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Abstract: In Mixed-Criticality (MC) systems, multiple functions with different levels of criticality are
integrated into a common platform in order to meet the intended space, cost, and timing requirements
in all criticality levels. To guarantee the correct, and on-time execution of higher criticality tasks in
emergency modes, various design-time scheduling policies have been recently presented. These
techniques are mostly pessimistic, as the occurrence of worst-case scenario at run-time is a rare
event. Nevertheless, they lead to an under-utilized system due to frequent drops of Low-Criticality
(LC) tasks, and creation of unused slack times due to the quick execution of high-criticality tasks.
Accordingly, this paper proposes a novel optimistic scheme, that introduces a learning-based drop-
aware task scheduling mechanism, which carefully monitors the alterations in the behaviour of the
MC system at run-time, to exploit the generated dynamic slacks for reducing the LC tasks penalty and
preventing frequent drops of LC tasks in the future. Based on an extensive set of experiments, our
observations have shown that the proposed approach exploits accumulated dynamic slack generated
at run-time, by 9.84% more on average compared to existing works, and is able to reduce the deadline
miss rate by up to 51.78%, and 33.27% on average, compared to state-of-the-art works.

Keywords: drop rate; dynamic slack; Machine-Learning; Mixed-Criticality; Quality-of-Service (QoS);
run-time management

1. Introduction

Modern embedded systems in various applications such as automotive, avionics, and
medical devices, are getting more complex due to integrating many functions with different
criticality levels into a common platform [1–3]. In these systems (called Mixed-Criticality
(MC) systems), the correct execution of all tasks with higher criticality levels (HC tasks)
must be guaranteed in any situation, while low-criticality tasks (LC tasks) can be penalized
in emergency situations [2,4,5]. For instance, drones are an MC system, where the engine
control (i.e., the function that ensures the safe execution of the operation) is an HC task,
and the process of recording a video (which is its main mission) is considered as an LC
task [6,7].

From the MC task analysis perspective, the MC systems are designed to support the
worst-case scenario in any situation and guarantee the safety of an MC system. Therefore,
HC tasks are analyzed with optimistic and pessimistic assumptions to obtain different
Worst-Case Execution Times (WCETs) [8,9]. At run-time, if the execution time of an HC
task exceeds its optimistic WCET (i.e., requires additional resources), the system switches
from low-criticality (LO) mode to high-criticality (HI) mode (also called emergency mode),
and all HC tasks will be scheduled based on their pessimistic WCETs to guarantee the
system’s safety. In the HI mode, it is possible that some or all LC tasks are dropped to
ensure the correct execution of the HC tasks [2,5,10], which reduces the result’s quality.
However, there are some issues in designing MC systems in a pessimistic manner, including
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(1) under-utilization at run-time, and (2) frequent drop of LC tasks in the HI mode. In the
latter case, considering a constant value for the drop rate (a parameter that specifies the
minimum jobs that must be executed between two consecutive drops of an LC task) may
have a negative impact on the execution of other tasks and consequently cause the system
not to execute its mission correctly. This is despite the fact that many of the existing MC
scheduling algorithms have employed this approach by analyzing the tasks at design-time
and specified the LC tasks that must be dropped if the system switches its mode to HI. In
these studies, the dropping policies remain unchanged during run-time, which causes the
system to be under-utilized due to the unnecessary dropping of some LC tasks. Therefore, it
is necessary to consider the run-time behaviour of MC systems along with the assumptions
that have been made at design-time (i.e., monitoring the state of the system and controlling
the task dropping in the HI mode), to improve the utilization and Quality of Service (QoS)
for LC tasks [2].

Many studies have concentrated on improving the timing behaviour of these systems
in both design- and run-time phases. From a design-time point of view, different scheduling
policies have been presented to guarantee the real-time constraints of HC tasks while
improving the LC tasks’ QoS in the HI mode [7,10,11]. However, most of these approaches
design the MC system pessimistically, which causes the system to be under-utilized at
run-time. In addition, their policies unnecessarily drop LC tasks, which degrades their
service requirements in favor of HC tasks in the HI mode. In addition, some run-time
approaches improve the QoS by proposing a new scheduling policy or exploiting the
dynamic slacks [4,8,12]. However, due to the lack of complete observation of the MC
system’s behaviour, the decision may be ineffective, and there may be no guarantee of
meeting the LC tasks’ service requirements.

To this end, we propose SOLID, a novel optimistic mechanism that reduces the number
of drops for the LC tasks by observing the system’s behavior changes at run-time. This
goal has been achieved by exploiting the generated dynamic slacks in the decision-making
process for the online task dropping to execute more LC tasks in the HI mode and enhance
their schedulability. Since we are not aware of the amount of generated dynamic slacks
during run-time in advance, Machine-Learning (ML) approaches can be employed as a
management technique for the prediction. Therefore, utilizing ML techniques as part of the
SOLID has enabled it to partially exploit the dynamic slack to improve the QoS for the LC
tasks in the HI mode. In these schemes, the learner finds the optimum drop rate for the LC
tasks, prevents frequent drops in HI mode, and consequently reduces their deadline miss
rate. We also extend the proposed mechanism, which is lenient in applying the learned
drop-rate data to the scheduler. Accordingly, the main contributions of this article are:

• Presenting a novel adaptive technique with high QoS to schedule MC tasks at run-time.
• Proposing a learning-based drop-aware MC task scheduling mechanism, called SOLID,

to improve the QoS by exploiting the generated dynamic slacks rigorously, during
run-time with no HC tasks’ deadline misses.

• Extending the proposed mechanism (SOLID) to a mechanism that uses accumulated
dynamic slack moderately, called LIQUID.

The proposed approaches were analyzed with an extensive set of evaluations. Exper-
iments show that the proposed approaches can exploit the generated dynamic slacks by
9.84% on average and reduce the deadline miss rate by 33.27% on average compared to
existing studies.

The rest of this paper is organized as follows: We first review the related studies in
Section 2. The system models and preliminaries are discussed in Section 3. In Section 4, we
present a motivational example along with a problem statement to explain the problem to
the readers better. The proposed approaches is discussed in detail in Section 5, and finally
we analyze and conclude the experiments in Sections 6 and 7, respectively.
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2. Related Works

The majority of the existing studies in the context of MC systems have focused on
proposing techniques for managing different aspects of the system, e.g., task schedulability
and QoS at design-time. However, a few efforts also been conducted to manage these
parameters at run-time. Although researchers in [2] give a comprehensive study in the
field of task scheduling techniques and QoS improvement in MC systems in run-time
and design-time phases, this section provides an overview of the existing studies, which
are very close to the proposed approach. In addition, as part of our review, we also
introduce some learning-based approaches in the field. Table 1 summarizes these works
with their respective properties, such as considering single/multi-core (S/M-Core) platform,
MC/non-MC task Model, run-/design-time approach, Using of ML, and QoS improvement
(offline/online-manner). In this table, None means that the researchers do not consider the
property in their work.

Table 1. A brief overview on the state-of-the-art studies.

# S/M-Core MC
Tasks Run-/Design-Time QoS Opt. Use of

ML

1 Gettings’15 [11], Ranjbar’20a [7], Liu’18 [9]
Guo’18 [5], Ranjbar’21 [13]

S-Core X Design-Time offline None

2 Ramanathan’18 [14], Pathan’17 [15],
Pathan’18 [16] M-Core X Design-Time offline None

3 Sigrist’15 [17] M-Core X Run-Time None None

4 Huang’19 [8], Lee’17 [4], Li’14 [12], Hu’16
[18], Bate’15 [19] S/M-Core X Run-Time online None

5 Li’09 [20], Eom’13 [21], Horstmann’19 [22] M-Core × Run-Time None X

6 Proposed Work M-Core X Run-Time offline & online X

Since most MC systems are safety-related and real-time, the task schedulability in
terms of QoS is typically analyzed at design-time to guarantee the correct execution of tasks
before their deadlines to prevent catastrophic damages while the system is operating. Row
1 of Table 1 introduces some studies which improve the QoS of LC tasks in the HI mode
while investigating the task scheduling feasibility. The authors in [5,7,9,11,13] have focused
on MC systems to guarantee the LC tasks’ QoS in the worst-case scenario (up to their
WCETs). In these approaches, executing the minimum number of instances (i.e., dropping
fewer instances of LC tasks) in the HI mode is ensured. However, all these approaches are
applicable at design-time to guarantee the minimum QoS. This is despite the fact that the
system does not operate in the worst-case scenario at run-time in most cases. Therefore, the
guaranteed minimum QoS of LC tasks could be improved. Although authors in [7] have
proposed an approach to enhance the QoS by determining a constant drop rate parameter
for LC tasks and guaranteeing their schedulability in the HI mode based on the defined
parameter, their presented scheme has been analyzed in the worst-case scenario of tasks’
execution, while there may exist significant amount of idle time in the processor at run-time,
which could be used for improving the QoS of LC tasks. Some articles in the field of MC
systems such as [14–16] have presented the scheduling algorithms for multi-core processors,
which can also improve the LC tasks’ QoS (row 2). However, these methods have been
presented to guarantee the tasks’ deadlines in the worst-case scenario at design-time.

