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Abstract: Intrusion detection systems (IDS) are a very vital part of network security, as they can
be used to protect the network from illegal intrusions and communications. To detect malicious
network traffic, several IDS based on machine learning (ML) methods have been developed in the
literature. Machine learning models, on the other hand, have recently been proved to be effective,
since they are vulnerable to adversarial perturbations, which allows the opponent to crash the
system while performing network queries. This motivated us to present a defensive model that
uses adversarial training based on generative adversarial networks (GANs) as a defense strategy to
offer better protection for the system against adversarial perturbations. The experiment was carried
out using random forest as a classifier. In addition, both principal component analysis (PCA) and
recursive features elimination (Rfe) techniques were leveraged as a feature selection to diminish the
dimensionality of the dataset, and this led to enhancing the performance of the model significantly.
The proposal was tested on a realistic and recent public network dataset: CSE-CICIDS2018. The
simulation results showed that GAN-based adversarial training enhanced the resilience of the IDS
model and mitigated the severity of the black-box attack.

Keywords: intrusion detection systems; machine learning; random forest; generative adversarial networks;
recursive features elimination; principal component analysis; adversarial instances or examples

1. Introduction

Nowadays, the use of the Internet, in general, and reliance on cloud-based resources
is growing at an exponential rate. Operations are concentrating on their core businesses
while transferring their information technology (IT) services to the cloud. Many more
factors encourage businesses to use internet-based offerings. Likewise, malicious traffic
has increased at a rapid rate [1]. Today’s cyberattacks are becoming more diversified and
broad. The purpose of these assaults is to obtain unauthorized access to remote data or to
create service interruptions for consumers. These attacks have a tremendous influence not
only on the economy and finances of a country but also at the national level, in addition
to cultural security [2,3]. Therefore, such assaults should be prevented from both inside
and outside as well as from governmental and private institutions [4–6]. As a result, it is
critical to rely on automated powerful systems for quickly and reliably identifying threats.
Interestingly, intrusion detection systems (IDS) have been considered an excellent solution
to further boosting the security level of a system [7].

IDS is a type of security software that observes network traffic and gives warnings
once an unusual behavior is discovered [8]. Generally, there are two kinds of IDS: host-
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based intrusion detection systems (HIDS) and network-based intrusion detection systems
(NIDS) [9]. HIDS, known as a passive component, focuses on a single machine [10]. On the
other hand, NIDS, known as an active component, is used to analyze network packets as
well as to monitor and safeguard a system from network risks [9]. The focus of this research
was on NIDS, since the proposed IDS analyzes the flow of data among computers, such as
network traffic, detects unusual behavior, and defends nodes from complex assaults.

Machine learning (ML) algorithms are frequently employed in network security to
further enhance the capabilities of an IDS in identifying attacks due to the nature of its
learning abilities. They have shown outstanding performance as powerful and successful
defense mechanisms [11]. However, the adoption of ML in this domain poses severe
challenges to cyber defense, with adversarial machine learning (AML) assaults being one
of the most critical [12]. AML has lately arisen as a serious threat to the success of such
systems. An adversarial attacker can weaken network protection by exploiting flaws in the
ML methods. By generating small disturbances into network traffic, attackers can utilize
the vulnerability and cause NIDS to damage [13]. The fabrication of samples is meant to
disrupt the ML algorithm by eliciting outcomes favorable to the attacker, which is one
of the malevolent behaviors. In the cyber security area, these flaws are crucial, since an
undetected intrusion may compromise an entire enterprise [14]. Therefore, it is essential to
develop ML-based approaches that can protect the systems from adversarial attacks.

Among different ML algorithms, generative adversarial networks (GANs) have been
extensively leveraged with adversarial attacks. A GAN is a type of deep learning tech-
niques in which two neural networks compete against each other in a two-player game.
It has demonstrated the advantage of ML in producing higher-dimensional data, such as
images, audio, and text, since it was initially released in 2014 [15]. Many research papers
have employed GANs to either enhance IDS or to design novel attack instances such as
generating adversarial malware samples [16,17]. However, there are only a few works on
GAN-based intrusion detection [18].

GAN-based adversarial training (AT) can be utilized as a defense mechanism. AT
methods inject adversarial examples (AEs) into the training data to make sure that the
machine learning technique imparts adversarial perturbations as much as possible [18].
Therefore, they enhance the generalization and resilience of the machine learning tech-
niques, since these models are trained on clean and adversarial examples [19]. In AT, AEs
are generated by GANs and then added to the clean dataset [20]. This approach shows
that the added AEs elevated the accuracy of the trained model by approximately 10% [20].
However, as the same GAN model is used during the training (i.e., defending) and testing
(i.e., attacking), the accuracy will go down once the proposal tests with different attack
models. Further, the size of the epochs utilized in [20] was only 100, which is not sufficient
to generate strong AEs.

