
����������
�������

Citation: Ala-Laurinaho, R.; Mattila,

J.; Autiosalo, J.; Hietala, J.; Laaki, H.;

Tammi, K. Comparison of REST and

GraphQL Interfaces for OPC UA.

Computers 2022, 11, 65. https://

doi.org/10.3390/computers11050065

Academic Editor: Paolo Bellavista

Received: 14 March 2022

Accepted: 21 April 2022

Published: 27 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Comparison of REST and GraphQL Interfaces for OPC UA
Riku Ala-Laurinaho 1,* , Joel Mattila 1 , Juuso Autiosalo 1 , Jani Hietala 2 , Heikki Laaki 1

and Kari Tammi 1

1 Department of Mechanical Engineering, Aalto University, 02150 Espoo, Finland; joel.mattila@aalto.fi (J.M.);
juuso.autiosalo@aalto.fi (J.A.); heikki.laaki@aalto.fi (H.L.); kari.tammi@aalto.fi (K.T.)

2 VTT Technical Research Centre of Finland Ltd., 02044 Espoo, Finland; jani.hietala@vtt.fi
* Correspondence: riku.ala-laurinaho@aalto.fi

Abstract: Industry 4.0 and Cyber-physical systems require easy access to shop-floor data, which
allows the monitoring and optimization of the manufacturing process. To achieve this, several papers
have proposed various ways to make OPC UA (Open Platform Communications Unified Architec-
ture), a standard protocol for industrial communication, RESTful (Representational State Transfer).
As an alternative to REST, GraphQL has recently gained popularity amongst web developers. This
paper compares the characteristics of the REST and GraphQL interfaces for OPC UA and conducts
measurements on reading and writing data. The measurements show that GraphQL offers better
performance than REST when multiple values are read or written, whereas REST is faster with
single values. However, using OPC UA directly outperforms both REST and GraphQL interfaces.
As a conclusion, this paper recommends using a GraphQL interface alongside an OPC UA server
in smart factories to simultaneously yield easy data access, the best performance, and maximum
interoperability.

Keywords: communication; GraphQL; Industry 4.0; interfaces; OPC UA; REST

1. Introduction

The need for easier data access and faster development drives a shift towards web-
based technologies in industry. Web technologies enhance interoperability and allow com-
munication between various entities in cyber-physical systems and smart factories. OPC
UA (Open Platform Communications Unified Architecture), a commonly used standard for
industrial communication [1], attempts to merge traditional industrial communication with
modern web technologies [2]. It is platform-independent, provides an information and
communication model, and allows interoperability between various entities from sensors
to Enterprise Resource Planning (ERP) systems [3]. An OPC UA server can be used to
provide access to a machine PLC (Programmable Logic Controller) system turning it into
an IIoT (Industrial Internet of Things) device. In addition, it allows data to be collected
from field devices for advanced applications, such as optimization, analysis, and predictive
maintenance.

However, OPC UA has some disadvantages compared to native web technologies:
several round trips are needed to establish a connection before data can be accessed
(Figure 1) [2]; it is more complex, making application development laborious; and there
is a need for a specific client. Lack of client-side libraries especially hinders application
development. An example of an industrial application in which a GraphQL interface
allowed easier access to an overhead crane OPC UA server is presented in [4]. To overcome
the disadvantages and limitations of OPC UA, several papers have proposed making OPC
UA RESTful (Representational State Transfer) [1,2,5,6]. Recently, a GraphQL interface
for OPC UA servers has also been proposed in the previous work by these authors [7,8].
GraphQL is an emerging approach to building web APIs (Application Programming
Interfaces) designed to address issues with REST APIs; these issues include overfetching