From the MC task scheduling on multi-core processors perspective at run-time,
Sigrist et al. [17] (row 3) have studied the recent task scheduling mechanisms, and eval-
uated the effect of run-time overheads, such as task execution monitoring, overrunning
detection, and mode switching. However, they have not improved the task scheduling and
QoS at run-time. To improve the LC tasks’ QoS at run-time, researchers in [4,8,12,18,19] have
presented the run-time adaptability mechanisms by exploiting the accumulated dynamic
slack to execute more LC tasks in the HI mode (row 4). In [4], a run-time schedulability
analysis has been presented, and LC tasks are executed in free slack time if the conditions
are met. Researchers in [18] have also presented an effective solution for reducing the
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number of mode switches and consequently LC task dropping by using the generated
dynamic slack for executing HC tasks when they overrun. Bate et al. [19] have also pro-
posed a protocol that handles mode switches and ensures that LC tasks are executed more
frequently. However, in such three works, some LC tasks may be dropped frequently
and continuously when the system switches to the HI mode, which is unacceptable in
any situation in some MC systems. In addition, all dynamic slack is not exploited in [12]
properly since the algorithm only uses the dynamic slack generated by HC tasks’ execution.
Fixed-priority Earliest-Deadline-First (EDF) scheduling algorithm has been used in the
presented algorithm of [8], which is less efficient compared to the common EDF [23], such
as EDF with Virtual Deadline (EDF-VD). These methods may drop LC tasks frequently due
to improper system design and insufficient dynamic slack.

When considering the system’s property optimization at run-time, there exist several
studies which have proposed ML-based methods to manage the task schedulability to
improve the performance (executing more tasks in the system) [20–22] (row 5). However,
these approaches could not manage different operational modes, including (1) scheduling
all tasks to be executed successfully before their deadlines and (2) guaranteeing and
improving the minimum QoS when the system switches to the HI mode. The downsides
of the previous approaches have motivated us to study the MC systems’ behaviour at
run-time, and propose an ML-based approach to improve the LC tasks’ QoS in multi-core
platforms.

3. System Model

This paper focuses on a multi-core platform, consisting of c homogeneous cores
{cr1, ..., crc}. The system executes MC applications, in which analogous to many state-of-the-
art studies [4,5,7,9,24], we consider a set of n independent periodic MC tasks {τ1, τ2, ..., τn}.
Each task τi is represented as (ζi, CLO

i , CHI
i , di, d̂i, Ti, δi), where ζi is the criticality level of

the task. We consider a dual-criticality system, where tasks can be high-critical (ζi = HC),
or low-critical (ζi = LC). In these dual-criticality systems, each task has two Worst-Case
Execution Times (WCETs), i.e., optimistic (CLO

i ), and pessimistic (CHI
i ). For each task τi, if

ζi = HI, then we have CLO
i ≤ CHI

i , and if ζi = LO, then CLO
i = CHI

i . In addition, di denotes
the deadline of the task τi, which is equal to its period di = Ti [7]. d̂i represent the virtual
deadline (d̂i < di) which provides a higher priority for HC task τi, while the tasks are
scheduled in the LO mode. Details regarding the definition and computation of the virtual
deadlines are explained in [10]. As mentioned earlier, dropping all LC tasks in the HI mode
is not acceptable in industrial applications. Thus, researchers in [7,11] have defined a drop
rate parameter for each LC task to be employed in the HI mode. This parameter specifies
the minimum jobs that must be executed between two consecutive drops of an LC task. It
is represented as (s,m)-deadline, where at most, s jobs could be dropped out of m jobs [11].
The authors in [7] have considered a specific case with s = 1 and m = δ. Accordingly, we
also utilize the same definition as in [7,11], for the case that s = 1. In this definition, if δi = 1,
it means that all jobs of τi would be dropped in the HI mode. As we used several symbols
and notations, a list of them is provided in Table 2 for easy following.

Table 2. A list of used notations in this article.

Symbol Description Symbol Description

ζi Criticality level of task τi δi Skip parameter of task τi

CLO
i Optimistic WCET of task τi CHI

i Pessimistic WCET of task τi

di Actual deadline of task τi d̂i Virtual deadline of task τi

Ti Period of task τi HP Hyper-period of task set

J(i, j) A released job (j) of task τi FTimei Finish Time of task τi

nL Number of all LC tasks nsucc
L Number of executed LC tasks
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MC System Operational Model: Initially, the system begins its operation in the LO
mode, where all of the LC and HC tasks must be executed before their deadlines. If the
execution time of at least one HC task exceeds its optimistic WCET (CLO

i ), the system
switches to the HI mode. In the HI mode, all of the HC tasks are considered to be executed
up to their pessimistic WCET (CHI

i ). Therefore, LC tasks will be scheduled based on their
defined drop rate values in favor of HC tasks; therefore, all these HC tasks can be executed
correctly before their deadlines. Finally, in case there are no remaining ready HC tasks in
the queue of the cores, the system will safely switch back to the LO mode and continue its
operation [3–5,9,11,24].

4. Motivational Example and Problem Statement

The main motivation for our proposed method comes from the fact that the MC
systems are typically designed in a way that they are obliged to map and schedule the
tasks in the worst-case scenario at design-time, before the system starts its operation. This
is despite the fact that the application’s QoS, system utilization, and deadline miss rate of
LC tasks in case of HI mode switching will be affected while the application is executing at
run-time. Indeed, the properties of MC systems can be improved according to the status
of the tasks’ execution over time. To support this claim, let us consider a simple drone
application composed of five tasks (τ1, ..., τ5). For the sake of simplicity, assume that the
application runs on a single-core processor. The tasks’ timing parameters have been shown
in Table 3. The period of task τi (Ti) is equal to the task’s relative deadline. In addition,
since the EDF-VD algorithm is used to schedule the task, a virtual deadline (d̂i, which is
less than the relative deadline) is needed to be defined for HC tasks (the detail of how it is
computed, has been explained in [10]).

Table 3. The mixed-criticality task set.

Task Function ζi CLO
i CH I

i Ti d̂i δi

τ1 engine control HI 2 7 24 11 ∞
τ2 collision avoidance HI 2 4 48 22 ∞
τ3 video capturing and transferring LO 2 2 8 - 3
τ4 sensor data recording LO 2 2 6 - 4
τ5 navigation HI 0.8 1 12 6 ∞

In this example, τ1, τ2, and τ5 are HC tasks and τ3 and τ4 are LC tasks. Each task
function is determined in Table 3. Dropping an LC task, such as τ3, could be acceptable
in HI mode, but it should not frequently happen due to its responsibility. For instance, in
multimedia tasks, e.g., τ3, the maximum drop rate (i.e., the rate of skipping the videos)
must be guaranteed when the MC systems are designed to satisfy the customers. More
specifically, the minimum QoS of LC tasks must be guaranteed in the HI mode. Hence, most
of the previously MC scheduling algorithms have been designed based on the maximum
drop rate of LC tasks before the system starts its operation. Furthermore, these rates are
kept constant during the tasks’ operation at run-time when the system switches to the HI
mode. Figure 1 illustrates four task scheduling approaches, including (1) Method of [10], a
design-time approach that drops all LC tasks in the HI mode, (2) Methods of [7,11], the
design-time approaches, which drop LC tasks based on their drop-rates in the HI mode,
(3) Method of [7,11], investigating their approaches at run-time, and finally, (4) Proposed
method in this paper. According to this figure, each task has several jobs, released at the
beginning of its period. Therefore, a released job (j) of task τi is shown by J(i, j) with an
upward arrow.