To overcome the aforementioned shortcomings, we present a GAN-based approach
for the adversarial training of ML models against AEs generated using a black-box attack,
namely, the zeroth order optimization (ZOO) attack. Then, we evaluated the resilience of
the designed system by presenting the ZOO black-box attack method to define adversarial
perturbation in the data network. Note that an opponent did not have access to the specifics
of the ML-based IDS, which made the experiment more realistic, and we took this into
consideration during the implementation of the ZOO attack. Our finding was that the
employment of a GAN as a defensive strategy makes ML-based IDS more resilient to
previously unseen and unknown adversarial perturbations.

1.1. Motivation

Over the years, computer networks have grown swiftly, contributing greatly to social
and economic progress. However, compared to other sectors, network security applications
of ML confront a significant concern regarding active adversarial attacks [21,22]. This
happens due to the adversarial nature of ML applications in network security. In a battle
among both attackers and defenders that may be described as an arms competition, ML



Computers 2022, 11, 115 3 of 19

systems are continually probed by adversaries with inputs that are specifically meant to
evade the system and generate a false prediction. Furthermore, malicious attacks have
become more common, and ML models’ defense and resistance against them must be
addressed. Several studies in text and image recognition fields have looked at the danger
and provided viable countermeasures. Unfortunately, not much research on the NIDS sector
that addresses the problems of adversarial attacks has been undertaken [12]. In addition, the
learning model and dataset quality are both closely connected to the efficiency of the IDS.
Many researches have been dependent on datasets that have significant shortcomings such
as simulated traffic (i.e., not from an actual production network), anonymity, redundancy,
and outdated attack traffic, e.g., denial of service (DDoS) [20,23]. Other studies have
concentrated on the adversary knowledge factor, such as white-box attacks, and shown
that such attacks are strong in targeting a system under the assumption that opponents
have full access and knowledge of the classifier [24,25]. In practice, having such an ability
by an attacker seems to be elusive. It has been proven that a GAN is a very serious and
powerful attack compared with other existing attacks [26]. Contrary to white-box attacks,
GAN-based black-box attacks are considered weak, as attackers have no knowledge or
only have superficial information about the victim classifier. A GAN-based adversarial ML
attack has been proposed and validated on a black-box IDS, and it turned out that GAN
is a powerful technology for bypassing an IDS due to the fact of its potential to generate
data that have a similar distribution to the original dataset [20]. In general, there is a lack
of research studies investigating and evaluating the effectiveness of existent adversarial
defensive mechanisms. Accordingly, it is necessary to ensure the resilience of the proposed
methods against adversarial attacks and to pay more attention to proposing attack-agnostic
defense mechanisms that address the increasing variety of adversarial attacks, rather than
focusing only on a narrow range of attacks [27]. Therefore, the above reasons served as
motivation to propose the main contribution in this paper.

1.2. The Contribution of the Paper

The major contribution of this paper is as follows:

• We used a GAN to generate strong adversarial examples, for the first time, from
the CSE-CIC-IDS2018 dataset, which was introduced by the Canadian Institute of
Cybersecurity (CIC), called the Communications Security Establishment and CIC 2018
(CSE-CIC-IDS2018) Dataset. The strong adversarial examples are generated using a
GAN with 2000 epochs;

• We designed a defensive model for NIDS-based random forest classifier and enhanced
the proposed model using GAN-based adversarial training, where the generated ad-
versarial examples are used for training the model and measuring the model resistance
in two phases. The first phase was utilized to train the proposed technique on a non-
crafted dataset, and the second phase was related to improving the robustness and
accuracy of the first phase by retraining the proposed model on a combined dataset
that included a non-crafted dataset, generated dataset from a GAN;

• Our proposal was further improved by carefully training our model with valuable
features selected by PCA with the generated adversarial examples;

• We implemented a black-box-based ZOO attack to evaluate the resistance of the pro-
posed random forest model in which this attack was capable of generating adversarial
examples that the model had never seen before.

To the best of our knowledge, there is no recent work concentrated mainly on the
improvement of ML-based IDS as a defense model and evaluating the resilience of the
model by thwarting new unseen attacks.

The remainder of this paper is structured as follows: Section 2 tackles, in brief, the
random forest model, GAN-based defense technique, black-box-based ZOO attack, and
feature reduction methods. Section 3 tackles the curriculums of related work including
adversarial attack and defense techniques. Our proposed methodology is described in
detail in Section 4. The experimental setup and results of the proposal are illustrated in
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Section 5. A comparison with other prior work is given in Section 6. Finally, we provide
the conclusion in Section 7.

2. Background

In this section, we present the fundamentals of the random forest classifier and explain
the GAN architecture in detail. Afterward, we describe the realistic threat model scenario,
ZOO attack, which was considered in our work, and then we explain the current feature
selection and reduction methods.