Computers 2022, 11, 65. https://doi.org/10.3390/computers11050065 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers11050065
https://doi.org/10.3390/computers11050065
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-3246-8199
https://orcid.org/0000-0001-8319-1903
https://orcid.org/0000-0003-3714-748X
https://orcid.org/0000-0002-2014-9393
https://orcid.org/0000-0003-4294-3499
https://orcid.org/0000-0001-9376-2386
https://doi.org/10.3390/computers11050065
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers11050065?type=check_update&version=1


Computers 2022, 11, 65 2 of 17

and multiple requests needed to fetch desired data. This paper builds upon the work
presented in [7,8] and compares GraphQL and REST in industrial communication with OPC
UA to bring benefits of web interfaces, such as developer-friendliness and interoperability
with almost any web-capable device using HTTP (Hypertext Transfer Protocol), to industrial
domain. Even though OPC UA can also be accessed via HTTP [3], which increases the
interoperability, this access method might not be supported by the server. The scientific
literature comparing REST and GraphQL with OPC UA and in industrial communication
is scarce, and the main contributions of this paper are as follows:

1. Analyzing the characteristics of REST and GraphQL interfaces for OPC UA servers.
2. Comparing the performance of REST and GraphQL interfaces.
3. Promoting easier shop floor data access and interoperability for Industry 4.0 with

HTTP-based web interfaces.

Figure 1. OPC UA (Open Platform Communications Unified Architecture) requires several round
trips before data can be read from a server [2].

2. Background
2.1. OPC UA

OPC UA is a standard for industrial communication, which promotes the interoper-
ability of systems [3]. It is platform-independent and suitable for various devices, from
embedded systems to the cloud [9], allowing information exchange between these en-
tities [3]. The standard is in constant development by the OPC UA Foundation [2], as
evidenced by four extensions to the standard being published during the year 2020 alone.

OPC UA offers both a client–server and publish–subscribe model for communica-
tion [3]. In the client–server model, a server offers services that clients can use to interact
with the server and its nodes [2]. A server may provide only a subset of these services,
which are grouped into Service Sets, such as the NodeManagement and Query Service Set [3].
Services can be requested over OPC UA TCP (Transmission Control Protocol) using OPC
UA Binary, XML (Extensible Markup Language), or JSON (JavaScript Object Notation) data
formats [3]. The publish–subscribe model is favored for many-to-many communication
in which data is distributed from several publishers to several subscribers [9]. This model
can be implemented with a broker-less approach using a network infrastructure as Mes-
sage Oriented Middleware (MOM) or using the broker as MOM with publish–subscribe
protocols, such as MQTT (Message Queuing Telemetry Transport) or AMQP (Advanced
Message Queuing Protocol) [3].

The OPC UA information model consists of nodes and references between them,
forming a graph data structure [2]. Nodes describe real-world objects, their properties,
and their relationships [10]. Each node belongs to a certain NodeClass and its attributes are
defined by this class [1]. Nodes also have a few common attributes such as NodeId and
DisplayName. The relationships between nodes can be divided into HierarchicalReferences
and NonHierarchicalReferences [11]. A set of nodes, which an OPC UA server makes available
to a client, forms an AddressSpace [3]. OPC UA also provides Companion Specifications



Computers 2022, 11, 65 3 of 17

which define the information model and its semantics for a certain domain allowing
interoperability [2].

2.2. REST

REST was originally developed as design guidelines for distributed hypermedia
systems, such as the World-Wide Web, by Fielding [12]. These guidelines were intended to
describe the design principles of the Web (which were not comprehensively documented
at the time) and improve its architecture, for example, by enhancing scalability. The
architectural constraints of REST according to Fielding [12] are as follows:

1. The Client–Server model aims to separate concerns: the client is responsible for the
user interface whereas the server stores data and offers services to clients. This model
allows better scalability by simplifying the server, and the development of client and
server can be separately conducted.

2. Stateless communication does not allow the server to store any information about
the client, and the client is responsible for maintaining the session state. Therefore,
“each request from client to server must contain all of the information necessary to
understand the request”. Stateless communication improves scalability, but increases
the repetitive data sent with requests.

