuring that this definition does not include unexpected
elements and, therefore, is not ambiguous.

The symbols we see in this grammar are very intuitive and easy for the end-user
to understand, which is one of the objectives. The only symbol that gives any further
explanation is the keyword symbol. This symbol must recognize all the names of the
primitive tests introduced in the script. Furthermore, its regular expression includes
isolated words, thus giving the user some freedom to be more expressive in the choice of
keywords. After defining all these factors, it is time to specify the sentence construction
rules with these symbols. This is done with the Parser, shown below in Listing 3: ‘



Computers 2022, 11, 131 15 of 29

Listing 3. Grammar Parser.

parser grammar Tes tParser ;

opt ions {
tokenVocab=TestLexer ;

}

t e s t
: s tatement END ;

statement
: condi t ion # Condit ional
| seq #Sequence ;

condi t ion
: expr IF statement ELSE statement # I f E l s e
| expr IF statement # I f ;

seq
: KEYWORD (NEXT statement ) * ;

expr
: LPAREN KEYWORD (AND KEYWORD) * RPAREN #And
| LPAREN KEYWORD (OR KEYWORD) * RPAREN #Or ;

The parser starts with identification, following the reference for the lexer that provides
the symbols to know which are the terminal symbols. After these two steps, the sentences of
the grammar are specified. In the element statement, we can see the condition representing
a conditional expression and a seq representing a tests sequence. The most important part
of the parser to retain is the elements that come at the end of the lines for each possibility
determined at the beginning of words by a #. This allows the visitor to know the possible
paths in the parsing tree that this parser will generate.

In order for the system can use this grammar, it is necessary to find a way to use it in
the system. Since ANTLR offers the transformation of grammar for several programming
languages, we will proceed to transform the grammar into JavaScript and include the code
directly in the system. For this, it is necessary to execute the following command:

$ antlr4 -Dlanguage = JavaScript Lexer.g4 Parser.g4 -no-listener -visitor

In this command, we specify the lexer and parser to be transformed. After, we define
the generation of a visitor. After executing this command, several files will be generated,
including the visitor. This is where the code to be developed for the new test suites will be
specified, as we can see below, in Listing 4.

Listing 4. Grammar Visitor.

T e s t P a r s e r V i s i t o r . prototype . visi tAnd = funct ion ( c t x ) {
t h i s . auxOp = 0 ;
f o r ( l e t i = 0 ; i < c t x .KEYWORD( ) . length ; i ++) {

t h i s . auxLis t . push ( c t x .KEYWORD( i ) ) ;
}
re turn " " ;

} ;

The visitor is to go through the code script through the elements specified in the parser,
and each aspect generates the corresponding code. The generated code within the visitor is



Computers 2022, 11, 131 16 of 29

nothing more than a string incremented and filled up to the end of the parsing tree. All
keywords are also saved in a list so that the list and the line containing the generated script
are returned at the end. The list of keywords is necessary because it will be necessary to
match after generating this code.

5.2.3. Controllers

Controllers are responsible for executing system operations. The way they are struc-
tured is similar to models. There is a file for each model accountable for managing the
processes related to that collection or model. In each controller, several operations are
available according to the needs of each one, but what is common to all is the create, read,
update, and delete (CRUD) operations. Besides these operations, there are still more that
are particular to only some models, such as the execution of primitive tests, which is an
operation developed only in the test controller, the creation of new test suites that make use
of the developed DSL and the execution of those identical test suites that are operations
defined only in the package controller.

The operations shown below are those mentioned different from the usual CRUD.
However, given the context of the system, they are fundamental to its performance:

• A method to execute a primitive test, passing as arguments the directory where
the electronic test drivers are kept, the id of the test to be performed, and the test’s
parameters.

A query is made to obtain all the information related to the test, and the execution time
count is started. Then, the driver responsible for executing the test is run, which executes
it and returns the results. The execution time counts stops as soon as the results arrive,
and the test execution time is saved. Finally, some information about the test is added to the
results to be held in the reports, and the object containing the results of the test execution
is returned (Listing 5):

Listing 5. Execute one primitive test.

module . exports . runTest = async ( dr iversDirec tory , idTest , defaultParam ) => {
l e t t e s t = await Test . findOne ( { _id : idTes t } ) . exec ( ) ;
l e t s tar tTime = process . hrtime ( )
exec ( ‘ $ { d r i v e r s D i r e c t o r y }\\$ { t e s t . module } " $ { idTes t } " " $ { defaultParam } " ‘ ,
( err , stdout , s t d e r r ) => {

i f ( e r r ) re turn s t d e r r
e l s e {

l e t endTime = process . hrtime ( s tar tTime )
l e t r e s u l t = JSON . parse ( stdout )
r e s u l t . runtime = ( endTime [ 1 ] / 1 0 0 0 0 0 0 ) . toFixed ( 3 ) ;
r e s u l t . i d _ t e s t = idTes t ;
r e s u l t . module = t e s t . module ;
r e s u l t . name = t e s t . name ;
re turn r e s u l t ;

}
} )

} ;

• A method to create a new test suite and insert it into the database, passing an object
with the package’s attributes as an argument.

