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Abstract: According to the risk investigations of being involved in an accident, alcohol-impaired
driving is one of the major causes of motor vehicle accidents. Preventing highly intoxicated persons
from driving could potentially save many lives. This paper proposes a lightweight in-vehicle alcohol
detection that processes the data generated from six alcohol sensors (MQ-3 alcohol sensors) using an
optimizable shallow neural network (O-SNN). The experimental evaluation results exhibit a high-
performance detection system, scoring a 99.8% detection accuracy with a very short inferencing delay
of 2.22 µs. Hence, the proposed model can be efficiently deployed and used to discover in-vehicle
alcohol with high accuracy and low inference overhead as a part of the driver alcohol detection
system for safety (DADSS) system aiming at the massive deployment of alcohol-sensing systems that
could potentially save thousands of lives annually.

Keywords: alcohol detection; smart sensing; MQ-3 alcohol sensors; supervised learning; neural
networks

1. Introduction

Alcohol is a harmful and intoxicating substance that can lead to addiction. According
to the World Health Organization (WHO), every year, three million people die as a result of
alcohol consumption (Figure 1), and millions more suffer from impairments and poor health.
Overall, harmful alcohol use accounts for 5.1 percent of the global disease burden. More
precisely, harmful alcohol use accounts for 7.1 percent and 2.2 percent of the worldwide
burden of illness, respectively, for males and females [1]. Alcohol is the main cause of early
death and disability in people aged 20 to 39 years old, accounting for 13.5 percent of all
deaths in this age group [2]. Alcohol-related deaths and hospitalization are more common
in disadvantaged and especially vulnerable populations.

In addition, alcohol consumption can lead to driver impairment, which is a major
cause of car accidents around the world [3]. Indeed, drinking alcohol before (or even while)
driving decreases several of the driver’s functional abilities, including tracking power,
vision, concentration, reaction time, and proper speed control, all of which increase the risk
of a crash [4]. According to [5], drivers with a blood alcohol concentration (BAC) of 1.5 g/L
are judged to be 20 times more dangerous than sober drivers.

Moreover, driving under the influence of alcohol is frequently related to not wearing
seat belts, which increases the risk of injury in most cases, as reported in [6]. For instance,
a study published in 2014 revealed that alcohol was involved in around 25 percent of all
traffic fatalities in Europe [7].
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Figure 1. Some statistics and critical facts about the dramatic consequences of alcohol consump-
tion.This clearly shows that alcohol is a major cause of car accidents around the world.

Between 1995 and 1997, approximately 40 percent of drivers involved in road accidents
in Greece were found to have consumed alcohol [8]. In the United States, alcohol-related
car crashes killed more than 10,000 people in 2019, accounting for almost 30 percent of all
road fatalities [9].

To address this problem, a large amount of research, both in industry and in the
academy, has been carried out on smart systems [10] that can identify this type of behavior
and help to avoid the corresponding risks. The research community has attempted to
develop smart systems that may be integrated into modern vehicles to recognize risky
behavior and avoid accidents caused by alcohol consumption [11–17].

According to the survey article presented in [18], there exist mainly two categories of
drivers behaviors detection techniques, namely:

1. Real-time techniques: These methods entail gathering and processing data about the
driver’s behavior continuously [19]. The key advantage of these techniques is that they
may detect incidents instantaneously, allowing for timely decisions to be made and
damages to be minimized. Some examples of these techniques are: vehicle-mounted
cameras [20], smartphone built-in sensors [21,22], specialized hardware/sensors [23],
advanced driver assistance systems (ADAS) [24], etc.

2. Non-real-time techniques: These techniques use offline collected data related to
drivers’ behaviors. They are generally more precise since they use more sophisti-
cated materials and have more available time for computation and analysis. These
techniques allow specialized governmental institutions to make future decisions and
appropriate measurements for reducing possible risks and accidents. Some examples
of these techniques are: vehicle-mounted cameras [25], in-vehicle data recorders [26],
simulators [27], questionnaires [28,29], etc. These techniques may also be used for
detecting driving infractions and providing shreds of evidence against drivers when
they are issued penalty notices.

In this work, we adopted an approach based on artificial intelligence (AI) techniques
for analyzing data collected using MQ-3 sensors [30] in order to detect the presence of
alcohol inside vehicles. The main characteristic of this type of sensors is that they have
a high sensitivity to alcohol with good resistance to disturbance of gasoline, smoke, and
vapor. The sensors are connected via an ARM Cortex M4 Microcontroller [31]. The obtained
data are stored as a CSV file containing 14,400 samples. The detection problem was then



Computers 2022, 11, 121 3 of 18

modeled as a supervised machine learning (ML) problem using shallow neural networks
(SNN) [32].