2.1. Random Forest (RF) Classifier

RF is one of the most powerful methods employed to solve classification and regression
issues in machine learning. It is a class of supervised classification algorithms. The random
forest requires two steps: one is to tune the random forest configuration, and the other is
to predict the incoming results obtained from step one [28]. The random forest algorithm
is implemented based on building multiple decision trees; each one represents a classifier.
Every tree in the forest is sampled from the original dataset to create a sub-dataset. Then,
subsets of data are placed in each decision tree, and each decision tree produces results.
The result of the final decision is determined via a vote by all decision trees. A tree does
not select all the features, instead only some features are randomly chosen; then, from the
chosen features, only the optimal features are selected. Because of this randomness, its
variance decreases, and a better overall classification model is also produced [29].

2.2. GAN-Based Defense Methodology

A GAN is a deep learning approach that is composed of two NNs, each one against
the other in a game setting as shown in Figure 1 [30]. It has been studied in depth in the
field of security, as a GAN is capable of generating new unseen threats. The usage of a
GAN as a defense mechanism renders the model more robust against future attacks. The
main objective of a GAN is to detect unknown or unseen attacks and protect systems from
various vulnerabilities [18]. In a zero sum game context, a GAN has two NNs competing
against each other. One is leveraged for producing regression and labeled as a generator
(G), while the second is labeled as a discriminator (D). Usually, the purpose of the generator
is to take random noise (V) as input, transform it using the NNs, and create false instances,
whereas the aim of the discriminator is to use a NN to separate the infected data generated
via the generator from the actual one [31,32]. When the process reaches equilibrium, the
discriminator is unable to recognize between real and bogus data. The generator, therefore,
accepts random noise (V) as input and produces actual instances as output. That is to say,
the generator has found how the data is distributed [26,33]. The adversarial loss for both G
and D is given in Equations (1) and (2), respectively [34].

LG = EM∈Sattack,N D(G(M, N)) (1)

LD = Es∈Bbenign D(s)− Es∈Battack D(s) (2)

In the above equations, S refers to the data collected from the generator and leveraged
to train the discriminator, while the variable E is the expected volume of the produced data
that is indicated to be an attack or benign. Bbenign is a variable for the benign data, and
Battack is the attack data.

2.3. Black-Box-Based ZOO Attack

The ZOO-attack-based method was first introduced in [35] to generate adversarial
examples (AEs). Note that white-box-attack-based methods differ from black-box attacks,
as black-box methods do not rely on the gradient information of the target model. The
black-box attack process represents a targeted misclassification by which the data are
crafted to generate AEs. The generation of such examples relies on the modification of
optimization parameters and on a conjecture of confidence, rather than the gradation.
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When an attacker generates these examples, he or she utilizes them to violate IDS [36]. In
this paper, the threat model settings assume an attacker only queries the model for relevant
labels and has no access to the IDS model, including its hyperparameters. The goal of such
an attacker is to generate AEs that are hard to detect via the IDS model, and this makes the
model vulnerable to many threats.
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2.4. Reduction Techniques

To further increase the IDS model’s resilience, the most valuable features should be
extracted from the collected dataset. This will also help to decrease the data’s dimensions
and the model’s complexity. Such a method is known as a reduction method in which
only valuable features are chosen during the classification. In this work, two reduction
techniques, known as “PCA” and “RFE”, are tackled in the following.

• Principle component analysis (PCA) is widely employed to extract preferable fea-
tures and compress them, in which the dimensions of the feature are reduced. Note
that this also leads to the diminishment of the computational time and the model’s
complexity. The subsets of the feature set are extracted via PCA, and this helps di-
minish the search range [37]. In fact, the general usage of PCA is to extract important
features for traffic analysis [38];

• Recursive feature elimination (Rfe) is utilized to select some valuable features out of
all of the features in the dataset. Only features with high ranking are selected, and reset
features (e.g., those with low ranks) are eliminated one by one. Rfe technique removes
duplicated features and extracts only preferable and valuable features from all dataset
features. The goal of Rfe is to choose the best subsets of valuable features [10].

3. Literature Review

Given the most recent resurgence of DL effectiveness models and ML approaches,
studies in different domains have been accomplished to resolve prominent challenges in
the various realms across the world [39]. ML and DL models have been widely leveraged
in data generation, network security classification, network attack modification, and fore-
casting. This section tackles prior work on AML attacks and possible defense techniques
for NIDS.