This method starts by using the grammar defined, using the lexer and the parser,
to analyze the code script written by the user. Then a parsing tree is created, generated
and passed from the visitor of the grammar as an argument. If no error is found in the
parsing tree, the visitor will go through that tree and generate the code for the new test
suite. After generating the code for the new script, it will be written to a file that will be



Computers 2022, 11, 131 17 of 29

saved in the directory where the system’s test suites are. Then, the new test suite is also
inserted into the database (Listing 6):

Listing 6. Create new test suite.

module . exports . inser tPackage = async ( package ) => {
l e t chars = new a n t l r 4 . InputStream ( package . s c r i p t ) ;
l e t l e x e r = new Lexer ( chars ) ;
l e t tokens = new a n t l r 4 . CommonTokenStream ( l e x e r ) ;
l e t parser = new Parser ( tokens ) ;
parser . bui ldParseTrees = true ;
l e t t r e e = parser . t e s t ( ) ;

i f ( t r e e . parser . _syntaxErrors === 0) {
l e t l i s t O f T e s t s = await Test . g e t T e s t s ( ) ;
l e t v i s i t o r = new V i s i t o r ( l i s t O f T e s t s ) ;
v i s i t o r . v i s i t T e s t ( t r e e ) ;
l e t t e x t F i l e = v i s i t o r . getRes ( ) + " " ;
l e t t = v i s i t o r . g e t T e s t s ( ) ;
l e t t e s t s = t . f i l t e r ( funct ion ( elem , pos ) {

re turn t . indexOf ( elem ) == pos ;
} ) ;
l e t fileName = package . name . toLowerCase ( ) . r e p l a c e (/\ s/g , ’ _ ’ ) + " . j s " ;
l e t f i l e P a t h = s c r i p t s _ p a t h + fileName ;

f s . w r i t e F i l e ( f i l e P a t h , t e x t F i l e , " u t f 8 " , funct ion ( e r r ) {
i f ( e r r ) throw e r r ;
l e t t = new Package ( {

name : package . name ,
d e s c r i p t i o n : package . descr ip t ion ,
code : package . s c r i p t ,
path : fileName ,
t e s t s : t e s t s , } ) ;

re turn t . save ( ) ; } ) ;
} e l s e {

re turn { e r r o r s : t r e e . parser . _syntaxErrors } ;
}

} ;

• Method to execute a test suite, passing the ID of the test suite to be run as an argument.

This method starts by querying the package collection for information about the
package to be executed. After receiving this information, it only needs to import the test
suite code file and call the “run” method that triggers the test suite’s execution. In the end,
it waits for the results and returns them (Listing 7).

Listing 7. Execute a test suite.

module . exports . runPackage = async ( idPackage ) => {
l e t package = await Package . findOne ( { _id : idPackage } ) . exec ( ) ;
i f ( package ) {

const f i l e = requi re ( " . / . . / publ ic/Packages /" + package . path ) ;
re turn await f i l e . execute ( ) ;

}
re turn { } ;

} ;



Computers 2022, 11, 131 18 of 29

The operations demonstrated and explained are examples of the different types of
procedures that the system performs and supports. However, we can see that all of them
have in common that each performs only a specific action that allows us to isolate these
actions and reuse them frequently in different parts of the code for other purposes. This
will also enable better maintenance of these operations, since whenever it is necessary to
make any changes in any of them, it will be done only once and in the indicated location,
instead of having to change in different areas, which would easily cause inconsistencies in
the code in the long-term.

5.2.4. Routes

The server’s routes, as mentioned previously, are responsible for defining the requests
that the client can request, and in this case, they are the ones that receive these requests,
forward them to carry out the operations that are necessary to satisfy them, and in the end,
send the data to the client. The way the routes are built is based on the URL. For each
request, a URL is associated. As the defined API follows the REST architecture, these routes
will follow particular and precise formats to notice the type of operation that needs to
be executed.

As we saw earlier on controllers, CRUD operations are the most common and on
routes. There is also a way to mark requests to determine the category of functions they deal
with. In this case, they are HTTP requests. In this system, four types of recommendations
have been implemented, namely the get method, responsible for retrieving information
from the server using a given uniform resource identifier (URI), a post request used to send
data to the server, the put request, which replaces all current representations of the target
resource with the uploaded content, and the delete request, responsible for removing all
contemporary models of the target resource provided by the URI.

We see all the developed API services available to the client in the previous tables.
The implementation of all of them will not be detailed here, but only of some, as a demon-
strative example of the implementation format, which is always the same except for some
more complex requests. For example, in Listing 8, shown below, we can see the implemen-
tation of the route for the get/test request:

Listing 8. Example of GET request implementation.

router . get ( "/ t e s t s " , funct ion ( req , r es ) {
Tes ts . g e t T e s t s ( )

. then ( ( data ) => re s . jsonp ( data ) )

. ca tch ( ( e r r o r ) => re s . s t a t u s ( 5 0 0 ) . jsonp ( e r r o r ) ) ;
} ) ;

In this example, we see in line 2 the use of “Tests”, which is the reference already
imported into the test controller. Then, with this reference, the “getTests” method is called,
which is exported in the tests controller. Thus, what is happening is precisely what was
described previously. This router forwards the operation to the controller responsible for it.
Then, it just waits for the results to arrive to return them to the client.

In Listing 9, shown below, we can see the implementation of the route for the post/pack-
ages request:

Listing 9. Example of POST request implementation.

router . post ( "/ packages " , funct ion ( req , re s ) {
Packages . inser tPackage ( req . body )

. then ( ( data ) => re s . jsonp ( data ) )

. ca tch ( ( e r r o r ) => re s . s t a t u s ( 5 0 0 ) . jsonp ( e r r o r ) ) ;
} ) ;

In this example, the process is very similar to the previous one. The only difference is
that the information saved in the system comes in the request’s body (“req.body”). There-
fore, it is necessary to send this information to the method that deals with the operation.



Computers 2022, 11, 131 19 of 29

In Listing 10, shown below, we can see the implementation of the route for the
put/schedules/:idSchedule request:

Listing 10. Example of PUT request implementation.

router . put ( "/ schedules /: idSchedule " , funct ion ( req , re s ) {
Schedules . updateSchedule ( req . params . idSchedule , req . body )

. then ( ( data ) => re s . jsonp ( data ) )

. ca tch ( ( e r r o r ) => re s . s t a t u s ( 5 0 0 ) . jsonp ( e r r o r ) ) ;
} ) ;

We see the same similarities again in this example, but with a slight difference. Put
requests usually bring the identifier of the element that we want to update in the sub-route
and, therefore, to have access to it, we must access the request parameters (“req.params”).