Figure 1a depicts the task scheduling procedure under the principles of the proposed
mechanism in [10]. Accordingly, assume that all of the tasks should comply with their
specified time budget (CLO in the LO mode and CHI in the HI mode) to be executed
correctly. This figure shows that the system switches to the HI mode by τ5 overrunning. In
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this figure, the jobs of τ3 (J(3, 1), J(3, 2)), and τ4 (J(4, 2), J(4, 3)) are dropped twice in the
HI mode, which is not acceptable in many MC applications. Figure 1b shows a scheduling
mechanism which can schedule LC tasks in the HI mode [7,11]. Accordingly, the LC tasks
are dropped based on their predefined drop-rate parameters. In this scenario, only J(3, 1),
and J(4, 2) will not be executed in the HI mode. As it can be seen, the presented approaches
in [7,11] enable the MC system to schedule LC tasks in the HI mode, and improve the LC
tasks’ QoS. Nevertheless, their design principles in the MC systems are all considered in
the worst-case scenario of the task execution, which is not optimal. At run-time, the tasks
are typically finished earlier than their WCET in most cases, and then some dynamic slack
would be created. As an example, Figure 1c shows the run-time behavior of the system,
where some dynamic slack has been generated, and the tasks have finished their execution
earlier. Therefore, other tasks could start their execution earlier, and the core would spend
more time in the idle mode, compared to the scheduling mechanism depicted in Figure 1b.
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Figure 1. Scheduling of MC tasks under different policies. (a) Task scheduling mechanism in [10]
(worst-case scenario). (b) Task scheduling mechanism in [7,11] (worst-case scenario). (c) Task schedul-
ing mechanism in [7,11] (run-time). (d) The proposed task scheduling mechanism in this paper.

Based on what we have learned, it is recommended that the system should be able
to manage its behavior during run-time, to minimize the drop rate of some LC tasks in
the HI mode. As a result of this action, the QoS will be enhanced, e.g., less video will be
skipped, which is desirable. Figure 1d represents the task scheduling at run-time, where
the dynamic slack has been used to minimize the drop rate when the system is in the HI
mode (such as J(3, 1) and J(4, 2) which are not dropped). Although we are not aware of
the amount of dynamic slack in advance, they could be exploited to improve the QoS.

Motivated by the above mentioned example, prior to explaining the details of our
novel scheduling technique, we define the constraints, and the objective function, as
follows:

Deadline Constraints: Each HC task τi with the WCET CLO/HI
i , running on core crj

must finish its execution (FTimei is the finish time of task τi) correctly before its deadline
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(di) in both LO and HI modes. In addition, all LC tasks must finish their execution before
their deadlines in LO mode. In addition, in case of switching to the HI mode, most LC
tasks must finish their execution before their deadlines according to their drop rate δi.

∀τi,ζi = HC : FTimeLO/HI
i ≤ di ∀τi, &ζi = LC :

{
Mode = LO : FTimeLO

i ≤ di

Mode = HI : FTimeLO
i ≤ di|δi

(1)

Objective Function: We optimize the MC system QoS at run-time by maximizing the
LC tasks’ QoS in the system by utilizing the following objective function: Maximize QoSsys
or Minimize DMRsys, where DMR is deadline miss rate and the QoS is defined as the
percentage of executed LC tasks in the HI mode to all LC tasks [7,25,26] (QoS = nsucc

L /nL,
where nL is the number of all LC tasks and nsucc

L is the number of executed LC tasks before
their deadlines), which can be optimized by optimizing their drop rates (δi) (QoSsys =
nsucc

L /nL). The QoS is computed at the end of each hyper-period based on the number of
non-executed LC tasks. Hence, the hyper-period is the Least Common Multiple (LCM) of
all tasks’ periods.

The problem is how to use the generated dynamic slack at run-time to maximize
the QoS for satisfying the timing constraint. While we are not aware of the amount of
dynamic slack in the future, it is possible to turn it into a partially controllable entity at
run-time to optimize the intended objective. This could be done by using ML techniques.
Therefore, this paper proposes a novel learning-based and drop-aware scheduling for MC
tasks running on a multi-core platform. As discussed below, we utilize our newly proposed
technique to use the generated dynamic slack at run-time to achieve better performance
and QoS.

5. Proposed Method in Detail

In this section, we present SOLID; a novel Strict learning-Oriented Quality-of-Service-
and Drop-aware task scheduling mechanism for MC systems, to apply in the run-time
phase. As illustrated in Figure 2, our proposed approach contains a design-time, and a
run-time phase. Application characteristics, architecture information, and QoS metric are
counted as inputs and scheduled tasks, and QoS improvement are the outputs. Accordingly,
we first need to analyze the task schedulability at design-time based on their characteristics
(Section 5.1) to guarantee the minimum QoS requirement for the system. Therefore, we
use the approach of [7,11] to ensure the task schedulability and the minimum QoS. In
addition, to manage the resources of the system architecture, we should also map the
tasks at design-time in the multi-core platform. Finally, we exploit our newly introduced
learning-based optimization mechanism at run-time (Section 5.2). In the following, we
explain the details of the proposed approach in each of these phases.

5.1. An Overview of the Design-Time Approach

This section focuses on task mapping and scheduling at design-time. According to
Figure 2, the timing properties of tasks are obtained by running real-world benchmarks on
a hardware platform (more details about the benchmarks and the platform are provided in
Section 6). We map the tasks on the multi-core platform and validate the schedulability test
using the tasks’ parameters in the worst-case scenario. In addition, as part of ML technique
employment, since embedded MC systems are the target systems, some aspects of the
learning process, data, and model training are conducted at design-time, with robust offline
learning techniques in the worst-case scenarios. More detail is discussed in Section 5.2.2.
Since the generated dynamic slack is used to execute more LC tasks in the case of mode
switches, we study multi-core platforms to see how the core and task ordering policies affect
the system’s outputs. Nevertheless, there are two main issues in task mapping the tasks [27]:
(1) Core selection, which we have decided to use broadly heuristic techniques, e.g., First-Fit
(FF), Best-Fit (BF), and Worst-Fit (WF), (2) Order of tasks to be mapped. Accordingly, we use
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the Decreasing-Criticality (DC) and Decreasing-Utilization (DU) heuristic, which indicates
that the tasks are sorted in decreasing order of their criticality levels or utilization.
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Figure 2. An overview of design-time and run-time phases.

In order to schedule the tasks on cores, a well-known scheduling algorithm, EDF-VD,
is used. Since this algorithm has been widely studied in previous studies, we mention this
algorithm briefly in this and the next sub-sections. To test the task schedulability during
the mapping, the EDF-VD scheduling algorithm conditions are employed [7,10]. Generally,
the mapped tasks on the same core are schedulable if all HC tasks can be executed correctly
before their deadlines in any condition, and all of the LC tasks could be schedulable in
the LO mode. In the HI mode, LC tasks can be scheduled based on their defined drop
rates (i.e., the LC tasks’ minimum QoS can be guaranteed in the worst-case scenario), as
discussed in Section 3. As a result, a set of tasks is schedulable under the EDF-VD in
both operational modes on each core if the following necessary and sufficient conditions
are met [7]. Equation (2) presents the maximum utilization bounds for MC systems in
both LO and HI modes that it must be less than one to let the tasks be schedulable under
EDF-VD at run-time and also the system switch safely between the modes. Since the LC
tasks must be dropped in the HI mode based on their drop-rate values with no effect on
HC tasks’ execution, Equation (3) presents the sufficient condition for executing both HC
and LC tasks in this HI mode (The information and the proofs of these conditions have
been explained in detail in [7]).

UMC = max(ULO
HC + ULO

LC , UHI
HC + UHI

LC +
ULO

HC × (ULO
LC −UHI

LC )

1−ULO
LC

) ≤ 1 (2)

∑ζ j∈HCbHP
Tj
c × CHI

j

HP
+

∑ζ j∈LC(bHP
Tj
c − b HP

Tj×δj
c)× CHI

j

HP
≤ 1 (3)

where Uk
l denotes the total utilization of the tasks with the same criticality level l, mapped

on a same core in the mode k, and HP is the hyper-period of the mapped tasks on a core.