3. Cache allows responding to identical requests with the same stored response. Cache
reduces network consumption, decreases latency, and improves scalability. When
using cached responses, the data freshness needs to be ensured, for example, with
Cache-Control header.

4. Uniform interface allows a simpler system architecture and separation of the imple-
mentation of components from the services they offer. It induces a few additional
requirements into the interface design: “identification of resources, manipulation of
resources through representations, self-descriptive messages, and, hypermedia as the
engine of application state” (HATEOAS).

5. Layered system consists of hierarchical layers, and the components on each of these
layers are only able to directly interact with components on the immediate layers.
Layered architecture reduces the system complexity, but adds latency and overhead.
Intermediary components can be used for load balancing and transforming the content
of messages.

6. Code-On-Demand enables a client to download and execute code from the server,
extending the client capabilities. This is the only optional constraint.

REST is the de facto architectural style for building web APIs. It is also commonly mis-
used as a synonym for any HTTP API, and a mobile data analysis by Rodríguez et al. [13]
showed that very few of the so-called REST APIs fully comply with the architectural con-
straints. REST is not a standardized architecture, and there are no explicitly defined rules
on how it should be applied to HTTP APIs. Nevertheless, there are several established best
practices for building RESTful HTTP APIs, the most important of which are as follows:

1. Information is organized into resources and each resource is identified by a URI
(Uniform Resource Identifier) [14].

2. HTTP methods (POST, GET, PUT/(PATCH), DELETE) are used for CRUD (Create,
Read, Update, Delete) operations [15].

3. Consistent use of HTTP status codes, such as responding 201 Created to POST request
after successful creation of a resource [15].

4. HATEOAS. Each resource representation contains links to related resources with
possible operations to them [14]. There can be multiple representations of a resource
separated from the storage method on the server, and the representation type can be
indicated in the headers of the response [13]. It should be possible to browse through
the API without any previous knowledge of the API structure by following links [14].



Computers 2022, 11, 65 4 of 17

2.3. RESTful OPC UA

To improve the interoperability of OPC UA and provide easier data access, it has
been proposed to make OPC UA RESTful [1,2,6]. RESTful communication would allow
several benefits, such as removing the need for several handshakes to establish a connection
to the OPC UA server (Figure 1), providing better scalability, and improved cacheability.
There are two approaches for making OPC UA RESTful: using gateways that offer REST
interface translating requests from clients to OPC UA service requests [1,5]; and applying
modifications to the OPC UA standard [2,6]. However, making OPC UA fully REST com-
pliant has proven challenging because it is originally a stateful protocol, that is, the server
stores information about clients (for example, sessions are needed for communication
and several services require storing client information) [2,3]. In OPC UA specification
version 1.04, a SessionlessInvoke service has been introduced to allow stateless commu-
nication [6,16]. However, only a limited number of services, such as Read service, are
supported [16]. These services are consumed by embedding a service request into the body
of the SessionlessInvoke request.

Grüner, Pfrommer and Palm [2] proposed extensions to OPC UA protocol to make it
RESTful. The extensions included stateless communication without extra handshakes and
caching with expiration tags. Stateless communication with OPC UA significantly reduced
the request execution times. To further reduce communication overhead, Grüner et al.
proposed OPC UA over UDP (User Datagram Protocol), which improved the performance
compared to TCP at the expense of reliability.

Schiekofer, Scholz, and Weyrich [6] proposed additions to the OPC UA standard to
allow RESTful communication. These additions were primarily related to SessionlessIn-
voke, some of which were merged with version 1.04 of the OPC UA specification. They
introduced a mapping of HTTP methods to the SessionlessInvoke (whereas, in OPC UA
specification, only POST is used) as well as a description of resource representation by
using MIME-types (Multipurpose Internet Mail Extensions), which allowed showing OPC
UA resources on a browser. In addition, they implemented batch support for their RESTful
OPC UA prototype. Compared to the work by Grüner et al. [2], Schiekofer et al. factored in
the possibility that Namespace and ServerArray may change between subsequent sessionless
requests and a NodeId can become erroneous. To overcome this, the version of the used
NamespaceArray and ServerArray is included in the new urisVersion field. Later, Schiekofer
and Weyrich [17] also presented an implementation of group-subscriptions to RESTful
OPC UA.