In Listing 11, shown below, we can see the implementation of the route for the
delete/packages/:idPackage request:

Listing 11. Example of DELETE request implementation.

router . d e l e t e ( "/ packages /: idPackage " , funct ion ( req , res , next ) {
Packages . deletePackage ( req . params . idPackage )

. then ( ( data ) => re s . jsonp ( data ) )

. ca tch ( ( e r r o r ) => re s . s t a t u s ( 5 0 0 ) . jsonp ( e r r o r ) ) ;
} ) ;

In this example, we see the same structure again, but to delete an element from the
system, we only need to access the request parameters to obtain the identifier and pass it to
the controller.

5.3. Frontend

The frontend is the system level responsible for creating and managing the graphical
interfaces. For this system, there are two types of users. The first type of user, more
fundamental, will only have access to the execution of primitive tests and test suites.
The second type of user, already responsible for managing the system and the test suites,
has access to all the other functionalities.

5.3.1. Components

As mentioned, developing components in React becomes an asset. Still, to master the
technology, one must understand the fundamentals and how the pieces interact. The three
concepts highlighted here are the state of a component is mutable and can be changed
by the element itself. These props are the state information of a component and lastly,
the events, which are how the child component should inform the parent component of
the changes.

Thus, to understand how these concepts apply in practice and make the most of
the use of React components, we can see below, in Figure 8, an illustration of how these
concepts are related:



Computers 2022, 11, 131 20 of 29

Figure 8. Interactions between components.

5.3.2. Obtaining API Data

Another critical aspect for this part of the system to work as planned is getting the data
managed by the backend tier. The graphical interfaces built should be optimized and fast
in obtaining data, facilitating the user in this way, because the user does not have to wait
long to load the pages, and the data must be obtained in the best way. Here, the decision
made was that the parent components of each page make the data requests to the API at
the time of its creation. With this, the system pages are that the data are requested and
loaded whenever the user changes the page or enters a new page.

The way to obtain the data is through HTTP. To make the code clearer, a file was
created only for requesting data from the API. This file contains the base URL of the data
API, and all forms add only the route and sub-route. This can be seen below in Listing 12:

Listing 12. Example of request to obtain API data.

e x p o r t t const g e t T e s t s = async ( ) => {
t r y {

const reponse = await ax ios . get ( ’ $ { u r l }/ t e s t s ’ ) ;
re turn response . data ;

} ca tch ( e r r o r ) {
const statusCode = e r r o r . response ? e r r o r . response . s t a t u s : 5 0 0 ;
throw new Error ( statusCode . t o S t r i n g ( ) ) ;

}
} ;

This example shows how HTTP requests are made to the API using the imported
module “Axios”. Another essential feature that we see in this example is the use of the
keyword “await”, which in this particular case makes the method wait for the results of
the API.

5.3.3. User Interfaces

The division of access to the pages by each user was carried out through the login
on the first page, which will allow assigning a JSON Web Token (JWT) to the user and
will only give him access to the appropriate functionalities. After that, the user must enter
his ID (provided by CONTROLAR) and enter the proper mode. For example, if it is an
operator, it must enter the execution mode, and if it is the system manager, it must enter
the configuration mode.

It is only possible to execute primitive tests or test packages on the page available to
the operator. The operator has a list of all the primitive tests of the system. To run these
tests, they must select the ones they want and execute them all at once. After selecting the
tests and passing them to the execution pipe, they need to press a button to run. The system
will execute the tests, and, in the end, a table will be presented with the results obtained.
The execution interface and the results table shown to the user can be viewed below,
in Figures 9 and 10, respectively:



Computers 2022, 11, 131 21 of 29

Figure 9. Execution page.

The method described above for selecting and executing primitive tests by the user is
the same for the test suites.

Figure 10. Execution Results Table.

The results table shows the execution drivers and some metadata added by the system.
The critical metric for the test results is whether the test passed, failed or was inconclusive.
The goal of these interfaces is to be as functional and straightforward as possible for
decision making.

More pages and resources will be accessible to the system manager or administrator.
For example, Figure 11 presents the execution report page with the table with all the
execution reports made in the system.



Computers 2022, 11, 131 22 of 29

Figure 11. Report page.

Each row in the table allows for expansion that opens an internal table, detailing the
results of all tests performed in this report.

The user also has the page for managing and configuring new test suites for the system,
which can be seen in Figure 12. On this page, the user has at his disposal the list of existing
packages in the system, where he can remove or edit them. There is also a form for creating
a new test suite, where the user only needs to specify the name, description and code of the
new test suite. The code is written with the DSL.

Figure 12. Package management page.

The manager also has a page available where he has access and must update the
system settings whenever necessary. These settings are required for the system to work
since they are used in fundamental processes. The settings include the the manager ID,
which is the only one that has access to this system mode, the MongoDB bin directory,
i.e., the directory where the MongoDB executable files are and that allows data extractions
and imports, the directory where the system itself is installed, and finally, the directory
to where the backups should be exported and also from where they should be imported.
For example, this page can be seen in Figure 13:



Computers 2022, 11, 131 23 of 29

Figure 13. System configurations page and data export and import.

This page’s features are the management of the system configurations, exporting the
system execution reports in CSV format, which can be filtered, making backup copies, cus-
tomising the data one wants to copy, and restoring backup copies of the system. The backup
copies will allow the system to be constantly aware of failure or data corruption situations.
However, these features require that the system configurations are correctly completed
and correct.

5.4. Validation

The system was implemented with all the established requirements. Several test
cases were created to validate the solution and confirm the achievement of the proposed
objectives. The first tests were performed on the system’s functionalities, the execution of
the tests, and the automation of the update. Then, several test scenarios were simulated,
and the system behaved as expected, passing all the tests performed. We can see the tests
performed and their results in Table 2.