5.2. Run-Time Approach: Employment of SOLID

The main goal of SOLID is to enhance the LC tasks’ QoS (i.e., minimizing the number
of dropped LC tasks) under the mode switching situation by exploiting the dynamic slacks
at run-time, with no deadline misses of HC tasks in any situation. This capability has
been brought to SOLID by exploiting learning-based techniques. Note that the learning
algorithm and the scheduling algorithm are independent, and we do not use learning
techniques to schedule the tasks. In fact, the proposed approach is independent of the task
scheduling algorithm, and the learning process is used to improve the QoS independent
of scheduling tasks. Here, any scheduling algorithm can be applied to the tasks; however,
this learning-based task scheduling mechanism is built upon the EDF-VD algorithm. To
guarantee the schedulability of HC tasks in both LO and HI modes, when the system
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begins its operation, HC tasks are scheduled based on their virtual deadlines, and the LC
tasks are scheduled based on their actual deadlines. In the HI mode, all HC tasks are
scheduled based on their actual deadlines, while the LC tasks will be scheduled according
to the SOLID scheduling principles. It should be mentioned that although the learning
process can be done independently of the scheduler, its timing overhead to obtain the new
drop rate values of LC tasks may be significant in real-time systems. Therefore, we can
consider its timing overhead while checking the task schedulability. The details of the
timing overhead of the learning process and how it is considered in schedulability test are
presented in Section 6.3. In this section, we first overview the employed reinforcement
learning technique as part of our proposed mechanism; then, we fully describe SOLID,
based on the mentioned learning technique.

5.2.1. Learning-Based System Properties Optimization

Reinforcement Learning (RL) can be applied to systems with a considerable dynamism
through trial and error. By using the historical data and learning from past events, it can
improve the performance based on the dynamic changes [28]. The Q-learning/SARSA
technique, which is recently been used in many emerging applications, such as robotics,
and Unmanned Aerial Vehicles (UAV) [29,30], uses the RL technique to perform the run-
time management/optimization of the system properties in single or multi-core processors.
The general Q-learning/SARSA technique consists of the three main components [31,32],
including: (1) a discrete set of states S = {s1, s2, ..., sl}, (2) a discrete set of actions A =
{a1, a2, ..., ak}, and (3) reward function R. The states and actions determine the rows and
columns of the Q-table of the learning-based algorithm, respectively (shown in Figure
2). The algorithm collects the current state st, and determines the next action at (at ∈ A).
A value-based algorithm is represented with Q(st, at) for each state-action pair in the Q-
table. The Q-values are updated based on the corresponding computed reward in every
iteration. The Q-values are calculated according to Equation (4) [31–33], which is based on
the SARSA learning algorithm [34,35]. The algorithm learns the optimal action in every
state, and this process is repeated until a predefined convergence criterion is met. Note
that SARSA and Q-learning are two RL methods and tend to optimize the results in the
end. However, SARSA is an online policy, while Q-learning is offline. These two different
policies lead to different next action selection and Q-table updating. Since the proposed
approach is composed of offline and online phases, and it is critically important to have a
robust offline training technique for considering the worst-case scenarios before the system
gets operational at run-time, SARSA would be the best choice for finding the optimum
value (because there is no urgency at design-time to find the optimum value). Therefore,
SARSA can explore most of the states in the data training.

Q(st, at) = Q(st, at) + α(R + γQ(st+1, at+1)−Q(st, at)) (4)

where st, and at represent the state and action at time t, respectively. Furthermore, st+1 and
at+1 indicate their values at time t + 1. α determines the learning rate of overriding the old
data in the table by the new acquired data (0 < α ≤ 1). R is the reward function, and γ is
the discount rate to determine the importance of the future reward (0 < γ < 1). In this
work, we set the values of γ to 0.2, and α to 0.5. These values are determined based on a
wide range of experiments, which are set to obtain the best improvement.

5.2.2. SOLID Optimization

In order to maximize the QoS in MC systems, here we propose our learning-based
approach for the operation of the system in HI mode. It should be mentioned that the time
of the system mode changes and how long the system stays in each mode are unknown.
As a result, the system encounters dynamic slacks with varying lengths, which would
result in different actions in the intended mode. In SOLID, the agent controller has been
designed to maximize the QoS by decreasing the LC tasks’ drop rates (i.e., drop less often)
when the system switches to the HI mode. Note that no action is required in the learning
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process if the dynamic slack is too small. In order to update the Q-table, we check the
generated dynamic slack at the end of each hyper-period. Based on the available slack, we
update the Q-table, and decisions are taken (i.e., the new drop-rate value is determined). It
should be mentioned that since we target real-time embedded MC systems, we conduct
some parts of the learning process, data, and model training for the Q-table at design-time
with robust offline learning techniques in the worst-case scenarios. The reason is that
the learned Q-table can be utilized to quickly determine the optimal actions based on the
system state and also reduce the probability of bad decisions. Then, by using this data and
what the learning algorithm learns from this training phase at design-time and also the
obtained historical data at run-time, the algorithm improves its prediction process as time
passes. In the following, we first explain the system state, action determination, and reward
computation for the learning process to generate the Q-table values. Then, we present the
proposed approach in detail.

System State Determination: There are various criteria for determining the system
states. In our proposed scheme, for the Q-table, the states of the system depend on the
available CPU utilization and dropped LC task in a period. To represent the states in
a formal way, for each state si, si = ‖UMC

i ‖ + ‖∆i‖, where UMC
i = {0, 0.1, ..., 1}. Both

utilization and dropped tasks are normalized to their maximum value (shown by ‖...‖).
We also define 10 ranges to determine the percentage of missed tasks to all tasks. As
an example, consider si as the ith utilization range (max(i) = 10). Therefore, we have
si + ∆ (∆ ∈ [1, 10]), which indicates the variation in the rate of dropped LC tasks for the
fixed utilization range. In each iteration, according to the unused utilization and the rate
of dropped tasks in the previous hyper-period, the current state is determined for the
Q-table. Here, we select an optimal action for the current system state. Thus, the system
can gradually reach the optimal state.

Learning Action Determination: There are various methods for determining the
optimal action at according to the state st. In this paper, the well-known ε-greedy policy
has been exploited, in which the dynamic policy is used for adjusting ε [36]. In ε-greedy
policy, random action is selected from the actions set with the probability of ε, i.e., the
best action is selected with the largest Q-value with the probability of 1− ε. We first use
a dynamic ε-greedy policy with the value of 0.5 at design-time to prevent the probability
of the learning algorithm being stuck at few Q-values. Accordingly, we can accelerate
the learning process. Afterward, the fixed ε-greedy policy is used with the value of 0.2
at run-time to ensure that the system reaches the optimum state and chooses the best
action based on the Q-values, which has the maximum value. The action space in the
Q-table illustrates an increase/decrease in a LC task’s drop-rate (δi,.., δi + k). It should be
noted that the minimum values of drop-rates are equal to the initial values that is used for
schedulability analysis at design-time.

Reward Computation: In general, the reward indicates how well the learning algo-
rithm performed in the previous step. This approach calculates the reward at the end of
each hyper-period based on the available dynamic slack. Hence, when there is less accumu-
lated dynamic slack at the end of the hyper-period, it means more core capacity (UMC

cr (t))
has been used on that hyper-period for the core cr. The considered reward function for the
Q-table shows in Equation (5), which is based on the generated dynamic slack at the end of
each period.

R =


−Γ UMC

cr (t) > ϕ
1

10×(1−UMC
cr (t))

UMC
cr (t) < ϕ

+Γ UMC
cr (t) = ϕ

(5)

The reward function considers three scenarios. If the utilization falls into the unsafe
zone that may cause deadline violation, the decision will be penalized. Unsafe zone means
the utilization may increase more than one, where EDF-VD cannot guarantee the timeliness
of all tasks. Accordingly, it results in a negative value (−Γ, where Γ > 0 and has a constant
value) for the reward function, which decreases the Q-value in Equation (4), i.e., reduces the
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probability of choosing it in the future. In Equation (5), we set the value of Γ equal to 100 to
highly impact the value of the reward function in a negative manner. In addition, since
our goal is to use all of the accumulated dynamic slack to optimize the system property,
UMC

t = 1 would be the optimum case for the reward function (presented in Equation (2)).
However, since there may be some errors in the first phases of the learning technique, we
consider the upper bound of core utilization (ϕ) to be less than one (ϕ < 1). In fact, it can
be equal to ϕ = 1− µ, where µ has an extremely low positive value, such as 0.05. Hence,
we consider a value less than the maximum core utilization as the core utilization limit to
never let it violate the threshold.

Actual Execution Time Predictor Policy: Due to releasing several jobs of a task in each
hyper-period, the execution times of jobs may be different in each hyper-period. We have
to predict the execution times to compute the core utilization (UMC

cr (t)) in Equation (2),
according to the previous run-time tasks’ execution times. This prediction is based on the
following equation, where ExeTimei(t + 1) is the predicted execution time of task τi for
hyper-period HPt, rci is the regression coefficient, and er is the error (presents how different
the estimated value is from the actual one). In the evaluations, x is assumed to be eight.