The first step for our ML problem is the preprocessing stage which consisted of importing
the data from the CSV file. The second step is the learning stage, during which, the training
and testing processes were performed. The next step is the evaluation stage, which consisted
of validating our ML model by computing specific performance indicators. Our software
module was then uploaded to the microcontroller unit. After this, the device may be
installed inside the vehicle to be controlled for detecting alcohol presence.

The major contributions of this paper are as follows:

• We developed a new lightweight in-vehicle alcohol detection system using smart sens-
ing and optimizable neural networks. A comprehensive architecture and description
are demonstrated to provide the complete view of the computation process.

• We evaluated our intelligent model on dataset instances generated from a sensory
circuit, achieving:

– High-performance indicators of 99.8%, 99.7%, and 99.5% for accuracy, harmonic
mean, and kappa index, respectively.

– Low inferencing overhead equal to 2.22 µs, making our system appropriate for
real-time use in real-life conditions.

The remaining part of the paper is outlined as follows. Section 2 reviews related works
on similar approaches. In Section 3, the adopted in-vehicle alcohol detection model is
presented in details. In Section 4, the main obtained results are presented. Finally, Section 5
concludes the paper.

2. Related Work

As formerly stated in the introduction section, several research works in the literature
concentrated on the study of alcohol detection for drivers using different instruments and
techniques. Below, we consider only 10 studies related to this topic. The main findings of
these works are summarized in Table 1.

Table 1. Summary of related works. This summary concentrates on the most recent related state-of-
the-art studies conducted between 2016 and 2022 in the same area of study.

Ref Year Detection System Advantages Limitations

[20] 2020 MQ-3 Alcohol Sensor +
Raspberry Pi + Camera

Real-time detection +
Blocking vehicle in

case of risks

No experimental
results provided

[33] 2018

MQ-3 Alcohol Sensor +
Buzzer + Breathalyzer +

LCD Display + Arduino Uno
R3

Real-time detection +
Blocking vehicle in

case of risks

Maximum error of
alcohol concentration

estimation reached
almost 31%

[34] 2019 Breath Sensor + Smartphone
+ Cloud System

Portable solution
using a smartphone
for collecting data

Decisions are made
remotely, which may

cause problems in
case of connection

failures

[35] 2018

MQ-3 Alcohol Sensor +
STC12C5A60S2

Microcomputer + LCD
Display + GU900E GPRS

Module

Real-time detection +
Triggering alarms +
Blocking vehicle +

Sending SMS to the
driver’s family in

case of risks

No experimental
results provided

[36] 2020

MQ-3 Alcohol Sensor + RPi
Microprocessor + LCD

Display + BMP-280 Pressure
Sensor + IR-enabled Camera

Real-time detection +
Triggering alarms +
Blocking vehicle in

case of risks

Experiences achieved
for a very limited
number of drivers

(only 3)
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Table 1. Cont.

Ref Year Detection System Advantages Limitations

[37] 2021

MQ-3 Alcohol Sensor +
Machine Learning

Techniques + Features
Selection

Features selection
using genetic

algorithms

Not clear how
alcohol detection is

achieved once the ML
model is constructed

[38] 2018
Machine Learning

Techniques + Thayer’s scale
+ NASA-TLX

Link between
functional

state/alcohol
concentration and

physiologi-
cal/vehicle

data

Results limited to
young drivers

[39] 2019

Machine Learning
Techniques + Controller

Area Network (CAN) bus +
OBD II adapter

Selection of most
important features

General approach not
specific to alcohol
detection problem

[40] 2021

MQ-3 Alcohol Sensor +
Buzzer + Webcam +

Raspberry Pi3 + Arduino
Uno

Real-time detection +
Non-intrusive +
Appropriate for
usage at night

Only few ML
techniques were

tested

[41] 2016
Physiological Signals +

Case-Based Reasoning (CBR)
+ KNN algorithm

Using features of
individual signals +
Combining features

from all signals

Only one ML
technique was tested

The purpose of the study presented in [20] was to prevent drivers from both starting
their cars after drinking alcohol and not wearing their seat belts. This system uses an MQ-3
alcohol sensor, which is attached to the driver’s seat belt. The Raspberry Pi compares
the reading from the sensor unit to the allowable threshold value. The ignition locking
mechanism prohibits the drivers from starting the car if they are inebriated. A Raspberry Pi
camera is also installed on the system to identify the driver’s presence. The paper’s authors
did not provide enough technical details about the adopted solution, and no experimental
results were reported.