Paronen [5] implemented a system for monitoring IIoT devices, which consists of a
web application that provides HMI (Human–Machine Interface) for the OPC UA server as
well as a web service that acts as a proxy between the web application and the OPC UA
server and offers a REST API. Paronen used SSE (Server-Sent Events) to push data from
the server to the client, which allowed the implementation of subscriptions. To reduce
requests, Paronen also embedded the information of target and source nodes into the node
representation. However, his solution revealed certain drawbacks including hard-coded
API endpoints and the need to store the client state on the web service server; thus resulting
in the solution not being fully REST compliant.

Cavalieri, Salafia and Scroppo [1] implemented a RESTful web platform for accessing
multiple OPC UA servers. The platform converts REST requests into OPC UA service
requests. The use of the platform does not require any modifications to the OPC UA
specification, and from an OPC UA server perspective, the web platform is a regular client.
In addition to the RESTful interface, the platform also allows the monitoring of OPC UA
objects with a subscription model, which is implemented with a separate broker. The
platform is publicly available on GitHub [18].

Another server application that offers a REST interface for OPC UA servers is Hype-
rUA [5] as mentioned in earlier publications [2,6]. However, it seems that HyperUA is no
longer being developed and is not available for use.



Computers 2022, 11, 65 5 of 17

Derhamy et al. [19] proposed a protocol translator for OPC UA to enhance the inter-
operability of IIoT. Their proposal extends the Arrowhead framework protocol translator
service and allows using OPC UA with HTTP, CoAP (Constrained Application Protocol),
and MQTT. The translator maps OPC UA services to CRUD operations, which are then
mapped to HTTP/CoAP methods. Each OPC UA node is identified by URL, and, thus,
the proposal includes some elements from REST architecture. The major drawback of the
translator is the support for only 7 out of 37 OPC UA services.

2.4. GraphQL

GraphQL is a query language and a runtime for performing queries on a server [20].
The development of GraphQL was started at Facebook in 2012 when it was noticed that the
current solutions for fetching data were not optimal for their mobile apps [21]. GraphQL
was published as an open-source project in 2015 with the GraphQL Foundation leading its
development since 2018, and, currently, several large companies have adopted GraphQL
including Airbnb, GitHub, Netflix, and Twitter [22]. GraphQL is protocol agnostic, but in
practice it is used with HTTP [23], similar to REST. In addition to the request–response
model, GraphQL offers subscriptions allowing the server to push data to clients, which is
often implemented with WebSockets [23].

GraphQL is an alternative to REST interface and has some major differences in a way
the interface is used, especially in terms information model and HTTP methods. Contrary
to REST, GraphQL queries are sent to a single endpoint, and HTTP methods do not have
semantic meaning; in other words, both GET, in which the query is embedded into the
URI, and POST requests, in which the query is in the body of the request, are used [24].
Data is modeled as a graph, and the structure is defined by a schema [25]. The schema
defines the possible operations on data, which a GraphQL API server must provide [24].
The actual implementation of these operations is server-specific, and a GraphQL server
can use any database or data storage [20]. In addition, the schema allows validation of the
query [25] and, for application development, a schema-first approach, in which it is used to
document the requirements for data helping front-end developers to communicate their
needs to back-end developers [23]. The main design principles of GraphQL according to
the specification [26] are as follows:

1. Hierarchical: GraphQL queries are hierarchical, following the structure of the appli-
cation. In addition, the query and the response are similar in form.