ExeTimei(t + 1) =
x

∑
k=0

ExeTimei(t− k)× rck + er (6)

Figure 2 depicts our proposed learning-based drop-aware task scheduling mechanism.
It consists of the environment, i.e., hardware platform, the agent, and its interaction with
the operating system and the applications. This learning-based property improvement
technique has been designed for a system based on its states, and action determination
algorithms discussed earlier. The scheduler schedules the tasks based on the EDF-VD
on multi-core processors at run-time. At the end of each hyper-period, the accumulated
dynamic slack, and the number of dropped LC tasks in the HI mode are observed. The
proposed learning phase decides how to increase/decrease the LC tasks’ drop-rates based
on the Q-table and reward function value. The major goal of SOLID is to use most of
the created slack-time and consequently maximize the core utilization by optimizing the
LC-tasks’ drop-rates. In the learning process, the agent observes the state at a time period
instance Tt, computes the award, updates the Q-table, and performs an action. The action
(a) is selected from the predefined action set in the specified Q-Table (a ∈ {a1, a2, ..., ak},
where k is the maximum number of actions corresponding to each table). The chosen action
is applied for the next time period (Tt+1). After decoding the actions for the HI mode by the
operating systems, based on the new LC task drop rates, the policies of the task scheduling
and LC tasks dropping will be updated in the case that the system mode switches to the
HI mode.

To guarantee meeting the deadline of HC tasks, although we try our best effort
and define the hard margin to avoid missing the deadlines, it could happen for the EDF
algorithm in the worst-case scenario that the core is fully utilized and all tasks are executed
up to their WCETs at run-time, while some LC tasks’ drop-rates were increased according
to learned data. It may lead to some deadline misses for HC tasks. As a result, SOLID is
strict in applying the learned data into the scheduler to ensure meeting the deadlines in
the worst-case scenario. The scheduler in SOLID approach always considers the initial
drop-rate values (δold

i ) and drops LC tasks based on them in the HI mode. To apply the
leaned data, the dynamic slack is detected at run-time. When an HC task finishes its
execution early, a dynamic slack is generated due to the early completion. Based on the
learned drop rate values, the scheduler in SOLID releases the LC jobs to execute in this
generated dynamic slack. Therefore, LC tasks are executed more times (drop fewer) by
exploiting the slack time generated only from the early completion of HC tasks’ executions
and improving the QoS in the HI mode. Although it introduces an extra workload for the
system, it causes to prevents affecting the early LC tasks’ releases on HC tasks’ timeliness.
We require judicious slack management to determine whether it is feasible to release an LC
job at a time point.
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However, in order to be lenient in applying the learned drop-rate data into the sched-
uler, we extend SOLID to LIQUID, which uses accumulated dynamic slack moderately to
improve QoS.

5.3. LIQUID Approach

In LIQUID (Learning-Based Quality-of-Service- and Drop-Aware MC Task Schedul-
ing Mechanism), such as what we proposed in SOLID, the proposed learning algorithm
operates independently of the scheduler. However, in despite of SOLID, LIQUID applies
the learned data into the scheduler with no restriction and taking care of generated dy-
namic slack by HC tasks. The scheduler in LIQUID approach always considers the learned
drop-rate values, and LC tasks are dropped based on them in the case of mode switches.

To make both approaches explicit, consider a task τi with δold
i = 3, which means one

job would be dropped among three jobs in the HI mode. If the learned drop-rate after
a hyper-period is equal to δnew

i = 6, it means one job would be dropped among six jobs.
Therefore, the rate of task dropping would be half in comparison with the initial value.
In fact, one more job among six jobs would be scheduled and executed. LIQUID always
considers δnew

i for the LC task τi when the system switches to the HI mode. While in SOLID,
δold

i considers for task τi. If there is sufficient accumulated dynamic slack at run-time to
execute τi based on the learned δnew

i , the task is released. In this work, we exploit and adapt
the early-release policy, presented in [27], which is an effective slack management technique
in MC systems and based on a known mechanism, called wrapper-task mechanism [37,38].

Algorithm: Algorithm 1 illustrates the pseudo-code of the run-time approach, includ-
ing both scheduling and learning procedures at the same time. As inputs, the algorithm
takes the tasks and their characteristics (e.g., WCET, criticality level, period, and drop-rate,
period), the hardware platform, and its major configuration information (such as the num-
ber of cores), and finally, the minimum QoS requested by the tasks. In addition, since a
part of the learning process is done at design-time, the Q-table is obtained and taken as
input. On the other hand, improvements in the LC tasks’ QoS and the scheduled tasks are
defined as outputs at the end (Time). At each time, the scheduler checks the status of the
tasks in each core, whether they are overrun or not, which results in mode switching (line
4). This unit also checks the periods of tasks whether they would be released or not. All
tasks on every core are scheduled based on the EDF-VD algorithm (line 5). In the case of
mode switches to the HI, the LC tasks are dropped based on their defined drop rate values
to guarantee the correct execution of HC tasks. In lines 7–11, the number of dropped LC
tasks are counted to be used in the learning process. If the system switches back to the
LO mode, a parameter (CountDrop) for each task, which counts the number of released LC
tasks in the HI mode, is set to zero (lines 13–14). Besides, there is a function (line 17) that
checks whether the output of each task is ready. When ready, the task is removed from the
core queue, and the generated dynamic slack is added to the slack array (lines 17–18). The
learning process is conducted at the end of each hyper-period (lines 19–29). In this process,
the number of dropped LC tasks in the HI mode and the accumulated dynamic slack are
used to determine the state (line 20). As mentioned earlier, since the ε−Greedy policy is
used, if a random number is less than ε, a random action is selected (line 22, exploration
phase of learning process); otherwise, an action with the maximum value in the Q-table is
chosen for that particular state (line 23, exploitation phase of learning process). Based on
the chosen action, a new drop-rate is determined for the task (line 25). Consequently, the
reward function updates the Q-table (lines 26–27). Note that if an embedded system is kept
running for a long time, although the system is in the exploitation phase over time, which
uses the learned data, as can be illustrated from the policy, there is still a slight chance to
learn if there is any pattern shift.
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Algorithm 1 Proposed Learning-Based Scheme at Run-Time

Input: Task Set, Cores, Q-table
Output: QoS, Scheduled Tasks

1: procedure LEARNING-BASED QOS OPTIMIZATION()
2: for each cr in Cores do SQcr,t = 0;
3: for t = 1 to Time do
4: [SysMS,ReadyTaskQ] = TaskStatusCheck(Tasks)
5: [Schtasks,cr] = EDF-VD (ReadyTaskQ, Cores)
6: if SysMS = = 1 then
7: for each released LC Taski do
8: CountDropTaski

+ = 1;
9: if mod(CountDropTaski

,δTaski
) = = 0 then NumDropcr + = 1;

10: end if
11: end for
12: else
13: for each Taski do CountDropTaski

= 0;
14: end for
15: end if
16: Flagoutput = TaskOutputCheck(Tasks)
17: if Flagoutput = = 1 then SlackQcr = WCETTaski

− ActualtimeTaski

18: end if
19: if mod(t,HPc) = = 0 then
20: State = Deter-State (SlackQcr,NumDropc)
21: k = rand (1); //(0<k<1) //ε-Greedy Policy
22: if k < ε then at = argrand (Ai)
23: else at = argmax (st, Ai)
24: end if
25: Set the new task’s drop-rate based on the action
26: R = CompReward (UMC

cr (t)) // Equation (5)
27: Q(st, at) = Q(st, at) + α(R + γQ(st+1, at+1)−Q(st, at))//Equation (4)
28: SlackQcr = 0; NumDropc = 0;
29: end if
30: end for
31: end for
32: end procedure

6. System Setup and Evaluation

The experiments are conducted on a Linux-based machine equipped with 1.4GHz,
a quad-core processor, and 16GB of memory. Since there are no real-life MC benchmarks
to conduct the experiments, the major related studies have evaluated their proposed
techniques by using synthetic task sets [7–9,17]. However, in addition to synthetic task
sets, we use various real-time tasks included in MiBench benchmark suite [39] for the
evaluations. Besides, we analyze and compare the efficiency of proposed approaches
against various methods [7–9,11,12] in terms of schedulability, run-time QoS improvement,
and available free slack at the end of a hyper-period. Researchers in [7,11] use the EDF-VD
scheduling algorithm while dropping LC tasks in the HI mode according to the drop-
rate parameter, without using the run-time adaptability. In [9], the QoS is improved by
degrading the WCETs of LC tasks in the HI mode. In [8,12], the run-time adaptability is
employed by exploiting the accumulated dynamic slack. A dynamic reservation-based
task scheduling algorithm has been presented in [12] to minimize the deadline miss rate by
using the dynamic slack, which is generated by the early completion of HC tasks. In [8], a
fixed-priority EDF is used, and the QoS is improved by precising the LC tasks’ WCETs in
the HI mode.