3.1. Adversarial Attack Approaches

Researchers have investigated adversarial attacks and shown how easily they may
fool ML models [40]. White-box and black-box threats are two types of adversarial attacks.
The former necessitates that the white-box attack has access to the variables of the detector,
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whereas the black-box setting does not [25]. Lin et al. proposed a framework, namely,
IDSGAN, to produce AEs that can fool the IDS model by making prediction mistakes.
IDSGAN employs a Wasserstein generative adversarial network (WGAN) to produce
malicious traffic records that are hard to detect by IDS. A WGAN is composed of three
major parts: a generator (G), discriminator (D), and a black-box IDS. The G generates hostile
unlawful data from the incoming mixed malicious records with noise. The black-box IDS
is used to foretell the malicious records from the normal ones by producing predicted
labels as targets, in which the D uses these targets to impart the black-box IDS [41]. In
2019, researchers proposed an AML attack via the utilization of GANs to create a large
adversarial variation in the original network dataset. This attack aimed to evade a black-
box IDS. Then, GANs were used as a defense mechanism during the training phase to
render the system more robust against adversarial threats. The KDD99 dataset, which is
extensively used to measure IDS performance, was used to examine the proposed GAN.
The experiments showed that the highest accuracy was 65.38 percent for gradient boosting
(GB), and the lowest accuracy was 43.44 percent for support vector machine (SVM). After
training with the GAN, the classifiers’ performance improved, where the accuracy rate
reached 86.64 and 79.31 percent for LR and KNN, respectively [20]. Later in 2021, a
new aggressive framework, called anti-intrusion detection auto encoder (AIDAE), was
proposed, where GAN was used to create features for deactivating IDS. This framework
has an encoder that converts some characteristics to embedding space, and many decoders
to gather discrete and continuous characteristics. Then, a GAN is employed to impart the
previous distribution of the embedded space. The framework learns the typical feature
spread to produce irregular features, and this does not require IDS feedback during the
training operation. In addition, the proposal maintained the correlation between the created
discrete and continuous characteristics. The test was carried out on the NSL-KDD, UNSW-
NB15, and CICIDS2017 datasets, with six classifiers (i.e., LR, K-NN, DT, AdaBoost, RF, and
CNN+LSTM). The experimental results demonstrated that the generated characteristics
were capable of weakening the baseline IDS, implying that researchers need to take into
consideration defending against such attacks in the future [42].

3.2. Recent Work on Defense

Many researchers have introduced novel defense techniques to prohibit various ex-
isting threats via leveraging GANs to render stronger IDS. In 2018, the author, Mirza,
introduced an ensemble learning method to enhance system resilience. The results in all
classifiers were merged by collecting the most valuable information from all classifiers
(e.g., LR, NN, and DT) during both the training and testing phases. Afterward, a weighted
majority voting mechanism was applied to each individual classifier, and the results were
released to determine whether each sample was abnormal. The general accuracy for the
training and testing was 96.66% and 96.13% for LR, 90.67% and 89.83% for NN, and 92.08%
and 91.66% for DT [43]. In the same year, Zenati et al. proposed an anomaly detection
method-based bidirectional GAN, called adversarial learned anomaly detection (ALAD).
The GAN learned the distribution of the features to perform the anomaly detection goal.
Afterward, recreation errors based on the adversarial features were leveraged to specify
whether a given sample was malicious or benign. ALAD is constructed on the last level to
guarantee “data-space”, “latent-space”, and “cycle-consistencies” and to stabilize a GAN
during training. It was proven that the proposal elevates anomaly detection performance
significantly compared to state-of-the-art studies, where the KDD99 and Arrhythmia tab-
ular datasets and the SVHN and CIFAR-10 picture datasets were employed during the
evaluation [44]. A novel intelligent IDS was introduced in which a lower number of features
was used to detect intrusions. The genetic algorithm (GA) is leveraged to extract preferable
features in order to minimize resource usage and time complexity. After employing the GA
to remove the redundant and unnecessary data from the dataset, the GA output predicts
the best features via using a specific number of comparisons. The true positive rate was
enhanced when feature ranking was accomplished according to the results obtained from
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averaging the values in the dataset [45]. In 2021, McCarthy et al. proposed a defensive
strategy for measuring feature susceptibility to AEs generated by the fast gradient signed
method (FGSM) attack. The FGSM is a combination of white-box and misclassification
models, which is used to trick a NN model via rendering incorrect predictions. The pre-
sented strategy aims to strike a balance between classification results and diminishing
potential attacks on the feature space. The proposal was evaluated on the CICIDS2017
dataset. The authors found that there are data features vulnerable to attack. Defense
solutions are given for algorithmically generated AEs. In addition, Rfe was employed
to eliminate the vulnerability features that had the largest absolute difference during the
FGSM attack. Furthermore, regular feature selection for training enhanced the model’s
durability against AEs. With limited features, the method achieved high accuracy. When
all features were taken into account, the model had the highest accuracy; however, the
accuracy under assault seldom reached 60%. The results indicate that incorporating feature
selection increases the accuracy rate of the model when an FGSM attack exists [25].

4. Proposed Research Methodology

In this section, we present in detail our proposed technique’s structure, the dataset’s
preparation and preprocessing, and the evaluation metrics.

4.1. Model Structure

A framework diagram of the proposed model is demonstrated in Figure 2. It consists of
three main parts. The first part is data preprocessing, which is used to prepare the original
data for the ML models and apply feature reduction methods to improve the accuracy and
reduce the complexity. Specifically, we used PCA and RFE to reduce the data’s dimensions
by selecting only the relevant features that are needed for the classification task. The second
part is the defender model, which consists of the classifier model and the GAN model. The
classifier is an ML model used for binary classification. The GAN model aims to generate
adversarial examples (AEs) from the original dataset using arbitrary latent vector (noise
vector) and retrain our classifier on the new dataset (original and synthetic dataset) to
make it more resistant and powerful against known and unknown attacks in the future.
The last part, i.e., the attacker model, is a black-box attack method. This model generates
new AEs that aim to evade the detection system, the defender model, and influence on the
predictions of the classifier to determine its robustness.