2. Product-centric: GraphQL is built for the needs of applications and their front-end
developers.

3. Strong-typing: Data structure and types are explicitly defined, allowing the server to
validate queries. This can also be utilized in the development phase since queries can
be tested before they are implemented by a server.

4. Client-specified response: a client defines exactly the data it wants within the query,
and a server returns a response following the structure of the query.

5. Introspective: The GraphQL type system can be queried, allowing its introspection.
A browser-based Integrated Development Environment (IDE) called GraphiQL is
provided for introspection of the schema and executing queries [23].

2.5. GraphQL for OPC UA

To bring the benefits of GraphQL to the industrial environment, Hietala [7] and
Hietala et al. [8] developed a GraphQL wrapper for OPC UA. The wrapper translates a
GraphQL query into one or more OPC UA service requests. For example, read requests
can be batched into a single OPC UA service request, whereas writing a value or fetching a
subnode requires a separate service request. GraphQL wrapper acts as a client for an OPC
UA server, and several servers can be aggregated behind a single GraphQL wrapper, which
allows access to the OPC UA server of each machine in a factory from a single endpoint
and API. The wrapper is available as open-source software on GitHub [27].



Computers 2022, 11, 65 6 of 17

In addition to the wrapper, authors have found two other open-source solutions
for using OPC UA via GraphQL API. The first one is based on the Node.js Express web
framework, and can be found from [28]. The second one uses Java and is called Frankenstein
Automation Gateway [29]. It allows interaction with an OPC UA server also via MQTT. In
the measurements, this paper relied on the GraphQL wrapper developed by the authors
in [8].

3. Comparison of REST and GraphQL

Next, the characteristics of REST and GraphQL interfaces for OPC UA servers are
compared in the context of industrial communication. The comparison is summarized in
Table 1.

Table 1. Comparison between REST and GraphQL interfaces.

REST GraphQL

Communication model Client-server Client-server and Subscriptions
Protocol HTTP 1 HTTP 1

Cache At any point Application-specific 2

Scalability Good Medium
Interface Uniform Application-specific

Ease of use/development Medium/Good Good/Good 3

Bandwidth usage High Low
Performance Low Medium

1 Not bound to a specific protocol, but used in practice with HTTP. 2 Implementing cache is up to the application
developer. 3 Allows a schema-first approach [23].

3.1. Communication Model

REST follows the client–server architecture [12] and is coupled with the request–
response communication model. However, to bring subscriptions to RESTful OPC UA
clients, Schiekofer and Weyrich presented a solution based on long-polling and ring
buffers [17]. The ring buffers are necessary since REST is a stateless protocol and stor-
ing the state of the client, which is often required for the efficient implementation of
subscriptions, is not allowed. Long-polling is needed because HTTP is a request–response
protocol [30] and is not intended for publish–subscribe communication. Long-polling [31]
is a technique in which the server does not immediately respond to a request but leaves the
communication channel open ensuring that it can instantly return a response and effectively
“push” data to the client when data becomes available. Even though the subscriptions could
technically be implemented following REST (such as in [17]), the authors of this paper
consider these solutions to be contradictory to the objectives of RESTful architectural style,
such as scalability. This paper suggests that publish–subscribe communication with OPC
UA should not be implemented following RESTful architecture.

On the other hand, GraphQL offers a request–response model and subscriptions that
allow a client to request updates of certain objects and a server to push these updates to
the client. In industrial communication, subscriptions might prove useful when multiple
clients need updates from several servers, for example, when there are continuous status
updates from multiple machines.