Similarly, the authors of [33] proposed a breath sample testing-based driver alcohol
detection system. The suggested system was developed with the Arduino Compatible Com-
piler for LabVIEW (ACCL), enabling Arduino boards to be programmed using Labview.
The system can analyze the amount of alcohol in a breath sample and control the ignition
system’s operation to prevent drunk driving. The maximum error of alcohol concentration
estimation by the proposed solution reached almost 31 percent.

The authors of [34] proposed a portable alcohol detection system that includes a breath
sensor unit, a smartphone that controls the sensor device and communicates various data,
and a data cloud system. The detection system can be used to keep an eye on the driver
from afar. Four different sensors make up the breath sensor unit. The first is a water vapor
sensor, which determines whether the gas being applied is human breath. The others
are semiconductor gas sensors that can detect hydrogen, acetaldehyde, and ethanol. The
results of the driver’s alcohol test are forwarded to a data cloud system to be analyzed
automatically, which may cause problems in case of connection failures.

In [35], a vehicle-based alcohol detection system based on IoT technology [42] is
presented. The core controller used is a STC12C5A60S2 single-chip microcomputer with an
MQ-3 alcohol sensor for collecting data on air alcohol concentration and a GU900E GPRS
module for wireless connection. When the driver takes the wheel, the device performs
an automated alcohol detection. When the drunk driving threshold is met, the system
activates the relay, disables the car, activates the sound and light alert, utilizes the GU900E
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to execute base station location, and finally sends an SMS of the GPS information to the
driver’s family. The paper’s author failed to offer sufficient technical details about the
chosen approach, and no experimental data were reported.

The authors of the study [36] developed a driver-monitoring and assisting gadget
that uses IoT sensors such as an alcohol sensor and an air pressure sensor to check for
sobriety, and machine learning techniques to capture micro-sleep and frequent yawns in
order to detect drowsiness. The driver is instructed to blow into the mouthpiece when
the device is turned on. The driver is authorized to turn the ignition on after a clean and
proper blow. Following that, the device employs a camera to monitor the driver for signs
of drowsiness constantly and alerts the drowsy driver via the vehicle’s sound system or a
buzzer. The experimental results reported in this work covered a very limited number of
drivers (only three).

The authors of the article [37] proposed a non-invasive approach for detecting the
presence of alcohol within a vehicle. The proposed technique relies on a set of MQ-3
alcohol sensors installed inside the car. A feature selection technique was carried out
utilizing a genetic algorithm. The features obtained through this technique were utilized
to build an SVM classification model that detects the presence of alcohol. The proposed
methodology is described in detail. However, it is unclear how alcohol detection will be
achieved once the ML model is constructed and whether it will be carried out in a real-time
or a non-real-time fashion.

The goal of the study presented in [38] was to check how well different classifications
and machine learning techniques could predict alcohol consumption and related functional
states. The data were analyzed in 10-second time frames with no superposition or gaps.
Two analyses employing classification and machine learning techniques were utilized to
test both the algorithms’ potential to detect alcohol use and functioning states. The main
limitation is that the considered data were limited to young drivers.

The aim of the work presented in [39] was to conduct an empirical study to recognize
driving behavior and to compare the performance of common machine learning techniques.
According to the testing results, many sensor readings acquired from the CAN bus are
either highly connected with one another or less relevantly related to driving behavior
identification. Compared to other approaches, ensemble tree-based algorithms such as
decision trees and random forests outperform classic machine learning techniques. The
authors adopted a general approach and did not specifically concentrate on the alcohol
detection problem.

The authors of the paper [40] proposed a low-cost, non-intrusive real-time driver
drowsiness detection system that was coupled with an alcohol detection system. The MQ-3
sensor is used to detect alcohol in this system. Face detection is then performed using
a webcam mounted on the car’s dashboard. Drowsiness is recognized, and a warning
is issued based on the threshold values of four extracted key face traits. Both systems
are connected using a Raspberry Pi3 and an Arduino UNO. In this work, only a few ML
techniques were tested.

A case-based classification method for alcohol detection utilizing physiological indica-
tors was proposed in [41]. Four physiological measures are used in a case-based reasoning
system to detect alcoholic state, including skin conductance, finger temperature, respiration
rate, and heart rate variability. The drivers participating in this study are divided into
intoxicated and sober. In this work, only one ML technique was tested.