4.2. Dataset

The CSE-CIC-IDS2018 is an intrusion detection dataset created by the Communications
Security Establishment and Canadian Institute for Cybersecurity on AWS (Amazon Web
Services), located at Fredericton, Canada, in 2018 [46]. The IDS2018 is the updated version
of the IDS2017 dataset and the latest and most comprehensive intrusion dataset, collected
for launching real attacks, which is publicly available. The dataset includes the necessary
standards for the attack dataset and contains many different kinds of attacks. This dataset
also comprises network traffic, system logs, and 80 features [47]. To better model the attacks,
a topology with a machine diversity similar to real-world networks was created [48]. The
infrastructure of the network included 50 attacker machines, 420 victim machines, and
30 servers. The details of the dataset’s features are provided in Table 1.

The intrusions in the CSE-CICIDS2018 dataset were normalized into two kinds, namely,
benign and malicious. The number of benign and malicious network traffics is given in
Table 2.

4.3. Data Preprocessing

The CSE-CICIDS2018 dataset consists of over 1,000,000 records. The dataset consists of
the original traffic in the packet capture (pcap) files, the logs, the preprocessed labels, and
the feature-selected comma-separated values (CSV) files. The CSV files are categorized into
two classes benign (class-0) and malicious (class-1). The dataset does not contain blanks
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or errors. Therefore, we applied some preliminary data processing procedures which are
presented as follows:

1. Numerical standardization: To provide data consistency, the data were standardized
using the technique of obtaining the Z-Score in which the standard deviation was set
to 1, and the average value of each feature was set to 0.

2. Outliers: We deleted two features (i.e., the timestamp (date and time) and Fwd
packets features) from the CSE-CIC-IDS2018 dataset, because they have a neglected
influence on the model training. Therefore, the total number of features was 78.

3. Replacement of default values: In the leveraged dataset, the packet length Std feature
has a value of infinity. We fixed this by changing its value to 0 in the database.

For all the experiments in Section 5, 75% of the dataset was employed to train the
ML model, and the remaining 25% was employed to test the model. However, 70% of
the dataset was used to train the GAN model, and the remaining 30% was used to test
the model.

Table 1. Description of the CSE-CIC-IDS2018 features.

Count Description

4 Basic features of network connections

11 Features of network packets

5 Features of network flow

22 Statistic of network flows

17 Content-related traffic features

3 Features of network sub-flows

18 General purpose traffic features

Computers 2022, 11, x FOR PEER REVIEW 8 of 18 
 

collected for launching real attacks, which is publicly available. The dataset includes the 

necessary standards for the attack dataset and contains many different kinds of attacks. 

This dataset also comprises network traffic, system logs, and 80 features [47]. To better 

model the attacks, a topology with a machine diversity similar to real-world networks was 

created [48]. The infrastructure of the network included 50 attacker machines, 420 victim 

machines, and 30 servers. The details of the dataset’s features are provided in Table 1. 

 

Figure 2. The overall framework of our proposal. 

Table 1. Description of the CSE-CIC-IDS2018 features. 

Count Description 

4 Basic features of network connections 

11 Features of network packets 

5 Features of network flow 

22 Statistic of network flows 

17 Content-related traffic features 

3 Features of network sub-flows 

18 General purpose traffic features 

The intrusions in the CSE-CICIDS2018 dataset were normalized into two kinds, 

namely, benign and malicious. The number of benign and malicious network traffics is 

given in Table 2. 

Table 2. Benign and malicious network count. 

Types Count 

Benign 762,384 

Malicious 286,191 

4.3. Data Preprocessing 

The CSE-CICIDS2018 dataset consists of over 1,000,000 records. The dataset consists 

of the original traffic in the packet capture (pcap) files, the logs, the preprocessed labels, 

and the feature-selected comma-separated values (CSV) files. The CSV files are catego-

rized into two classes benign (class-0) and malicious (class-1). The dataset does not contain 

Figure 2. The overall framework of our proposal.

Table 2. Benign and malicious network count.

Types Count

Benign 762,384

Malicious 286,191



Computers 2022, 11, 115 9 of 19

4.4. Evaluation Metrics

There are several classification metrics for IDS. The confusion matrix (CM) of a two-
class classifier was used to compute the performance metrics because, in our work, the
experiments were conducted broadly to distinguish between malicious and normal records.
The abbreviations of the CM are as follows:

• TP: Normal events are correctly classified by the model;
• TN: Malicious attacks are successfully identified by the model;
• FP: Normal events are incorrectly distinguished to be an anomaly;
• FN: Malicious attacks are incorrectly recognized via the model as a normal event.

The performance of our classifier model could be obtained via the following standards:
accuracy (AC), precision (PC), recall (RC), F1-score, AUC-ROC, and MSE.