Table 2. Results of test cases performed on test executions and management.

Test Case Test Steps Test Data Expected Result Actual Results Pass/Fail

Check the execution
of primitive tests

1. Select tests to execute 2.
Click the button to run 3.
When window to confirm ap-
pears, select yes

Tests selected:
am_power_on
set_frequency
am_seek_left

A table with the test results
must appear

Table presented with the
results

Pass

Check the execution
of all primitive tests

1. Select all tests to execute
2. Click the button to run 3.
When window to confirm ap-
pears, select yes

Tests selected:
all available

A table with all the test re-
sults must appear

Table presented with all
results

Pass

Check for a message
when no test is se-
lected to notify

1. Click button to execute
without selecting tests

None A warning message should
appear notifying you that
the user has not selected any
tests

Message appeared with
the notification

Pass

Check if system up-
dates the removed
primitive tests

1. Go to the electronic test
drivers directory 2. Remove
driverA.json from directory
3. Open the system in the
execution mode 4. Check if
tests of driver A are available

None Tests from driver A must not
appear to be selected

Tests are not available Pass



Computers 2022, 11, 131 24 of 29

Table 2. Cont.

Test Case Test Steps Test Data Expected Result Actual Results Pass/Fail

Check if system
updates the added
primitive tests

1. Go to the electronic test
drivers directory 2. Add
driverA.json from directory
3. Open the system in execu-
tion mode 4. Check if tests of
driver A are available

None Tests from driver A must ap-
pear to be selected

Tests are available Pass

Check the execution
of a test suite

1. Select test suite to execute
2. Click the button to run

Test suites se-
lected: Pacote
AM FM

A table with the test suite re-
sults must appear

Table presented with the
results

Pass

Check the execution
of all test suites

1. Select all test suites to ex-
ecute 2. Click the button to
run 3. When window to con-
firm appear, select yes

Test suites
selected: all
available

A table with the all test suite
results must appear

Table presented with all
results

Pass

Check for a message
when no test suite is
selected to notify

1. Click button to execute
without selecting tests

None A warning message should
appear notifying you that
the user has not selected any
test suites

Message appeared with
the notification

Pass

This table contains the test case line that describes the tests, the testing functionality,
and the test steps that the tester must follow strictly to reproduce the same result or
attempt. The test data correspond to the data that will be necessary to perform the test.
The expected result refers to the effect that the test must achieve to meet the system
requirements. The actual impact is the result that the test obtained after the execution and
the pass/fail trial.

After carrying out the test cases discussed above, the test cases were performed for all
other system features, with the results tables all having the same format. We can see the
results and test cases remaining in the following Tables 3–5.

Table 3. Results of test cases performed on visualization reports, documentation of primitive tests
and scheduling of executions.

Test Case Test Steps Test Data Expected Result Actual Results Pass/Fail

Check the execu-
tion reports

1. Open tab “Relatórios” None A table with the all reports
must appear

Table presented Pass

Check the details
of an execution re-
port

1. Open tab “Relatórios” 2.
Choose a report and click on it

None A table with the evidence
of the results of the tests
carried out in that report
must be presented

Table presented Pass

Check documenta-
tion of primitive
tests

1. Open tab “Documentação” None A table with all primitive
test metadata must be pre-
sented

Table presented Pass

Check the sched-
ule of a new execu-
tion

1. Click in the button to add
schedule 2. Enter time 3. Acti-
vate the option button 4. Select
the primitive tests to execute 5.
Select the test suites to execute
6. Click on the save button

Time: 8:00 Active: True
Tests Selected: power_on
set_fm_frequency
fm_seek_right

A new schedule must be
added to the system

Schedule created Pass

Check scheduling
a new execution
without selecting
any test

1. Click on the button to add
schedule 2. Enter time 3. Acti-
vate the option button 4. Click
on the save button

Time: 10:00 Active: True An error message must ap-
pear stating that at least
one test must be selected

Message appeared Pass

Check the update
of a schedule

1. Click on the schedule timed
to 8:00 2. Change time to 9:00
3. Click on the save button

Time: 9:00 The schedule must be up-
dated

Schedule created Pass

Check the removal
of a schedule

1. Click on the option button
to remove the schedule timed
to 9:00

None The schedule must be re-
moved

Schedule created Pass



Computers 2022, 11, 131 25 of 29

Table 4. Results of test cases performed in managing and creating test suites and exporting reports
to CSV.

Test Case Test Steps Test Data Expected Result Actual Results Pass/Fail

Check the creation
of a new test suite
with wrong script

1. Open tab “Gestão de Pa-
cotes” 2. Enter package name
3. Enter package description 4.
Write the script 5. Click on the
save button

Package Name: Novo
Pacote Package De-
scription: Pacote para
demonstrar erro Pack-
age Script: InventedTest
− > am_power_on− >

An error alert must ap-
pear to the user saying
the code is not correct

Alert shown Pass

Check the creation
of a new test suite

1. Open tab “Gestão de Pa-
cotes” 2. Enter package name
3. Enter package description 4.
Write the script 5. Click in the
save button

Package name: New
Package Package de-
scription: Package for
demonstration Package
script: power_on− >
am_power_on;

Test suite must be cre-
ated and should appear
in the list on the left side

Test suite created and
available

Pass

Check the update of
a test suite

1. Open tab “Gestão de Pa-
cotes” 2. Click on the pack-
age named ”New Package”
3. Click on the edit button 4.
Change the name 5. Click on
the save button

Package name: New
Package to Remove

Test suite must be up-
dated

Test suite updated Pass

Check the removal
of a test suite

1. Open tab “Gestão de Pa-
cotes” 2. Click on the package
named ”New Package to re-
move” 3. Click on the remove
button

None Test suite must be re-
moved

Test suite removed Pass

Check the export of
reports to a CSV
with dates not cov-
ered

1. Open tab “Configurações”
2. Enter begin date on export
CSV 3. Enter end date on ex-
port CSV 4. Click download
button

Begin date: 25 July 2021
End date: 1 September
2021

A CSV file must be
downloaded without
lines

CSV file was down-
loaded with no lines

Pass

Check the export of
reports to a CSV

1. Open tab “Configurações”
2. Enter begin date on export
CSV 3. Enter end date on ex-
port CSV 4. Click download
button

Begin date: 1 January
2021 End date: 1 August
2021

A CSV file must be
downloaded that con-
tains all the reports from
the specified interval

CSV file downloaded
with the all reports
from the interval

Pass

Table 5. Results of test cases performed on system backups, restoring backup versions and managing
system configurations.