3.2. Protocol

Both REST and GraphQL are protocol agnostic but are used with HTTP in practice.
GraphQL uses GET and POST methods to transport queries, whereas REST uses GET,
POST, PUT/PATCH, and DELETE methods, which are bound to CRUD operations. HTTP
is the Internet protocol supported by all modern browsers. Due to its ubiquity and wide
support, HTTP increases interoperability and the accessibility of data compared to OPC
UA, which requires the use of an OPC UA specific client. (Some OPC UA servers might also
support HTTP as a transport method.) The drawback of HTTP in industrial settings is its
poor suitability for constrained devices due to its relatively large overhead and bandwidth



Computers 2022, 11, 65 7 of 17

consumption, a higher amount of memory used, and more processing power required
compared to other protocols [30]. GraphQL subscriptions, which require pushing data
from server to client, can be implemented with, for example, WebSockets [23].

3.3. Cache

One major benefit of REST compared to GraphQL is the ease of caching. Because
requests are sent to a specific URL, the cache can be linked to this unique identifier. REST
allows caching on the client and server level as well as between them by using, for example,
gateways and proxies [12]. Caching is also possible with GraphQL by creating globally
unique identifiers for objects [32] or by using specific clients, such as Apollo, which handle
caching by storing query results in the memory [23]. The GraphQL specification [26]
does not define caching strategies, and it is up to the developer to implement caching
for GraphQL.

In general, cache increases performance and reduces network traffic. However, in
industrial settings, field device data may constantly change [6], thus preventing the use
of cached values. OPC UA uses a maxAge parameter for read services to determine if the
server can return a cached response [6]. For effective caching with OPC UA, REST and
GraphQL APIs should utilize this parameter.

3.4. Scalability

Scalability means the server’s ability to handle an increasing number of clients. Scal-
ability is mainly determined by the resources needed for the communication with an
individual client, the ability to use load-balancing servers, which entails sharing the work-
load [2], and caching. REST was intended to improve the scalability of Web with scalability
being an integral part of it [12]. Scalability of REST and the use of load-balancing were
some of the main motivators for Grüner, Pfrommer and Palm to make OPC UA RESTful [2].
The scalability of GraphQL is in theory poorer than REST because caching is more difficult.
In addition, the possible subscriptions are not stateless and the connection to the client must
be kept open, thus reserving resources. Nevertheless, the experiments without caching by
Heredia, Flores-García, and Solano [33] indicate that GraphQL performs better than REST
with multiple clients.

The scalability needed from an OPC UA server is highly dependent on the use case
and field devices. For example, one machine may need to communicate with only a few
adjacent machines. On the other hand, Grüner, Pfrommer and Palm provide an example of
a use case requiring high scalability in which thousands of pallets in a storage periodically
send their statuses [2]. In case of an emergency, such as a sudden temperature drop, these
pallets may simultaneously send thousands of alert messages.

3.5. Uniform Interface

A distinguishing feature of the REST architectural style is its uniform interface. In
practice, uniform interface means that with HTTP APIs, resources are identified with
URIs, each HTTP method is bound to a certain type of operation, status codes indicate the
result of operation, content negotiation can be used to retrieve a certain representation of a
resource, the representation type is indicated by headers [13], and the related resources are
referenced with hyperlinks (HATEOAS). As stated in Fielding’s thesis [12], the uniform
interface architecture is optimized for a “large-grain hypermedia data transfer”, and it
“degrades efficiency, since information is transferred in a standardized form rather than
one which is specific to an application’s needs”. According to Fielding, the benefits of the
uniform interface are as follows: (1) information hiding, as a client interacts only with a
representation of resource; (2) decoupling of implementation and provided services allows
evolvability; (3) simplified architecture; and (4) more visible interactions. GraphQL, on
the other hand, does not provide a uniform interface similar to REST. There are three
types of operations available: query for fetching data, mutation for modification of data,
and subscriptions for receiving updates when data is updated [26]. These operations are



Computers 2022, 11, 65 8 of 17

not bound to HTTP methods but are indicated by a keyword. Because GraphQL allows
application-specific queries and only obtains desired values, it should be more efficient
than REST.