• ACC: The proportion of all predicted instances, including normal or abnormal, that is
correctly predicted by the IDS. It is one of the longest-used metrics to measure IDS
performance, and it can be very useful when the classes are imbalanced.

ACC = TP + TN/TP + TN + FP + FN (3)

• Precision: The ratio of normal records that are correctly identified by the IDS to all
records that the IDS identified as normal.

Precision = TP/TP + FP (4)

• Recall: The percentage of all normal records correctly identified by IDS.

Recall = TP/TP + FN (5)

• F1-score: The balance between precision and Recall, and it is expressed as the harmonic
mean of the two metrics.

F1 = 2 × (Precision Recall/Precision + Recall) (6)

• AUC-ROC: This indicates how much or to what extent a machine learning model is
capable of detecting or classifying various categories of scenarios as we intended.

• MSE: This is the average squared error between the model’s predictions and the
actual outcomes.

5. Results

This section presents three experimental setups with the results. In the first setup, we
used all 78 features of the dataset as the model’s input. However, we used dimensionality
reduction methods (i.e., RFE and PCA) to reduce the number of features in experiments II
and III, respectively. Each experiment included three parts: training the ML model on the
original dataset; using GAN to generate adversarial examples and retrain the ML model on
the original and generated dataset; evaluating the performance of the ML model when the
black-box ZOO attack was applied.

5.1. Experiment I

In the first experiment, we used all 78 features to train our IDS classifier, the random
forest. The classifier was used to classify the dataset into two classes (i.e., benign and
malicious). The hyperparameters of the random forest classifier are illustrated in Table 3.

The second part of this experiment was to increase the ability of this model to handle
more than a real dataset. Therefore, the proposed GANs with all 78 features was built to
generate adversarial examples to increase the defense mechanism. The architecture of the
proposed GAN consisted of two neural networks (i.e., generator (G) and discriminator (D)).
The G neural network model had three layers and a Relu activation function, including an
input layer with 79 units to meet the formula of the input vector after preprocessing. The
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hidden layer consisted of 100 units, and the output layer of the proposed generator had
79 (78 features, 1 label), which are referred to as the vectors of the fake record generated
from noise V. On the other hand, the proposed D network was designed to classify (fake
or real) data generated by the G network. It was also used to update the noise vectors
depending on the feedback loss function from the network. This D network consisted
of three layers: an input layer with 78 units followed by the activation function Relu; a
hidden layer with 100 units followed by a dropout layer with a dropping rate of 0.4 used
to avoid the overfitting problem; finally, the sigmoid output layer was used for binary
classification: 0 for real, 1 for fake. In this experiment, the Adam optimizer was used to
update the trainable parameter at a learning rate of 0.001 as shown in Table 4.

Table 3. Random forest hyperparameters.

Hyperparameters Values

Estimators 20

Criterion Gini Index

Minimum samples leaf 1

Minimum samples split 2

Table 4. GAN hyperparameters.

Optimizer Adam

Learning rate 0.001

Batch size 512

Epochs 2000

Loss function Binary cross-entropy

Latent dimension Depending on the input vector

After 2000 epochs, the D completely failed to classify the output from the G network,
which is known as fooling the D model to distinguish between the real and generate fake
samples. The loss rate of G reached the lowest value at 0.002, while the D loss rate reached
17.12 as shown in Figure 3. The process of training the GAN led to the generation of
230,000 samples. After this process, the generated data were merged with the real data
and used to retrain the proposed RF model. Table 5 shows the classification results of the
proposed RF model with all 78 features.

Table 5. Evolution metrics of our IDS classifier (RF) including accuracy, precision, recall, F1-score,
and MSE for Experiment I.

RF Accuracy Precision Recall F1-Score MSE

Before GAN 0.863 1.00 0.84 0.91 0.13

After GAN 0.85 0.99 0.80 0.88 0.14

After ZOO attack 0.69 0.62 0.74 0.67 0.30

The third part of this experiment was to evaluate the proposed IDS model using a
black-box attack. We used the ZOO method as an attacker model to generate adversarial
examples that were used for launching against the proposed RF classifier. Our goal was to
assess the ability and susceptibility of the system after the adversarial training process. We
modified this method and used it on one vector. The adversarial setting of the proposed
ZOO model is explained as follows: the Adam optimizer with β1 = 0:8; β2 = 0:899 was
applied to minimize the loss with a learning rate of 0.001 and ∈ = 0.0000001. The maximum
epoch was set to 2000. The classification results of the proposed RF classifier after applying
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the ZOO attack are shown in the third row of Table 5. Figures 4a–c and 5a–c summarize the
confusion matrices (CMs) and AUC-ROC of all three parts of experiment I. 
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Figure 3. Losses between the generator and discriminator.
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Figure 4. CMs of the evaluation of RF on (a) clean data; (b) after adversarial training; (c) after
launching a black-box attack in Experiment I.