3. In-Vehicle Alcohol Detection Model

The goal of this model is to detect the presence of alcohol inside a vehicle. An
intelligent, self-reliant model was proposed for this purpose. The proposed model was
composed of a hardware module for smart sensing and a software module for the intelligent
supervised detection model. The top view design of the proposed approach is illustrated
in Figure 2.
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Figure 2. Illustration of the proposed approach. The proposed system combines the benefits of
sensing technology through the ARM Cortex units along with power of machine learning approaches.
This has led to a smart sensing detection system.

3.1. The Hardware Module

This module was placed inside the vehicle and comprised six MQ-3 sensors and a
memory unit connected via ARM Cortex M4 Microcontroller [43]. MQ-3 gas sensor has
a high sensitivity to alcohol with good resistance to disturbance of gasoline, smoke, and
vapor [44]. This sensor provides an analog resistive output based on alcohol concentration,
and thus it was connected to ARM Cortex M4 Microcontroller via ADC (analog-to-digital
convertor) unit. The memory unit is important for keeping track of the readings cali-
brated through the six sensors to provide more comprehensive and accurate detectability
of in-vehicle alcohol levels. The readings were captured through the ARM Cortex M4
Microcontroller using a small C language program written for the microcontroller to collect
the readings of the six sensors. The hardware part of this model is illustrated in Figure 3.
After several experiments, a large number of samples were collected and stored as a CSV
file that contains 14,400 samples for the in-vehicle alcohol level experiments. These samples
were distributed equally as 7200 samples for in-vehicle with alcohol and 7200 samples for
in-vehicle without alcohol, and finally deployed in a balanced dataset (IVA 2021) [45] to be
used for further investigation and modeling.

Figure 3. The hardware module for the in-vehicle alcohol detection. The illustrated hardware module
was composed mainly of six MQ-3 sensors connected through the ADC of the ARM Cortex controller
to provide readings about the alcohol status in the surrounding environment.
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Moreover, the main reasons to use MQ-3 sensor can be summarized as follows:

• The availability (very commonly used and available in almost every electronic shop).
• The affordability (available in electronic shops at low rates and prices).
• Its high sensitivity to alcohol. MQ-3 gas sensor has high sensitivity to alcohol, and has

good resistance to disturbance of gasoline, smoke, and vapor. This sensor provides an
analog resistive output based on alcohol concentration. When the alcohol gas exists,
the sensor’s conductivity increases, along with an increase in the gas concentration.

• Other important features: easy SIP header interface, compatible with most of the
microcontrollers, low-power standby mode, fast response and high sensitivity to
alcohol gas, long life and low cost, and requires simple drive circuit.

In addition, the MQ-3 sensor , also referred to as an alcohol sensor, detects ethanol
in the air. When a drunk person breathes near the alcohol sensor, it detects the ethanol
in their breath and provides an output based on alcohol concentration. Specifically, the
MQ-3 sensor detects the attentiveness of alcohol gas in the air and produces an analog
voltage as an output reading. The sensor can activate at temperatures ranging from −10 to
50 ◦C with a power supply of less than 150 Ma to 5 V. The sensing range is from 0.04 mg/L
to 4 mg/L, which is suitable for alcohol detectors such as breathalyzers. To calibrate this
sensor, it is recommended to use 4 mg/L (200 ppm) alcohol concentration, 21% oxygen
concentration, 65% relative humidity, at 20 ◦C. The complete specifications of the MQ-3
sensor are provided below in Figure 4.

(a) (b)

Figure 4. The software module for the in-vehicle alcohol detection: (a) top view model architecture,
including the core hardware unit and the main phases of the learning model; (b) structure of ONN
model, including the optimized configuration.
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3.2. The Software Module

This module was developed, coded, and uploaded to the microcontroller unit. The in-
vehicle alcohol detection problem was modeled as a supervised machine learning problem
developed as a classification system using shallow neural networks (SNN) [46] with their
corresponding modules and algorithms (Table 2). The complete framework for this system
is illustrated in Figure 4. Initially, the collected dataset from the hardware module was
preprocessed before being fed into the learning operations.

Table 2. The specifications of MQ-3 sensors used in this study. The information provided in this table
are taken from the data sheet of MQ-3 sensor manufacture.