Test Case Test Steps Test Data Expected Result Actual Results Pass/Fail

Check system backup, in-
cluding schedules and
packages

1. Open tab “Configurações” 2. In-
clude packages and schedules 3.
Click on the make backup button

None A zip file must be saved
in the backup directory
specified in the system
configurations and a suc-
cess message should ap-
pear

Zip file successfully saved
to the backup directory and
the success message ap-
peared

Pass

Check system backup, in-
cluding all system data

1. Open tab “Configurações” ” 2.
Include all options 3. Click on the
make backup button

None A zip file must be saved
in the backup directory
specified in the system
configurations and a suc-
cess message should ap-
pear

Zip file successfully saved
to the backup directory and
the success message ap-
peared

Pass

Check the system backup,
with incomplete system
configurations fields

1. Open tab “Configurações” ” 2.
Include all options 3. Click on the
make backup button

None An error message must
appear informing that
all fields of system con-
figurations must be com-
pleted

Error message appeared
stating that all fields must
be completed

Pass



Computers 2022, 11, 131 26 of 29

Table 5. Cont.

Test Case Test Steps Test Data Expected Result Actual Results Pass/Fail

Check the restore of a
backup in the system,
including schedules and
packages

1. Open tab “Agendamentos” 2.
Delete the 8:00 schedule 3. Open
tab “Gestão de Pacotes” 4. Delete
package with name “Pacote Exem-
plo” 5. Open tab “Configurações”
6. Select backup to restore with
name ending with substring ”_sp”
7. Click the button to make a re-
store

None The removed schedules
and packages must be
on the system again
and a success message
should appear

Schedules and packages
have been re-established
and the message of success
has appeared

Pass

Check the restore of a
backup in the system, in-
cluding all data

1. Open tab “Agendamentos” 2.
Delete all schedules 3. Open tab
“Gestão de Pacotes” 4. Delete all
packages 5. Open tab “Config-
urações” 6. Select backup to re-
store with name ending with sub-
string”_crsp” 7. Click the button
to make a restore

None The removed elements
must be on the system
again and a success mes-
sage should appear

All data were re-established
and the message of success
has appeared

Pass

Check the restore of a
backup in the system with
incomplete fields on sys-
tem configurations

1. Open tab “Configurações” 2. Se-
lect backup to restore 3. Click the
button to make a restore

None An error message must
appear informing that
all fields of system con-
figurations must be com-
pleted

Error message appeared
stating that all fields must
be completed

Pass

Check the update of sys-
tem configurations

1. Open tab “Configurações” 2.
Delete the backup directory 3.
Click the save button

None Backup directory must
be empty

Backup directory is empty Pass

In total, 28 test cases covered all the system’s functionality, some of them with more
than one test case. No more test cases were carried out because the time it would take to
do so is immense, but the test cases performed were considered the most comprehensive
cases and, therefore, will give the most excellent coverage of requirements. After analysing
all the results obtained in the tests and verifying that they all passed, we can say that all
requirements have been successfully implemented. As a result, the system is ready to be
integrated with the other components.

5.5. Discussion

As mentioned, the entire implementation of the system was presented in this section.
The different system tiers were offered and the technologies, methods, and strategies used
to develop a plan that would respond in the best way to all requirements. The entire code
was not explained or detailed because it is pervasive, but the most relevant parts were
explained, allowing, for those who read it, the reproduction of this work and application in
its context. It should also be noted that the developed system is prepared to be integrated
with a CPS and with the integration of electronic tests guaranteed and, therefore, ready to
carry out the self-diagnosis of the CONTROLAR machines. To validate the implementation
of the system and its compliance with the established requirements, 28 test cases were
carried out to cover all needs. The results show that all test cases have been approved and,
therefore, the system meets all the proposed requirements.

6. Conclusions and Future Work

In the project’s development, we conclude that the main contributions are the architec-
ture design to integrate a self-diagnostic testing system in a CPS and its implementation.
An integrated approach will enable the organisation to self-diagnose its machines in real-
time, thus ensuring their integrity.

Based on the state-of-the-art analysis, we found that existing solutions for testing
systems still focus only on software testing and very little on integrating other categories of
tests, hence their integration into CPS. However, in light of the knowledge gained through
the analysis of software testing systems and test automation, it is possible to create a



Computers 2022, 11, 131 27 of 29

plan with some of these characteristics that is designed to be integrated and self-diagnose
the CPS. With this, an architecture for the test self-diagnosis system was developed that
combines the KDT methodology with a DSL to manage and configure the system tests.
This architecture provides a modular and scalable solution to integrate the system with the
CPS and perform any test. In addition, another architecture has been designed to extend
and integrate the self-testing system into a CPS that proves the modularity of the proposed
architecture for the self-testing system by demonstrating how we can develop it in a CPS.