Table 5 summarizes the classification results of the proposed random forest classifier
(IDS) when 78 features were used. Even though RF before the GAN provided good results
compared to RF after the GAN and ZOO, the performance could be improved by removing
unrelated or redundant features from the dataset. Therefore, it was necessary to choose the
best and most effective features from the dataset to improve the performance of our IDS
classifier. As can be seen in Table 5, the generated data by the GAN resulted in a decline
in accuracy. This may indicate that these generated samples were somehow symmetrical
to the real data and, therefore, identification by the trained model is hard. Moreover,
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the selected values of the parameters (e.g., epochs) help the GAN model produce strong
adversarial examples. It is worth mentioning that even though the ROC was close to 1,
as seen in Figure 5b, it did not help much in detecting infected samples generated by the
GAN. Moreover, the accuracy of the RF was significantly decreased under the influence
of the black-box attack (ZOO), because the samples generated by the ZOO attack could
not be easily detected by the IDS. This confirms two things: (1) the process of the ZOO
adversarial black-box attack generated new and strong infected instances that were hard
for our model to detect, and this reduced the model’s efficiency; (2) RF had the advantage
of good accuracy on the original dataset with imbalanced high diminutions. Based on the
aforementioned, the RF was successful because it did not have the problem of nominal data
and did not overfit the data. Note that our proposal was still efficient at detecting unknown
attacks as shown in Figure 5c.
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Figure 5. AUC-ROCs of our RF classifier that describe the extent of the ML model in classifying in
Experiment I.

5.2. Experiment II

The objective of this experiment was to train and test the proposed IDS model on
fewer features using feature reduction methods, because we concluded from previous
experiments that taking all of the features did not provide an optimal performance probably,
as some of the features were unrelated and redundant. Accordingly, we turned to leveraging
methods to minimize the features to obtain a better result. Specifically, we applied the
RFE feature selection method to the original dataset to select only eight features. The
RFE method was efficient in choosing the robust features and neglecting the weaker ones.
Furthermore, it reduced the dependencies and the interlinear relationships that may exist in
the dataset. The most important eight features described in Table 6 were utilized to retrain
the proposed RF classifier. The first row of Table 7 illustrates the classification results of the
RF classifier with the eight input features.

Table 6. Overview of the 8 selected features based the Rfe method.

Count Feature Name

2 Protocol

13 Bwd Pkt Len Min

20 Flow IAT Max

22 Fwd IAT Tot

23 Fwd IAT Mean

30 Bwd IAT Max

54 Pkt Size Avg

78 Idle Min

Similar to experiment I, we applied the strategy of adversarial training based on the
GAN to generate new samples based on the same eight selected features. We also tested
the model when the ZOO model was used to attack the classifier. The proposed GAN was
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modified to use eight features instead of 78. After 2000 epochs, the G’s success in fooling the
D can be seen in Figure 6. The proposed RF model was retrained with 240,000 adversarial
samples that were generated by the GAN. The classification results of the proposed RF
after applying the GAN are shown in the second row of Table 7. While the results after
applying the ZOO attacker are shown in the third row of Table 7. Figures 7a–c and 8a–c
summarize the confusion matrices and AUC-ROC of all three parts of experiment II.

Table 7. Evolution metrics of our IDS classifier (RF) including accuracy, precision, recall, F1-score,
and MSE for experiment II.

RF Accuracy Precision Recall F1-Score MSE

Before GAN 0.85 1.00 0.83 0.90 0.14

After GAN 0.905 0.81 0.98 0.88 0.09

After ZOO attack 0.487 1.00 0.48 0.64 0.51
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According to the results in Table 7, the accuracy did not differ much from the accuracy
of the random forest in experiment I. However, after applying the GAN and retraining
the RF model, the accuracy improved compared to the GAN in experiment I. The MSE
also improved from 0.14 to 0.09, as well as the FN in the confusion matrix. In addition,



Computers 2022, 11, 115 14 of 19

an improvement in the ability of the classifier ROC curve from 0.93 to 0.97 is shown in
Figure 8b. The performance of the RF model against the ZOO attacker in experiment II was
lower than in experiment I. Where the accuracy dropped from 0.69 to 0.48. This suggests
selecting more robust features from the original dataset by using a different feature selection
method. Therefore, we performed the third experiment.
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5.3. Experiment III

In this experiment, we used a different a feature selection method to improve the
classifier’s performance and handle the issue in experiment II when the ZOO attack was
applied. Specifically, we used the PCA feature selection method to select the most efficient
features from the original 78 features. The experimental results, illustrated in Table 8,
indicate the RF classifier with the top 15 features selected by PCA with the highest variance.
Note that in experiment II, we tried a different number of features chosen by Rfe, but the
best accuracy was achieved when the number of selected features by Rfe was eight. The
selected features by PCA were used to generate GAN-based adversarial examples. The
performance of the RF classifier with GAN-based examples is shown in the second row
of Table 8. Similar to the previous two experiments, we evaluated the RF classifier using
the ZOO attack. The results are shown in the third row of Table 8. Figures 9a–c and 10a–c
summarize the CMs and AUC-ROCs of all three parts of experiment II.