Power Requirements 5 VDC @ 165 mA (Heater on)

Current 60 mA (heater off)
Current Consumption 150 mA

DO Output Levels TTL digital 0 and 1 ( 0.1 and 5 V)
AO Output Levels 0.1–0.3 V (relative to pollution)

Detecting Concentration 0.05–10 mg/L Alcohol
Heater Consumption less than 750 mW

Operating Temperature 14 to 122 ◦F (−10 to 50 ◦C)
Load Resistance 200 kΩ

Sensing Resistance Rs 2–20 kΩ (in 0.4 mg/L alcohol)
Sensitivity (S) S: Rs (in air)/Rs (0.4 mg/L Alcohol) ≥ 5

• The preprocessing stage began by importing/localizing the data from the CSV file
and making it local in the running model. Several data distortions were fixed at this
stage, including removing duplication, handling empty records, fixing data inconsis-
tencies, and others [47]. Then, the data were randomly shuffled to ensure that the
dataset has no specific sequencing or biasing. In addition, in order to improve the
classification process, all data records were standardized (uniformly scaled) using
Z-score normalization [48] so that all features are equally important, which eases the
supervised learning process of ML approaches. At this point, the data are ready to be
fed through the learning phases, and, hence, the data were split into two subsets: the
training dataset to train the model with 70% of the total number of samples and the
testing dataset to validate the model effectiveness with the remaining 30% of the total
number of samples. Furthermore, to ensure a highly effective validation process, we
used a 5-fold cross-validation [49] that provides five different combination splits of
training and testing datasets. The final evaluation metrics are an overall average of
the 5-fold cross-validation phases.

• The learning stage is the intelligent part of this module. At this stage, all training
and testing (validation) processes were performed. The optimizable neural network
(ONN) was used to train, validate, and test the system. ONN is an optimizable
learning model that makes use of different neural network architectures in order to
pick up the best architecture that maximizes the performance of the model [50]. In this
system, our ONN operated several neural network architectures that have a number
of fully connected layers ranging from 1 to 3. The number of neurons at every layer
ranged from 1 to 100 and the number of iterations was limited to 1000 iterations per
model and 30 epochs of training. To sum up, Table 3 below shows the complete
configurations and specifications of our proposed ONN. Note that a shallow neural
network (SNN) with 10 neurons at the hidden layer was selected by the ONN as
the optimal learning model for this dedicated problem. The architectural diagram
for this optimizable SNN (O-SNN) is depicted in Figure 4b. The O-SNN received
6 inputs (coming from the readings of the six MQ-3 sensors) and processed them at
the hidden layer (processor layer) to produce one of the two decisions at the output
layer (binary classifier).
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In this study, the proposed alcohol detection system was modeled as an optimization-
based neural network problem. Unlike traditional neural network models, the main idea of
the proposed optimizable neural network (ONN) is to develop an automated system that
makes use of different neural network architectures and configurations (hyperparameters)
in order to create a complete search space for all possible networks’ architectures and
hyperparameters. For every resultant model, the performance was evaluated, and then the
model with optimized (best) performance criteria (i.e., classification accuracy and minimum
classification error) was then selected as an inferencing model for this specific task and
specific dataset.

Table 3. The brief of system modeling specifications and configurations. The upper part of the
table presents the hyperparameter search range, where different models are trained and tested to
obtain the optimized model. The second part is the learning process specifications, which is common
for all experiments. The last part is optimized hyperparameters, which show the best values for
hyperparameters and neural network architecture resulted from trying all possible configurations in
the hyperparameter search range.

Hyperparameter Search Range

Number of fully connected layers 1 to 3 layers
Activation functions: ReLU, Tanh, Sigmoid, None
Standardize data: Yes or No
Regularization strength (Lambda): (6.9444 × 10−10)-to-(6.9444)
Hidden layer size: 1-to-100

Learning Process Specifications
Optimizer: Bayesian optimization [51]
Acquisition function: Expected improvement per second plus
Training algorithm Scaled conjugate gradient [52]
Loss/Cost function Cross entropy error
Feature Selection: All features used in the model, No PCA
Data division algorithm Random divide algorithm.
Data distribution 70% training, 5% validation, 25% testing
Validation policy 5-fold cross-validation and 6-validation checks

Optimized Hyperparameters
Number of fully connected layers One layer with 10 neurons (O-SNN)
Activation function: Sigmoid Function
Iteration limit: 30 iterations, 55 epochs, shuffle at every epoch
Regularization strength (Lambda): 1.0887 × 10−9

Standardize data: Yes (Z-score normalization)