6.1. Evaluation with Real-Life Benchmarks

As mentioned, MiBench benchmark suite [39] has been used, which is dedicated to
applications such as automotive, network, and telecommunications. More specifically, we
consider the benchmarks of ‹edge›, ‹smooth›, ‹epic›, and ‹corner›as the LC tasks and ‹qsort›,
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‹insertsort›, ‹matrixmult›, ‹dijkstra›, ‹bitcount›, and ‹FFT›as the HC tasks in our system
evaluations. To achieve their execution times, these benchmarks have been executed on the
ODROID XU4 hardware platform. We consider the utilization of the tasks in the [0.05,0.1]
interval (to be able to execute more tasks in a core), and the period/deadline of the tasks
are computed according to the utilization and WCET values [7,10]. More detail on WCETs
values has been reported in [40]. In addition, the values of the drop-rate (δ) for the LC tasks
are randomly generated between 1 and its maximum value (which has been set to four in
our experiments), based on the uniform distribution. Table 4 represents the normalized
number of deadline misses (NDM), normalized to method of [9]), and the QoS of different
methods. As shown in this table, at run-time, LIQUID has provided the maximum QoS
and the minimum NDM compared to the other methods. In addition, since the methods
of [7,11] have also presented a design-time drop-aware approach to not drop LC tasks
frequently when the system switches to the HI mode, the QoS has a high value (and low
NDM value) compared to the other existing studies. Although the proposed techniques
in [8,12] are run-time approaches, which improve the QoS, they are not well designed to
exploit better from run-time profit. However, since [12] uses the EDF-VD algorithm, which
well utilizes the system’s capacity compared to the other existing scheduling algorithms,
e.g., fixed-priority, and also exploits the generated dynamic slack, it provides better results
in terms of QoS and NDM in comparison with [8].

Table 4. NDM and QoS of different methods at run-time for a real task set.

Metrics LIQUID Gettings’15 [11], Ranjbar’20
[7]

Liu’18
[9] Li’14 [12] Huang’19 [8]

NDM 0.009 0.010 1 0.341 0.999
QoS 99.67% 96.92% 64.33% 87.83% 64.36%

In addition, as mentioned in Section 3, we define a drop-rate value for each of the
LC tasks in the HI mode. At run-time, these values are optimized based on the generated
dynamic slacks. In our experiments, the drop-rate values for 4 LC tasks have been updated
from {3, 3, 3, 3} to {5, 6, 7, 7}, which has led to QoS improvement at run-time.

We evaluate the effects of different partitioning algorithms and task ordering policies
on the LC tasks’ QoS during the run-time phase for the mentioned real task set with the
utilization of Ubound/#cores = 0.85, where c is the number of cores. We have run the
experiment 50 times and reported the average results in this section. As mentioned in
Section 5.1, three heuristics of FF, BF, and WF are used to select a core for the process
of task mapping. In addition, we have also employed two task ordering policies, i.e.,
Decreasing-Utilization (DU), and Decreasing-Criticality (DC), while mapping the tasks on
the cores. Since the result of BF is very close to the result of FF, we only illustrate the results
for BF and WF in this section. Figure 3 represents the QoS of the LC tasks at run-time,
normalized to BF-DC policy, with different numbers of cores while using our proposed
LIQUID technique. The results show that the DC policy for task ordering performs better
than the DU policy under both BF and WF heuristics. The reason for having better results
under the BF heuristic is an uneven distribution of tasks among the cores. It means that
the first cores are selected to execute most of the HC tasks, while the rest of the cores are
chosen to execute the LC tasks. Therefore, by switching the system to the HI mode, there is
less force to drop LC tasks in favor of HC tasks. In addition, achieving better results under
the WF heuristic with the DC task ordering policy for the LC and HC tasks is due to the
more evenly task distribution among the cores. Therefore, more amount of dynamic slack
would be generated, which could be used to execute the LC tasks and improve the QoS if
the system switches its mode. In addition, using the WF heuristic for selecting the cores to
map a task has a better result than using the BF heuristic under the DU task ordering policy.
This is due to more task balancing among all cores, while the BF heuristic aims to schedule
the tasks under the minimum required number of cores. As a result, while employment



Computers 2022, 11, 101 15 of 24

of the WF heuristic leads to a uniform utilized core, due to scheduling more evenly task
distribution on cores, the system may frequently switch to the HI mode, and consequently,
more LC tasks would be dropped in the HI mode.

Norm. DMR QoS Nrom. QoS DMR
WF-DU 0.65522042 99.62 0.99709739 2824
WF-DC 0.19489559 99.89 0.99979982 840
BF-DU 1 99.41 0.9949955 4310
BF-DC 0.187471 99.91 1 808

Norm. DMR Norm. QoS QoS DMR
WF-DU 0.99210054 0.99598716 99.28 5526
WF-DC 1 0.99638844 99.32 5570
BF-DU 0.91220826 0.9880618 98.49 5081
BF-DC 0.2889195 1 99.68 1468

Norm. DMR Norm. QoS QoS DMR
WF-DU 0.98675497 98.34 11349
WF-DC 1 0.99688942 99.35 6989
BF-DU 0.77478895 0.99628738 99.29 5415
BF-DC 0.24610102 1 99.66 1720

#Cores= 2
#Cores= 4
#Cores= 8
#Cores= 16

Norm. DMR Norm. QoS QoS DMR
WF-DU 0.98534431 98.16
WF-DC #DIV/0! 0.98574583 98.2
BF-DU #DIV/0! 0.96837984 96.47
BF-DC #DIV/0! 1 99.62

99

99.2

99.4

99.6

99.8

100

0

0.2

0.4

0.6

0.8

1

WF-DU WF-DC BF-DU BF-DC

Q
oS

N
or

m
al

iz
ed

 D
M

R

Norm. DMR QoS
0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4

Chart Title

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

WF-DU WF-DC BF-DU BF-DC

N
or

m
al

ize
d 

Q
oS

#Cores= 2 #Cores= 4 #Cores= 8

Figure 3. Normalized QoS at run-time under different policies.

6.2. Evaluation with Synthetic Task Sets

Now we investigate the efficiency of LIQUID and SOLID under the presence of
synthetic task sets. To generate synthetic task sets, analogous to [5,9,10], we consider
dual-criticality task sets that are generated for various system utilization bounds (Ubound =
max(ULO

LC + ULO
HC, UHI

HC)). We randomly add tasks to the task set to increase Ubound/#cores,
(where #cores is the number of cores) until it reaches a given threshold in the [0.05,1]
interval, with steps of 0.05. In addition, the periods of tasks are selected in the range of
[100, 900] ms. For each utilization threshold, 50 task sets are generated. Since the mode
switching probability determines how often the system switches to the HI mode, and,
therefore, impacts the speed of learning in this mode, in the conducted experiments, we

have considered different ratios of CLO
HC

CHI
HC

= RatHC, from the [0.2,0.8] interval. The timing

overhead of task execution interruption in the EDF task scheduling algorithm is in the
order of µs [41], which has been considered as the part of tasks’ WCETs in experiments. In
addition, the actual execution time of a task follows the normal distribution of which the

mean and standard deviation are 2∗CHI
HC

3 and CHI
HC
12 [42].

6.2.1. Effects of System Utilization

Considering the requirement of service maximization in MC systems, which is rep-
resented with drop-rate parameters for LC tasks, in this section, we first discuss the task
schedulability under different utilization bounds in Figure 4. Then we evaluate the LC
tasks’ QoS at run-time under different methods by varying the system utilization bound.
Figure 5 illustrates the run-time QoS improvement under different scheduling algorithms.
In this experiment, the number of LC and HC tasks in each task set is almost the same
(Prob(HC) ' 0.5). In addition, we do not change the run-time behaviour of HC tasks while
varying the utilization by considering an almost constant ratio of low-to-high WCET for
the HC tasks (RatHC ∈ [0.4, 0.6]).
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Figure 4. Task schedulability by varying utilization bound (Comparing the proposed methods with
Getting’15 [11], Ranjbar’20 [7], Liu’18 [9], Li’14 [12], and Huang’19 [8]).