The proposed modular and extensible architecture represents an innovation for self-
diagnostic systems and CPS research. It allows combining these two plans using the KDT
methodology with a DSL to manage and configure the system tests. Furthermore, this
architecture allows tests to be run remotely or by any other system with permission to
request HTTP to the REST API. Although the focus of the architecture is the application of
a CPS, it is also applicable to any system as it is generic to accept any test. With this work,
we have proven that it is possible to integrate self-diagnostic test systems into a CPS with a
practical and generic solution combined with other test systems.

The implementation of the system according to the specified requirements, based on
the proposed architecture, proves that the system can be modular and allow self-diagnosis
by taking any test. To validate the implementation of the system and its compliance with
the established requirements, 28 test cases were performed to cover all requirements. The re-
sults show that all test cases passed, so the system meets all the proposed requirements.
Thus it can be seen that the contributions guarantee security, performance and function-
ality in using CONTROLAR machines and can now be diagnosed in real-time, allowing
customers such as Bosch to make the most of their use in the production environment.

Future Work

It would be interesting to improve the interface for creating new test suites in the
system for future work. Although the currently implemented solution is practical and
allows for good use, it could be even more functional and straightforward for the user
if a drag and drop window were developed to design new test suites instead of writing
a code script. Another aspect that could be expanded would be introducing weekly or
monthly schedules according to the annual production calendars, which would be even
more helpful for this resource.

Although the system is quite complete and correctly implements all the features
required by CONTROLAR, there is still a potential for expansion in other types of uses
that the company has not explored, such as, for example, the introduction of machine
learning/deep learning [48]. For instance, in the future, from the data generated in a
production environment, it will be possible to make predictions of the daily or even weekly
moments when the machine will be more vulnerable to errors. This topic can be fascinating,
as it can give users a better perception of how they should and not use their machines to
obtain the best performance from them.

Author Contributions: All authors who contributed substantially to the study’s conception and
design were involved in the preparation and review of the manuscript until the approval of the final
version. D.F.O., J.P.G. and R.B.P. were responsible for the literature search, manuscript development,
and testing. Furthermore, M.A.B. and R.J.M. actively contributed to all parts of the article, including
interpretation of results, review and approval. In addition, all authors contributed to the development
of the system for the performance of the system tests. All authors have read and agreed to the
published version of the manuscript.

Funding: This article is a result of the project POCI-01-0247-FEDER-040130, supported by Operational
Program for Competitiveness and Internationalization (COMPETE 2020), under the PORTUGAL
2020 Partnership Agreement, through the European Regional Development Fund (ERDF).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Ethics approval is not applicable in this study.



Computers 2022, 11, 131 28 of 29

Data Availability Statement: Not applicable in this study. However, the study data sets used or
analysed are available in the manuscript tables.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publica-
tion of this paper.

References
1. Lee, E.A. Cyber physical systems: Design challenges. In Proceedings of the 11th IEEE Symposium on Object/Component/Service-

Oriented Real-Time Distributed Computing, ISORC 2008, Orlando, FL, USA, 5–7 May 2008. [CrossRef]
2. Pereira, R.B.; Brito, M.A.; Machado, R.J. Architecture Based on Keyword Driven Testing with Domain Specific Language for a Testing

System; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 310–316. [CrossRef]
3. Pereira, R.B.; Ramalho, J.C.; Brito, M.A. Development of self-diagnosis tests system using a DSL for creating new test suites for

integration in a cyber-physical system. Open Access Ser. Inform. 2021, 94, 1–16. [CrossRef]
4. Leitão, P. Agent-based distributed manufacturing control: A state-of-the-art survey. Eng. Appl. Artif. Intell. 2009, 22, 979–991.

[CrossRef]
5. Minho, U.D. Informação Institucional . 2022. Available online: https://www.uminho.pt/PT/uminho/Informacao-Institucional/

Paginas/default.aspx (accessed on 15 August 2022).
6. Algoritmi , C. Ongoing Projects. 2020. Available online: https://algoritmi.uminho.pt/projects/ongoing-projects/ (accessed on

20 July 2021).
7. CCG. TSIM—Test System Intelligent Machines. 2020. Available online: https://www.ccg.pt/my-product/tsim-test-system-

intelligent-machines/ (accessed on 20 July 2021).
8. Controlar. Máquina Inteligente de Sistema de Testes Funcionais|Controlar. 2020. Available online: https://controlar.com/areas-

de-negocio/sistemas-de-teste/tsim/ (accessed on 20 July 2021).
9. Seshia, S.A.; Hu, S.; Li, W.; Zhu, Q. Design Automation of Cyber-Physical Systems: Challenges, Advances, and Opportunities.

IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2017, 36, 1421–1434. [CrossRef]
10. Ngu, A.H.; Gutierrez, M.; Metsis, V.; Nepal, S.; Sheng, Q.Z. IoT Middleware: A Survey on Issues and Enabling Technologies.

IEEE Internet Things J. 2017, 4, 1–20. [CrossRef]
11. Vyatkin, V. Software engineering in industrial automation: State-of-the-art review. IEEE Trans. Ind. Inform. 2013, 9, 1234–1249.

[CrossRef]
12. Chen, Y.; Kar, S.; Moura, J.M.F. Resilient Distributed Estimation: Sensor Attacks. IEEE Trans. Autom. Control 2019, 64, 3772–3779.

[CrossRef]
13. An, L.; Yang, G.H. Enhancement of opacity for distributed state estimation in cyber–physical systems. Automatica 2022, 136,

110087. [CrossRef]
14. Cintuglu, M.H.; Mohammed, O.A.; Akkaya, K.; Uluagac, A.S. A Survey on Smart Grid Cyber-Physical System Testbeds. IEEE

Commun. Surv. Tutor. 2017, 19, 446–464. [CrossRef]
15. Asadollah, S.A.; Inam, R.; Hansson, H. A survey on testing for cyber physical system. In Proceedings of the 27th IFIP WG

6.1 International Conference, ICTSS 2015, Sharjah and Dubai, United Arab Emirates, 23–25 November 2015; Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). [CrossRef]

16. Zhou, X.; Gou, X.; Huang, T.; Yang, S. Review on Testing of Cyber Physical Systems: Methods and Testbeds. IEEE Access 2018,
6, 52179–52194. [CrossRef]

17. Carvalho, M.F.A. Automatização de Testes de Software Dashboard QMSanalyser; Technical Report; Instituto Politecnico de Coimbra:
Coimbra, Portugal, 2010.