According to the brief of system modeling specifications and configurations presented
in Table 3, our learning model was developed to try several architectures and hyperpa-
rameters, including the number of fully connected layers being set to 1, 2, or 3 layers, with
every hidden layer size set to be in the range from 1 to 100 (input and output layers were
fixed according to our application); the activation function options attempted with every
architecture being ReLU, Tanh, Sigmoid, or none; the data standardization option being
set to Yes or No; and the regularization strength (Lambda) being attempted in the range
from (6.9444 × 10−10) to (6.9444). In addition, the learning process in every experiment
underwent the following common specifications: the learning optimization algorithm was
set to Bayesian optimizers as they are efficient because they select hyperparameters in an in-
formed manner, which is compatible with the acquisition function (expected improvement
per second plus) [53]. For the training algorithm, we used the scaled conjugate gradient
(SCG) due to its simplicity to determine the new direction vector lower cost [54]. For the
loss/cost function, cross-entropy error was used. Cross-entropy loss is used when adjusting
model weights during training. The aim is to minimize the loss (a perfect model has a
cross-entropy loss of 0). For the feature selection process, we used all features used in
the model since all of them are significant, representing the reading of different sensors.
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For data division and distribution, we randomly divided our dataset into several folds,
each being 70% training and 30% testing. Specifically, we used a 5-fold cross-validation
process and the performance of the five experiments was averaged to produce the overall
performance. Figure 5 illustrates the implemented validation process.

Accordingly, the final optimized neural network was selected and constructed as a
shallow neural network (SNN) with one fully connected layer comprising 10 neurons, with
optimal hyperparameters selected as follows: Sigmoid function as an activation function,
and the optimal regularization strength is 1.0887 × 10−9 with data standardization (Z-score
normalization) and 30 iterations of model training.

Figure 5. The five-fold cross-validation process. At each experiment, the validation dataset (fold) and
the training dataset were changed, aiming to visit all instances in the overall dataset in both training
and validation processes. The overall performance metric was calculated from the average of the five
experiments to provide more robust evaluation metrics (such as accuracy, precision, recall).

Eventually, the main constraint of this study was that it is application-specific, which
means that one should re-execute the whole procedure to attain an optimizable neural
network for the new application (task) and new dataset, whereas the main strength of this
study is that it can locate the neural network architecture and hyperparameters that best fit-
ted with the application being investigated in terms of several performance metrics, such as
the classification accuracy, the minimum classification error, and the inferencing overhead.

The evaluation stage is a crucial phase for any ML-based model to figure out whether
the model will be the best solution for a given problem. In this research, we evaluated our
system in terms of five vital performance indicators [55], including:

1. The binary confusion matrix analysis: The confusion matrix is like a summary of the
prediction results for a particular classification problem. It compares the actual data
for a target variable to that predicted by a model. Correct and false predictions are
revealed and distributed by class, allowing them to be compared with defined values.
The confusion matrix is used to evaluate the performance of a classification model. It
therefore shows how confusing a certain model can be when making predictions. In
its simplest form, it is a 2 × 2 matrix. For more complex classification problems, it is
always possible to add rows and columns to the basic form.

2. The predictive accuracy (%): The predictive accuracy is determined by dividing the
total number of correct predictions by the total number of samples in the dataset.
The accuracy ranges from 0.0 to 1.0, with 1.0 being the best. Since accuracy might
be confusing when applied to unbalanced datasets, alternative metrics based on a
confusion matrix are also needed to assess the performance.

3. The harmonic predictive average (also called F-measure %): It enables an evaluation
of a model, taking into consideration both precision and recall using a single score,
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which is useful for explaining the performance of the model. Whereas precision deter-
mines the proportion of accurate predictions for the positive class, recall measures
the proportion of the positive class’s correct predictions out of all possible positive
predictions. Precision and recall are given equal weights in the harmonic mean, which
is used to calculate the harmonic predictive average.

4. The predictive kappa index (%): This is an extremely helpful yet underused measure.
Measures such as accuracy or precision/recall do not give a complete view of the
classifier’s performance in the event of a multi-class classification task. In other
situations, programmers could come across an issue with unbalanced classes; for
instance, if there are two classes—let’s call them X and Y—and X only comes up 5% of
the time. Classical measurements may be deceptive in this situation, necessitating the
employment of more advanced techniques. In this context, the predictive kappa index
is a very effective metric that can effectively manage difficulties involving multiple
classes and unbalanced classes.

5. The predictive time (µs): It is essential to use neural networks that can produce quick
and precise predictions. As a result, when developing these systems, we should aim
to reduce not one but two objectives: (1) the prediction error on certain validation
data and (2) the prediction speed. The design parameters, also known as tuning
parameters, include factors such as the number of hidden layers, the number of
neurons per layer, learning rates, regularization parameters, etc.

The computational formulas for these metrics are shown in Figure 6.

Figure 6. The five performance indicators used in the evaluation of our proposed system. These
are the standard evaluation metrics used in almost all machine-learning-based models to provide
insights into the system performance.