Table 8. Evolution metrics of our IDS classifier including accuracy, precision, recall, F1-score, and
MSE for Experiment III.

RF Accuracy Precision Recall F1-Score MSE

Before GAN 0.863 0.99 0.98 0.98 0.13

After GAN 0.999 0.99 0.99 0.99 0.0001

After ZOO attack 0.759 0.74 0.81 0.77 0.24
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The improvement in the RF classifier results shown in Table 8 indicate that the PCA
method was more robust than the Rfe method. The RF with PCA accuracy was 0.863, while
the RF with RFE accuracy was 0.85. The results also show that using GAN with the features
selected by PCA achieved the highest accuracy of 99.9 and a significant decrease in the
MSE from 0.014 to 0.0001. The excellent results of this experiment were not limited to
the adversarial training but also extended to the black-box attack. Specifically, the system
repelled the ZOO attack and obtained the highest accuracy of 0.759; the accuracies of
experiment I and II when ZOO attack is applied were 0.69 and 0.487, respectively.

6. Comparison with Previous Studies

In this section, we compare our proposed ML-based IDS with state-of-the-art ML/DL-
based IDS that only evaluate the model’ performance without measuring the model resis-
tance. Each of the prior work was implemented with different methods (e.g., some of them
used a single model and others used multiple models) on same dataset. The results show
that our proposal offers better accuracy compared to other existing works as shown in
Table 9. It is worth mentioning that we did not compare our work with work that handled
class imbalance issues by modifying the original dataset (e.g., the work in [47,49]), because
it was beyond the scope of this paper, and it could be a complement to our proposed
model. Although DL has been proven to be effective in the field of NIDS, our proposed ML
model achieved better results. This might be because DL algorithms deal very well with
complex tasks that require discovering relationships among a large number of different
features. However, our experimental results show that reducing the number of features of
our targeted task led to improving the overall accuracy. In addition, a recent study showed
that using such techniques (i.e., using PCA to minimize the dimensionality of the dataset)
with IDS reduced the performance of the model.

Table 9. Comparison with some related works on the CSE-CICIDS2018 dataset.

Authors Year Models Acc

Usama, Asim et al. [20] 2019 LR 0.866

Amaizu, Nwakanma et al. [50] 2020 DNN 0.764

Fitni and Ramli [11] 2020 Ensemble model 0.988

Sawadogo, Bassolé et al. [51] 2021 CNN 0.975

Our proposed method 2022 RF 0.999

We compared our work with a related work [20] to measure the proposed model
resistance against different attacks, where they used GAN as a defense method based on
adversarial training. The test was conducted before and after applying GAN and ZOO
attacks with and without applying adversarial training. Our model outperformed the
work in [20] in all testing stages when these two attacks were applied as shown in Table 10.
We obtained better results due to the technique used for feature selection and number of
epochs. Specifically, we used PCA for feature selection instead of dividing the features into
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functional and nonfunctional as done in [20]. Moreover, since the epochs used in [20] were
only 100, this would not be enough to generate sufficiently strong fake samples for training
the model effectively. To address this dilemma and generate strong samples, we increased
the number of epochs to 2000.

Table 10. Comparison with other related work when different attacks are applied.

Technique Before GAN After Attack GAN Attack GAN
after AT

After ZOO Attack
after AT

Reference [20] 0.89 0.6538 0.86 0.678

Our proposal 0.86 0.6683 0.87 0.759

7. Our Findings and Future Work

To identify abnormal and malicious behavior in networks, IDS have been used. Many
ML techniques have been utilized to adopt different types of such systems to protect the
network. Improving the system’s performance and analyzing large amounts of network
traffic requires providing robust and efficient systems to counter possible unknown attacks.
To cover this issue, this paper proposed a theoretical-game-based approach to create a
defensive system and train adversarially based on a GAN to ensure the system’s reliability
against black-box attacks. This system was then attacked to evaluate its strength and
resilience in capturing the samples that were distorted by the adversary. This process used
a three-stage framework for each experiment. All of the features were used, and then
feature selection methods were performed to determine the right features for good results
with less complexity and execution time. Evaluation of these experiences was conducted
on the recent CSE-CICIDS2018 dataset. The outcomes showed that the quality of the data
that our IDS trained on and the features that were selected as well as the rate of perturbed
samples by the attacker were factors that influenced the results of the system. The PCA
method was the best with lower implementation times compared to other trials. The use
of a GAN as a defense technique is a good decision to protect networks from modern
attacks. For future actions, we recommend that a GAN can be used in security domains
other than image and encryption areas to train the system to defend itself against adverse
attack scenarios. It can also be applied to deep learning techniques to determine their
effectiveness with high-dimensional data. Proposing new defense methodologies against
such attacks is necessary. While we have focused on the problem of binary classification in
this work, it is important to extend this research to the problem of multiclass classification
to classify separate types of attacks, and this will be one of our key future works. This
could be important in reducing the complexity and execution time of the ML model.
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