3.6. Ease of Use

REST offers a uniform interface, and a user knows beforehand the possible operations
on resources. Another benefit of REST is hyperlinks that allow referencing to a specific
resource with URI, which is not possible with GraphQL because there is only one URI for
the whole API. HATEOAS requires using hyperlinks as references to related resources. A
drawback of REST is that fetching desired data often requires several requests. For example,
with an OPC UA server, receiving information on referenced nodes requires one extra
request per node (to overcome this, some solutions automatically fetch information on
referenced nodes [1,5]).

The GraphQL approach for ease of use is the introspectable schema. It is a powerful
feature and enables examination of the OPC UA server structure. In a query, the fields to
be fetched are specified, and the shape of the response is similar to the request, making the
response predictable for the user. In addition, compared to REST, it is possible to obtain
information from related objects within nested requests [26].

Brito and Valente [22] conducted user tests on GraphQL and REST, which indicated
that even with previous experience on REST, making queries was faster with GraphQL.
In addition, GraphQL was considered easier to use because of the GraphiQL tool, which
allows auto-complete and error detection of queries based on the schema, and more
understandable syntax. Ease of use is an important factor when new technologies and
shop-floor data are adopted. It leads to faster deployment and accelerates the development
of new data-driven applications.

3.7. Ease of Development

Along with ease of use, ease of development determines the breadth of new services
adoption. Ease of development is directly related to the costs of creating new applications
and services. Both REST and GraphQL are back-end-agnostic and can use any data storage.
In addition, both have numerous libraries to help development. However, as REST is
older and more widely used, it offers better support for different web frameworks and
programming languages.

With REST, the way in which objects in the data storage are mapped into resources and
URIs must be defined. With GraphQL, resolver functions are used to define the handling
of each field in the schema. GraphQL introduces a new paradigm to development, called
the schema-first approach [23]. In this approach, the schema is already defined at the start
of the project and helps to communicate the needs of developer teams to each other. In
conclusion, there is no significant difference between REST and GraphQL regarding ease of
development and both can be considered as being easy to develop.

3.8. Bandwidth Usage

This paper focuses on REST and GraphQL over HTTP because both are most com-
monly used with it, even though they are protocol-agnostic. Being a text-based protocol,
HTTP has a large overhead; thus, fetching only a small amount of data per request is
especially inefficient. For better efficiency, another protocol, such as CoAP, should be used
instead of HTTP [30].

In RESTful approaches, each node is assigned a URI, which can contain, for example,
NameSpaceIndex and NodeId [1]. Fetching multiple nodes and their values, such as the
position of a pallet (x, y, z) [2], requires multiple requests. This can be circumvented by
creating specific endpoints for commonly needed nodes and their values. The number
of subsequent requests can also be reduced by prefetching information from referenced
nodes [1], which increases the overhead if this information is not needed. On the other



Computers 2022, 11, 65 9 of 17

hand, GraphQL allows aggregating multiple requests into a single query, and, for example,
the position of the pallet could be fetched with only one request.

Theoretically, GraphQL has a lower bandwidth usage than REST because fewer re-
quests are needed and only the specified data is returned. Brito, Mombach, and Valente [34]
assessed the efficiency of GraphQL compared to REST in practice by migrating clients
using GitHub and arXiv REST APIs to use the GraphQL version of the API. The number
of queries did not significantly change, because clients already sent only one request to
the API. However, the size of returned JSON documents decreased drastically: to the
one-hundredth of the size returned by REST APIs.

3.9. Performance

The performance of REST and GraphQL are similar when a single resource is fetched
as indicated in [24]. However, GraphQL gains an advantage on performance when multiple
resources are fetched because it needs only one request whereas REST requires multiple
requests. This was confirmed by performance analysis in [24]. In addition, measurements
by Heredia et al. [33] showed that GraphQL offers a better performance compared to REST
with smaller amount of resources used. However, the study did not specify the used queries;
thus, the reason for better performance is unclear. The difference in performance can be
reduced using HTTP pipelining [31], which allows sending multiple requests without
waiting for a response between them. Caching, which is easier to implement with REST,
also positively affects performance.