18. Guru99. Automation Testing Tutorial: What is Automated Testing? 2021. Available online: https://www.guru99.com/
automation-testing.html (accessed on 20 July 2021).

19. Saufi, S.R.; Ahmad, Z.A.B.; Leong, M.S.; Lim, M.H. Challenges and opportunities of deep learning models for machinery fault
detection and diagnosis: A review. IEEE Access 2019, 7, 122644–122662. [CrossRef]

20. Shi, Z.; O’Brien, W. Development and implementation of automated fault detection and diagnostics for building systems: A
review. Autom. Constr. 2019, 104, 215–229. [CrossRef]

21. Tang, J.; Cao, X.; Ma, A. Towards adaptive framework of keyword driven automation testing. In Proceedings of the IEEE
International Conference on Automation and Logistics, ICAL 2008, Qingdao, China, 1–3 September 2008; pp. 1631–1636.
[CrossRef]

22. Hametner, R.; Winkler, D.; Zoitl, A. Agile testing concepts based on keyword-driven testing for industrial automation systems.
In Proceedings of the IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, Canada, 25–28
October 2012; pp. 3727–3732. [CrossRef]

23. Razak, R.A.; Fahrurazi, F.R. Agile testing with Selenium. In Proceedings of the 2011 5th Malaysian Conference in Software
Engineering, MySEC 2011, Johor Bahru, Malaysia, 13–14 December 2011; pp. 217–219. [CrossRef]

24. Tutorials Point. QTP Tutorial—Tutorialspoint. 2021. Available online: https://www.tutorialspoint.com/qtp/index.htm (accessed
on 20 July 2021)

http://doi.org/10.1109/ISORC.2008.25
http://dx.doi.org/10.1007/978-3-030-64881-7_21
http://dx.doi.org/10.4230/OASIcs.SLATE.2021.19
http://dx.doi.org/10.1016/j.engappai.2008.09.005
https://www.uminho.pt/PT/uminho/Informacao-Institucional/Paginas/default.aspx
https://www.uminho.pt/PT/uminho/Informacao-Institucional/Paginas/default.aspx
https://algoritmi.uminho.pt/projects/ongoing-projects/
https://www.ccg.pt/my-product/tsim-test-system-intelligent-machines/
https://www.ccg.pt/my-product/tsim-test-system-intelligent-machines/
https://controlar.com/areas-de-negocio/sistemas-de-teste/tsim/
https://controlar.com/areas-de-negocio/sistemas-de-teste/tsim/
http://dx.doi.org/10.1109/TCAD.2016.2633961
http://dx.doi.org/10.1109/JIOT.2016.2615180
http://dx.doi.org/10.1109/TII.2013.2258165
http://dx.doi.org/10.1109/TAC.2018.2882168
http://dx.doi.org/10.1016/j.automatica.2021.110087
http://dx.doi.org/10.1109/COMST.2016.2627399
http://dx.doi.org/10.1007/978-3-319-25945-1_12
http://dx.doi.org/10.1109/ACCESS.2018.2869834
https://www.guru99.com/automation-testing.html
https://www.guru99.com/automation-testing.html
http://dx.doi.org/10.1109/ACCESS.2019.2938227
http://dx.doi.org/10.1016/j.autcon.2019.04.002
http://dx.doi.org/10.1109/ICAL.2008.4636415
http://dx.doi.org/10.1109/IECON.2012.6389298
http://dx.doi.org/10.1109/MySEC.2011.6140672
https://www.tutorialspoint.com/qtp/index.htm


Computers 2022, 11, 131 29 of 29

25. Lalwani, T. QuickTest Professional Unplugged, 2nd ed.; KnowledgeInbox, 2011. Available online: https://www.amazon.com/
QuickTest-Professional-Unplugged-Tarun-Lalwani/dp/0578025795 (accessed on 20 July 2022).

26. Kaur, M.; Kumari, R. Comparative Study of Automated Testing Tools: TestComplete and QuickTest Pro. Int. J. Comput. Appl.
2011, 24, 1–7. [CrossRef]

27. Focus, M. Silk Test Automation for Web, Mobile and Enterprise Apps. 2021. Available online: https://www.microfocus.com/en-
us/products/silk-test/overview (accessed on 20 July 2021).

28. Lima, T.; Dantas, A.; Vasconcelos, L. Usando o SilkTest para automatizar testes: Um Relato de Experiência. In Proceedings of the
6th Brazilian Workshop on Systematic and Automated Software Testing, Natal, RN, Brazil, 23 September 2012.

29. Ranorex. Test Automation Tools|Ranorex Automated Software Testing. 2021. Available online: https://www.ranorex.com/test-
automation-tools/ (accessed on 20 July 2021).