0

0.2

0.4

0.6

0.8

1

0.1 0.1
5 0.2 0.2

5 0.3 0.3
5 0.4 0.4

5 0.5 0.5
5 0.6 0.6

5 0.7 0.7
5 0.8 0.8

5

N
or

m
al

ize
d 

Q
oS

U_bound

LIQUID SOLID
Gettings’15, Ranjbar’20 Li’14
Liu’18 Huang’19

0

0.2

0.4

0.6

0.8

1

0.1 0.1
5 0.2 0.2

5 0.3 0.3
5 0.4 0.4

5 0.5 0.5
5 0.6 0.6

5 0.7 0.7
5 0.8 0.8

5 0.9

Sc
he

du
la

bi
lit

y

U_bound

LIQUID & SOLID Liu’18
Gettings’15, Ranjbar’20 Li’14
Huang’19

Figure 5. Normalized QoS at run-time by varying utilization bound (Comparing the proposed
methods with Getting’15 [11], Ranjbar’20 [7], Liu’18 [9], Li’14 [12], and Huang’19 [8]).

To evaluate the effects of varying utilization bound on the task schedulability at
design-time, 1000 task sets are generated and evaluated. The task schedulability shows
the ratio of task sets which are deemed as schedulable. Hence, a task set is schedulable
if all HC and LC tasks can be executed correctly before their deadlines in the LO mode,
and also all HC tasks and most LC tasks (based on their drop rate values) can be executed
correctly before the deadlines in the HI mode. As shown in Figure 4, since we have used
the same design-time policy for the schedulability test as in [7,11], the results of these
methods and our methods are the same. In addition, when the utilization is less than 0.7,
LIQUID, SOLID, and methods of [7,11] always schedule the tasks. These methods could
sometimes schedule the tasks as long as the utilization is smaller than 0.85. Moreover,
LIQUID and SOLID provide a better task schedulability, compared to [8], due to using a
different task scheduling approach than in [8], which is fixed-priority EDF. Furthermore,
this figure illustrates that the schedulability in methods of [9,12] is worse than LIQUID. The
main reason for this issue is that we prevent the frequent drop of LC tasks in the worst-case
scenario (in the case of mode switches), while the other two methods may frequently
drop LC tasks in the HI mode, and consequently, the task set would not be schedulable.
Accordingly, the frequent LC tasks dropping in other approaches may cause the system not
to carry out its mission correctly [7].

Figure 5 shows the normalized QoS for different approaches. As shown, the amount
of provided improvement is negligible in the low utilization bound. In addition, the QoS
of the LC tasks is decreased by utilization increment in all methods. The reason is that
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utilization increment increases the number of both LC and HC tasks. Therefore, the system
may switch to the HI mode more often. Although the LIQUID has more opportunity to
learn due to more often mode switches and improve the learning process, all HC tasks’
deadlines must be guaranteed in the HI mode, which causes more LC tasks to be dropped
and, consequently, QoS reduction (QoS is the fraction of executed LC tasks before their
deadlines to all LC tasks). However, due to the most favorable use of dynamic slacks at
run-time, LIQUID has improved QoS better than the other methods. Besides, compared
to the state-of-the-art, the methods of [7,11] have provided more improvements in each
utilization point due to maximizing the QoS at design-time. In addition, the QoS of the
SOLID is better than methods of [7,11] due to using slack time at run-time to execute more
LC tasks. However, in SOLID, since meeting the HC tasks’ deadlines is guaranteed under
any circumstances, and the dynamic slack is reclaimed carefully, it has less improvement
than LIQUID. Since we evaluate the methods at run-time in terms of QoS, Li et al. [12] have
exploited the dynamic slack to improve the QoS, while the other methods have almost
the same behaviour at run-time. As a result, the method of [12] has a better improvement
compared to the results of [8,9]. Note that the QoS is zero for Ubound > 0.85 in all methods
due to existing no schedulable task set under these methods when the utilization is more
than 0.85. Since we guarantee that the LC tasks are not frequently dropped in the HI mode,
more conditions must be checked to execute more tasks in the system, which leads the task
sets to be unschedulable at high utilization.

6.2.2. Effects of HC Tasks’ Run-Time Behaviour

Since we investigate the MC systems’ run-time behaviour, and the proposed method
efficiency is influenced by how often the system switches to the HI mode, we vary the
optimistic WCET of HC tasks, determining the mode switching probability. In this regard,

as part of our evaluations, we consider the low-to-high WCET ratio (RatHC =
CLO

i
CHI

i
) for the

HC tasks in three different ranges of [0.2,0.4], [0.4,0.6], and [0.6,0.8]. Here, we assumed
Ubound = 0.75, and the number of LC and HC tasks in each task set is almost the same
(Prob(HC) = 0.5).

Figure 6 depicts the LC tasks’ deadline miss rate for different approaches when varying
low-to-high WCET ratio. The deadline miss rate is the ratio of the number of dropped
LC tasks to the total number of tasks released in a time interval. Besides, the low-to-high
WCET ratio increment means that the system switches less often to the HI mode due to
having a high value of WCET for the HC tasks in the LO mode. The mode switching
probability is decreased during run-time. As a result, it causes the system to be in LO mode
most of the time, leading to fewer deadline misses. However, due to using the generated
dynamic slack at run-time, the LIQUID reduces significantly the number of LC task drops
compared to the other studies. Referring to the aforementioned reasons in Section 6.2.1,
it has the same explanation for comparison with the results of state-of-the-art. Note that
LIQUID may cause the HC tasks’ deadlines to be missed. SOLID copes with this issue and
executes the LC tasks more, based on their new learned drop-rate value if there is some
slack generated by HC tasks’ early finishes, to improve the QoS. In the end, the deadline
miss rate is decreased under LIQUID by up to 47.87% and 32.45% on average, compared to
the other works. In addition, SOLID could reduce the deadline miss rate by up to 43.47%
(4.4% worse than LIQUID) and 28.33% (4.12% worse than LIQUID) on average.
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Figure 6. Normalized deadline miss rate at run-time when varying low-to-high WCET ratio
(Comparing the proposed methods with Getting’15 [11], Ranjbar’20 [7], Liu’18 [9], Li’14 [12], and
Huang’19 [8]).

Since we exploit the generated dynamic slack at run-time to prevent some LC tasks
from dropping and consequently decrease the deadline miss rate, we investigate the amount
of unused core utilization during a hyper period. The amount of generated dynamic slack
would be different in the HI mode while varying the low-to-high WCET ratio. As shown
in Figure 7, LIQUID can use more amount of dynamic slack, compared to the state-of-
the-art. Unlike the methods in [7,11], which are design-time approaches, in LIQUID, we
can use the dynamic slacks at run-time to improve the LC tasks’ drop-rates and then
decrease the deadline miss rate. Furthermore, since the method of [9] is also a design-time
approach, it could not use the free unused core utilization to improve the intended objective.
Besides, Ref. [8] approach provides a better result in comparison with the technique of [12]
due to its task scheduling policy, especially when the system switches to the HI mode. It
seems that in [8], the system switches back sooner. Therefore, HC tasks are not executed up
to their high-WCET, which leads the system to spend more time in the idle mode during
a hyper-period. Due to the possibility of HC tasks’ deadline misses, SOLID handles it,
and thus, less generated dynamic slack would be reclaimed. Based on our observations,
exploiting the accumulated dynamic slack (generated at run-time) enables LIQUID and
SOLID to reduce the free dynamic slack by 7.32% and 6.82%, on average, respectively,
compared to the existing methods. Besides, Table 5 represents the values of normalized
deadline miss rate and unused free dynamic slack, shown in Figures 6 and 7.
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Figure 7. Normalized unused free dynamic slack at run-time when varying low-to-high WCET ratio
(Comparing the proposed methods with Getting’15 [11], Ranjbar’20 [7], Liu’18 [9], Li’14 [12], and
Huang’19 [8]).
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Table 5. The values of normalized deadline miss rate and unused free dynamic slack at run-time
when varying WCET ratio, shown in Figures 6 and 7). The first value is normalized deadline miss
rate and the second is unused free dynamic slack in each cell.