The deployment stage occurs when the system is efficiently developed and evaluated.
If the developed system meets the requirements, then it can be deployed for online real-time
functionality. It can be placed in-vehicle, equipped with a battery (rechargeable) and a
small LCD display to read the output decision.

4. Results and Analysis

This paper proposes a computational intelligence model that requires high compu-
tational power at both the implementation and experimentation stages. The proposed
in-vehicle alcohol detection was developed and evaluated on a high-performance com-
puting platform comprising fast processing units (Intel Core I.7, Generation-11, central
processing unit-CPU ) and parallel computation units (4 GB of addition graphical pro-
cessing unit-GPU). Initially, the ONN model was implemented and operated toward the
allocation of the optimal neural network model that maximizes the detection performance
and minimizes the inferencing (prediction) delay.
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Figure 7 shows the model optimization using ONN trying the aforementioned hyper-
parameter search range (stated in Table 3) aiming to determine the best-point hyperparame-
ters that score the minimum classification error within 30 iterations of the learning process.
After seven iterations only, the ONN model was able to reach the minimum classification
error (MCE) that belongs to the best-point hyperparameters (optimized hyperparameters)
from the hyperparameter search range as follows: the optimal model is the neural network
(O-SNN) with one hidden layer composed of 10 neurons (six features at the input layer and
two classes at the output layer), and the optimal activation function is the sigmoid function
with a data standardization option using Z-score normalization and regularization strength
(λ = 1.0887 × 10−9).

Figure 7. Model optimization for optimizable neural network model using the hyperparameter search
range. The plot investigates the trajectory of estimated minimum classification error, and the observed
minimum classification error with respect to varying numbers of iterations (max = 30 iterations). In
this figure, the best point hyperparameters that satisfies the minimum error hyperparameters are
also traced.

At this point and henceforth, the discussion will focus on the O-SNN model illustrated
in Figure 4b, as it was selected as the best neural network architecture to model our
problem statement of in-vehicle alcohol detection with a high-performance and least delay.
For instance, Figure 8 traces the performance trajectories of the O-SNN in terms of the
cross-entropy loss (CEL) function [56] for 55 epochs of the learning process, including
training, validation, and testing trajectories. The target value of CEL is to reach the
zero value; however, the best validation performance was recorded after epoch 49, with
CEL = 1.0 × 10−3. Along with the figure, the table attached to the figure summarizes the
error values obtained for the training, validation, and testing dataset in terms of cross-
entropy loss (CEL) and the minimum classification error (MCE). The table reveals the
robustness of this model, scoring low error rates for all subsets of the dataset (the training,
validation, and testing).
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Figure 8. Tracing performance of the learning process for training, validation, and testing stages.
In this figure, the trajectories for training error, testing error, and validation error in terms of cross
entropy loss (CEL) are tracked in order to obtain the best point performance. The best point is
recorded at CEL of 0.0010.

To obtain more perceptions of the proposed model and the solution approach, Fig-
ure 9 demonstrates the two-class confusion matrix analysis of the O-SNN model for the
training dataset, validation dataset, testing dataset, and the overall dataset. In addition,
along with the figure, a summary of performance indicators (ACC, HMS, KaI, and PrT)
is provided. The employed datasets were balanced, comprising a total of 14,400 samples
distributed equally between the positive and the negative classes (7200 samples per class).
As can be clearly observed from the figure, overall, the model exhibits a high capability
in discriminating positive classes and negative classes, having TP = 7200, FP = 32, FN = 0,
and TN = 7168. Accordingly, the overall performance metrics reveal that the system is
highly sensitive (sensitivity = 99.6%), highly specific (specificity = 100%), highly accurate
(accuracy = 99.8%), and highly precise (precision = 100%). Accordingly, the performance
indication metrics for accuracy, harmonic means, kappa index, and prediction delay are
summarized in Table 4. In short, the proposed in-vehicle alcohol detection-based O-SNN
model is precise, accurate, and lightweight, and can provide an inferencing outcome of less
than 2.5 µs, and a classification error of less than at least 2.5%.