30. Jian-Ping, L.; Juan-Juan, L.; Dong-Long, W. Application analysis of automated testing framework based on robot. In Proceedings
of the International Conference on Networking and Distributed Computing, ICNDC, Hangzhou, China, 21–24 October 2012;
pp. 194–197. [CrossRef]

31. Hermans, F.; Pinzger, M.; Van Deursen, A. Domain-specific languages in practice: A user study on the success factors. In Lecture
Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer:
Berlin/Heidelberg, Germany, 2009; pp. 423–437. [CrossRef]

32. Ciraci, S.; Fuller, J.C.; Daily, J.; Makhmalbaf, A.; Callahan, D. A runtime verification framework for control system simulation. In
Proceedings of the 2014 IEEE 38th Annual Computer Software and Applications Conference, Vasteras, Sweden, 21–25 July 2014;
pp. 75–84. [CrossRef]

33. Krueger, C.W. Software Reuse. ACM Comput. Surv. (CSUR) 1992, 24, 131–183. [CrossRef]
34. Parr, T.J.; Quong, R.W. ANTLR: A Predicated- LL (k) Parser Generator. Softw. Pract. Exp. 1995, 25, 789–810. [CrossRef]
35. Tomassetti, G. The ANTLR Mega Tutorial. 2021. Available online: https://tomassetti.me/antlr-mega-tutorial/ (accessed on 20

July 2021).
36. Parr, T.; Fisher, K. LL(*): The foundation of the ANTLR parser generator. ACM Sigplan Not. 2011, 46, 425–436. [CrossRef]
37. Parr, T.; Harwell, S.; Fisher, K. Adaptive LL(*) Parsing: The Power of Dynamic Analysis. ACM Sigplan Not. 2014, 49, 579–598.

[CrossRef]
38. Palsberg, J.; Jay, C.B. The Essence of the Visitor Pattern. In Proceedings of the International Computer Software and Applications

Conference, Washington, DC, USA, 19–21 August 1998. [CrossRef]
39. Cademy, C. What Is REST?|Codecademy. 2021. Available online: https://www.codecademy.com/articles/what-is-rest (accessed

on 20 July 2021).
40. Costa, B.; Pires, P.F.; Delicato, F.C.; Merson, P. Evaluating a Representational State Transfer (REST) architecture: What is the

impact of REST in my architecture? In Proceedings of the Working IEEE/IFIP Conference on Software Architecture 2014, WICSA
2014, Sydney, Australia, 7–11 April 2014; pp. 105–114. [CrossRef]

41. Costa, B.; Pires, P.F.; Delicato, F.C.; Merson, P. Evaluating REST architectures—Approach, tooling and guidelines. J. Syst. Softw.
2016, 112, 156–180. [CrossRef]

42. Subramanian, V. Pro MERN Stack; Apress: New York, NY, USA, 2019. [CrossRef]
43. Inc, F. React—A JavaScript Library for Building User Interfaces. 2021. Available online: https://reactjs.org/ (accessed on 20 July

2021).
44. Porter, P.; Yang, S.; Xi, X. The Design and Implementation of a RESTful IoT Service Using the MERN Stack. In Proceedings of the

2019 IEEE 16th International Conference on Mobile Ad Hoc and Smart Systems Workshops, MASSW 2019, Monterey, CA, USA,
4–7 November 2019; pp. 140–145. [CrossRef]

45. Aggarwal, S. Modern Web-Development using ReactJS. Int. J. Recent Res. Asp. 2018, 5, 133–137.
46. Javeed, A. Performance Optimization Techniques for ReactJS. In Proceedings of the 2019 3rd IEEE International Conference

on Electrical, Computer and Communication Technologies, ICECCT 2019, Coimbatore, India, 20–22 February 2019; pp. 1–5.
[CrossRef]

47. Obinna, E. Use the React Profiler for Performance. 2018. Available online: https://www.digitalocean.com/community (accessed
on 20 July 2021).

48. Oliveira, D.F.; Brito, M.A. Position Paper: Quality Assurance in Deep Learning Systems; SciTePress: Setúbal, Portugal, 2022;
pp. 203–210. [CrossRef]

https://www.amazon.com/QuickTest-Professional-Unplugged-Tarun-Lalwani/dp/0578025795
https://www.amazon.com/QuickTest-Professional-Unplugged-Tarun-Lalwani/dp/0578025795
http://dx.doi.org/10.5120/2918-3844
https://www.microfocus.com/en-us/products/silk-test/overview
https://www.microfocus.com/en-us/products/silk-test/overview
https://www.ranorex.com/test-automation-tools/
https://www.ranorex.com/test-automation-tools/
http://dx.doi.org/10.1109/ICNDC.2012.53
http://dx.doi.org/10.1007/978-3-642-04425-0_33
http://dx.doi.org/10.1109/COMPSAC.2014.14
http://dx.doi.org/10.1145/130844.130856
http://dx.doi.org/10.1002/spe.4380250705
https://tomassetti.me/antlr-mega-tutorial/
http://dx.doi.org/10.1145/1993316.1993548
http://dx.doi.org/10.1145/2714064.2660202
http://dx.doi.org/10.1109/CMPSAC.1998.716629
https://www.codecademy.com/articles/what-is-rest
http://dx.doi.org/10.1109/WICSA.2014.29
http://dx.doi.org/10.1016/j.jss.2015.09.039
http://dx.doi.org/10.1007/978-1-4842-4391-6
https://reactjs.org/
http://dx.doi.org/10.1109/MASSW.2019.00035
http://dx.doi.org/10.1109/ICECCT.2019.8869134
https://www.digitalocean.com/community
http://dx.doi.org/10.5220/0011107100003269

	Introduction
	Problem Definition
	Motivation and Objectives
	Contribution
	Document Structure

	State of the Art
	Cyber-Physical Systems
	Text Automation
	Fault Detection
	Keyword-Driven Testing
	Domain-Specific Language
	REST
	Discussion

	Analysis and Specification
	Requirements
	System Structure
	Technologies to Use
	Backend Technology
	Frontend Technology

	Discussion

	Architecture
	Test Management and Configuration Archicture
	Keyword-Driven Testing Methodology
	Domain-Specific Language
	Proposed Architecture

	Self-Diagnosis Test System Architecture
	General Architecture for the Cyber-Physical System
	Discussion

	Implementation
	Database
	Backend
	Models
	Grammar
	Controllers
	Routes

	Frontend
	Components
	Obtaining API Data
	User Interfaces

	Validation
	Discussion

	Conclusions and Future Work
	References