LIQUID SOLID Gettings’15 [11], Ranjbar’20 [7] Liu’18 [9] Li’14 [12] Huang’19 [8]

RatHC = [0.2,0.4] 0.38, 0.82 0.42, 0.83 0.46, 0.84 1.00, 1.00 0.70, 0.99 1.00, 0.95

RatHC = [0.4,0.6] 0.36, 0.80 0.41, 0.81 0.47, 0.83 0.96, 0.99 0.71, 0.97 0.96, 0.94

RatHC = [0.6,0.8] 0.29, 0.78 0.34, 0.79 0.38, 0.80 0.80, 0.94 0.58, 0.93 0.80, 0.90

6.2.3. Impacts of Task Mixtures

We further evaluate the proposed approaches against the other methods under differ-
ent HC task distribution variations. In this regard, Figures 8 and 9 represent the deadline
miss rate at run-time and the free dynamic slack in one hyper period, respectively, when
the HC tasks’ utilization (i.e., more number of HC tasks, compared to LC tasks) to all of
the generated tasks’ utilization varies in three different ratio ranges of [0.2,0.4], [0.4,0.6],
and [0.6,0.8]. In addition, in this part of our simulation, we assume Ubound = 0.75 and
RatHC = 0.75.
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Figure 8. Normalized deadline miss rate at run-time when varying task mixtures (Comparing the
proposed methods with Getting’15 [11], Ranjbar’20 [7], Liu’18 [9], Li’14 [12], and Huang’19 [8]).
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Figure 9. Normalized unused free dynamic slack at run-time when varying task mixtures (Comparing
the proposed methods with Getting’15 [11], Ranjbar’20 [7], Liu’18 [9], Li’14 [12], and Huang’19 [8]).

According to Figure 8, when more HC tasks are scheduled in the system, the mode
switching probability is higher. It causes the system to drop LC tasks due to mode switching
to execute all HC tasks correctly before their deadlines. It helps LIQUID to accelerate the
learning process due to the more frequent mode switches and significantly improve the
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QoS by dropping fewer LC tasks in the future. In addition, since there would be fewer
LC tasks in the system (by increasing the number of HC tasks in the system, while the
system’s utilization is constant), fewer LC tasks are dropped at run-time by the proposed
schemes, which improves the QoS. Figure 9 shows that there is less free dynamic slack
at the end of the hyper period while increasing the Prob(HC) range. In fact, since fewer
LC tasks are scheduled in the system by increasing the Prob(HC), the generated dynamic
slack in the HI mode has been used for fewer LC tasks to improve their drop-rates value
and, consequently, reduce the deadline miss rate. According to Figure 8, LIQUID (SOLID)
can decrease the deadline miss rate by up to 54.15% (44.88%), and 40.52% (30.39%) on
average, compared to the state-of-the-art. In addition, LIQUID (SOLID) can exploit the
dynamic slack (generated at run-time) by 12.35% (11.95%) on average, in comparison with
the existing methods. Besides, Table 6 represents the values of normalized deadline miss
rate and unused free dynamic slack, shown in Figures 8 and 9.

Table 6. The values of normalized deadline miss rate and unused free dynamic slack at run-time
when varying task mixtures, shown in Figures 8 and 9). The first value is normalized deadline miss
rate and the second is unused free dynamic slack in each cell.

LIQUID SOLID Gettings’15 [11], Ranjbar’20 [7] Liu’18 [9] Li’14 [12] Huang’19 [8]

Prob(HC) = [0.6,0.8] 0.15, 0.49 0.29, 0.50 0.32, 0.51 0.76, 0.93 0.68, 0.87 0.76, 0.92

Prob(HC) = [0.4,0.6] 0.25, 0.78 0.38, 079 0.46, 0.80 1.00, 0.95 0.79, 0.90 0.99, 0.94

Prob(HC) = [0.2,0.4] 0.25, 0.78 0.35, 0.78 0.47, 0.79 0.99, 1.00 0.68, 0.95 0.99, 0.99

6.2.4. Investigating the LC Tasks’ Drop-Rate Parameter

Now, we evaluate the effects of varying the task mixtures on the increment of LC tasks’
drop-rate parameters. This parameter is increased by exploiting the dynamic slack through
a learning algorithm employed in the proposed scheme at run-time. Varying Prob(HC)
determines the percent of existing HC/LC tasks in a task set. Therefore, as mentioned in
Section 6.2.3, when there are more HC tasks in the system, the QoS will have a higher value.
It means that there is more increment in the drop-rate parameter value of LC tasks, which
causes to drop fewer LC tasks and consequently decreases the deadline miss rate. This fact
can be observed in Figure 10, in which the average increment in drop-rate parameter for
Prob(HC) = [0.2, 0.4], [0.4, 0.6], and [0.6, 0.8] are 47.05%, 66.32%, and 73.21%, respectively.
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Figure 10. Drop-rate increment percentage under the proposed approach by varying task mixtures.

6.3. Investigating the Timing and Memory Overheads of ML Technique

Although the RL technique has been reported to be lightweight and highly suitable for
the systems, compared to other types of learning techniques [28], the main issues are its con-
vergence and timing overhead. Accordingly, similar to other studies [31], we have reduced
the feasible actions to reduce the complexity and convergence issues. In the following, we
investigate the timing and memory overheads of the employed learning technique.

Consider a system with an m-core processor running an application with n tasks. To
investigate the timing overhead of the learning process in each hyper-period, we analyze
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it on two systems, Intel® Core i7 processor and 2.5 GHz, and ARM Cortex A-15 core and
2 GHz. Since the learning process can be done for each core parallel, its process time is
independent of the number of cores. From the complexity point of view, lines 19–29 of
Algorithm 1 represent the learning process, in which for finding the maximum Q-value
based on the obtained state (in a row of the table), a for-loop is used (line 23). Therefore,
we can conclude that the complexity of the learning process depends on the number of
actions in the Q-table (O(A)). According to our measurement at run-time, the maximum
and average timing overhead in Intel core (ARM core) are 1.2 ms (4.1 ms) and 0.1 ms (0.53
ms), respectively. Since the maximum timing overheads are significant, to maintain the HC
tasks’ timeliness, we consider the learning process as a task with the WCET, equal to the
maximum timing overhead and a period equal to hyper-period, while checking the task
schedulability at design-time.

Furthermore, we need to clarify the amount of required memory space for storing
the Q-table in terms of memory overhead. Accordingly, we store a two-dimensional
array with size(S) rows and size(A) columns, in which the rows and columns show the
states (S), and actions (A), respectively. Since the value of a table cell is in the range of
[−100,100], it is required to consider at most 8 bits for storing each cell. As a result, we need
size(A)× size(S)× 8 bits to store the Q-table. For an application with 30 tasks, the amount
of required memory space for saving the Q-table with 100 states would be 30× 100× 8 bits
= 3 kB.

7. Conclusions and Future Studies

In this paper, we proposed a novel approach, a learning-based drop-aware task
scheduling mechanism, to reduce the deadline miss rate at run-time, with the aim of
providing higher QoS. To achieve this goal, the dynamic slack is exploited at run-time,
and since the system is unaware of the amount of generated dynamic slack in advance,
the proposed scheme introduces an adaptive LC task dropping technique that uses an ML
technique to exploit the slack and increase the survivability of low-criticality tasks. Based
on an extensive set of experiments, the proposed schemes can decrease the deadline miss
rate by up to 51.78%, and 31.32% on average, and also exploit the accumulated dynamic
slack generated at run-time, by 9.84% more on average, compared to the existing works.
The proposed learning approach was also analyzed in terms of run-time timing overhead
to ensure no effect on missing the tasks’ deadlines. Although the timing overhead has
been considered, it still has a large value for embedded real-time systems, which is viewed
as a limitation/drawback of the proposed scheme. Another limitation of the proposed
method is the large exploration time of the learning process. Since the parameters would
be updated through the learning process at the end of each hyper-period, the proposed
method does not apply to applications with a large hyper-period.

As prospective future research, we would extend our scheme by reducing the complex-
ity of the ML technique to reduce its timing overhead. The proposed method would also be
developed for systems with more than two criticality levels, and based on that, we should
reduce the computation and overheads. We also would extend our proposed learning
approach to exploit the dynamic slack in order to optimize other objectives such as power
consumption while guaranteeing the deadline and reliability requirements in different
modes of operation. In addition, we have planned to evaluate the proposed approach on
hardware platforms to show its efficiency.
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Abbreviations
The following abbreviations are used in this manuscript:

BF Best-Fit
DC Decreasing Criticality
DU Decreasing Utilization
EDF Earliest-Deadline-First
EDF-VD EDF with Virtual Deadline
FF First-Fit
HC High-Criticality
HI mode HIgh-criticality mode
LC Low-Criticality
LCM Least Common Multiple
LO mode LOw-criticality mode
MC Mixed-Criticality
ML Machine Learning
NDM Number of Deadline Misses
QoS Quality-of-Service
RL Reinforcement Learning
UAV Unmanned Aerial Vehicles
WCET Worst Case Execution Time
WF Worst-Fit
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