Eventually, Table 4 provides a performance comparison of our proposed in-vehicle
alcohol detection system with other up-to-date state-of-art in-vehicle alcohol detection
systems developed via machine learning (ML) or deep learning (DL) models. The table
contrasts our best empirical findings recorded for the O-SNN-based model with the cor-
responding findings stated in the existing state-of-art models. In addition to the year of
publication, the evaluation in the table compares four comparable design performance
scopes, including the detection scheme (using the ML or DL model), the testing accuracy
fractions for the detection systems, the harmonic mean (F-score) fractions for the detection
systems, and the kappa index fractions for the detection systems. Subsequently, the table
considers six distinct alcohol detection systems for the in-vehicle ecosystem developed
during the last five years (from 2016 to 2021), alongside our proposed in-vehicle alcohol
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detection system, which relies on the optimizable shallow neural networks (O-SNN) as the
core learning model. The reported detection schemes incorporate the following supervised
learning models: a genetic algorithm with support vector machine/radial that has been
used by [37]; Ross–Quinlan decision trees known as (C4.5 DT), used in the development of
am alcohol detection system in [57]; a reduced error pruning tree (REPT-DT) decision tree,
which was employed in [38]; a random forest classifier (RFC) model used in [39]; a support
vector machine (SVM) utilized by the author of [40]; and, finally, a k-nearest neighbors
(kNN) learning model that was used in [41].

Figure 9. Two-class confusion matrix analysis of the O-SNN model along with summary of perfor-
mance indicators (ACC, HMS, KaI, and PrT). The figure analyzes the confusion matrix for testing
dataset, the confusion matrix for validation dataset, the confusion matrix for training dataset, and the
confusion matrix for overall dataset. The model performed highly, recording high performance score.

Table 4. Comparison with other existing ML-based in-vehicle alcohol detection systems. The table
shows that different learning models and different evaluation metrics were used in the existing models.

Ref Year Learning
Scheme Accuracy F-Score Kappa

[37] 2021 GA+ SVM 97.60% 97.5% 97.90%
[57] 2019 C4.5 DT 92.53% - -
[38] 2018 REPT DT 87.70% 85.90% -
[39] 2019 RFC 97.53% - -
[40] 2021 SVM 86.00% 98.00% -
[41] 2016 kNN 92.00% 87.50% -

Proposed 2022 O-SNN 99.80% 99.70% 99.50%

According to the information provided in the comparison table, one can indisputably
conclude that our in-vehicle alcohol detection system is superior, with the highest per-
formance records over the other compared state-of-art schemes. The proposed model
has enhanced the validation accuracy by a proportion of 2.2–13.8% over the compared
models. In addition, the proposed model can be successfully adopted in real-time ecosys-
tems due to the low prediction delay required by the proposed system (once the data are
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calibrated by the sensors, only 2.2 µs are needed by the intelligent model to provide the
detection outcome).

5. Conclusions

A new lightweight in-vehicle alcohol detection using smart sensing and optimizable
neural networks was developed, implemented, and evaluated in this paper. Specifically,
the proposed system is composed of two subsystems: (1) the hardware subsystem utilizing
a microcontroller, MQ-3 sensors, ADC module, memory unit, battery, and a small LCD unit;
(2) the software subsystem utilizing a data preprocessing stage, optimizable shallow neural
network (O-SNN), and evaluation module. The proposed learning model was trained
using several variants of neural network architectures ranging from one to three layers
with a variable number of neurons at every layer. The empirical investigation revealed
that the best optimizable design is obtained with SNN comprising one hidden layer with
10 neurons and a Sigmoid activation function. High-performance indicators were recorded
for the O-SNN model, with values of 99.8%, 99.7%, and 99.5% for accuracy, harmonic mean,
and kappa index, respectively. In addition, the proposed model is lightweight since it
can provide the detection decision with only 2.2 µs. Hence, we believe that the proposed
in-vehicle alcohol detection can be efficiently deployed to provide its functionality in a real-
world deployment. Our technique may be applied to different automobiles to determine
whether or not the driver has ingested alcohol. This makes it much simpler for police
officers to identify drunk drivers. Our system can also be utilized in a variety of businesses
or organizations to identify employee alcohol usage. By achieving this, we are offering
automobiles and other vehicles an autonomous safety system.

Though the main focus of this research was to develop an intelligent self-reliant
lightweight in-vehicle alcohol detection system with high-performance indicators and
low inferencing overhead for real-life conditions, building an array with different sensors
can be considered as a future direction to extend and improve the proposed system. In
addition, another interesting future direction is practical in-vehicle experimentation by
placing the developed system inside a car and testing the model in a real-time manner.
Furthermore, it is essential for the labeling process for the real-time collected data to be
investigated further since the the goodness of the labeling is directly related to the quality
of the learning process. An other interesting future direction consists of extending our
system with necessary components for blocking the vehicle in case of risks or danger and
contacting either the nearest police office or the family members of the drunk driver that has
shared with them their current position. In addition, other sensors may be used to collect
data, such as speed, vehicle stability, photos of the driver, and so on. This information will
improve the precision and efficiency of the prediction process. The sensors to use may be
either built-in or external sensors, such as mobile phone sensors.
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