3.10. Information Model

The information model of OPC UA is a graph of connected nodes [2]. Therefore,
it conforms well to a graph-like data model of GraphQL. With REST, a graph-like data
model can be partly achieved by presenting hierarchies between objects within URIs and
referencing to related resources with hyperlinks, following HATEOAS. However, URIs
with long hierarchy chains are not considered to be good practice [14].

3.11. Other Features

GraphiQL is a browser-based integrated development environment (IDE) that pro-
vides several features: introspection of the schema, executing queries, code completion,
syntax highlighting, and error warnings [23]. In an experiment by Brito and Valente [22],
GraphiQL was one of the major factors which resulted in GraphQL being easier to use
than REST. The GraphQL type system can also be queried without GraphiQL, enabling
its introspection. Interactive tools, such as ReadMe (https://readme.com/, accessed on
13 March 2022), are also available to REST APIs, although they are not an official part of
the architectural style. In addition, there is a standardization effort for describing REST
APIs called OpenAPI Specification (OAS) (https://www.openapis.org/, accessed on 13
March 2022).

GraphQL supports deprecating fields and adding new ones without the need for API
versioning [34]. According to Fielding [35], if the HATEOAS principle is followed, REST
does not require versioning as “controls have to be learned on the fly”. Unfortunately, the
HATEOAS principle is often violated by so-called REST APIs [13], and versioning might
be needed. The version of the API can be indicated in the URL, header, media type, or
parameter of a query string [14].

4. Measurement Setup

To compare the request execution times of REST and GraphQL, measurements with a
simple OPC UA server were conducted. The measurement setup (Figure 2) consisted of
a laptop acting as a client and capturing network traffic with Wireshark (https://www.
wireshark.org/, accessed on 13 March 2022), a second laptop hosting the REST/GraphQL
interface server, two Raspberry Pi 4 Model B 2 GB hosting OPC UA server and cache server,
and a switch mirroring the network traffic to the first laptop. Laptops had Intel i5-1135G7

https://readme.com/
https://www.openapis.org/
https://www.wireshark.org/
https://www.wireshark.org/


Computers 2022, 11, 65 10 of 17

and i5-7200U processors for the client and interface server, respectively, and 16 GB and
8 GB of RAM.

Figure 2. The setup for measuring the request execution times to read and write values to the OPC
UA server.

For the REST interface, we used the implementation presented by Cavalieri et al.
in [1], which is available from [18], and for GraphQL interface solution by Hietala et al.
introduced in [8], available from [27]. In order to have similar authentication methods for
both interfaces, token-based authentication was added to the GraphQL API. Authentication
uses JSON Web Tokens and each request must contain this token in the Authorization request
header. To enable authentication, the web framework of the GraphQL server was changed
to FastAPI, which is based on Starlette. The REST client used multi-threading with four
threads, which allows simultaneously sending multiple requests to the interface. OPC UA
server was implemented with Python FreeOpcUa library [36], and for the communication
with the server TCP/IP stack with OPC UA binary protocol was used.

Each experiment was conducted 1000 times, and the total request execution times
were recorded by a client using Python time.time() function. To investigate the effect of
connection establishment on the request execution time, the experiments were performed
both without a connection as well as with the client/interface already connected to the
OPC UA server. The experiments on request execution times were as follows:

1. Reading a single value from the OPC UA server.
2. Writing a single value to the OPC UA server.
3. Reading 50 values from the OPC UA server.
4. Writing 50 values to the OPC UA server.

With the REST interface, reading data was also performed via cache server. The cache
server responded either with the cached response (steps 1 and 6 in Figure 3) or, in the
second experiment, forwarded the query to the REST server, which then read data from
the OPC UA server (steps 1–6). The first measurement was excluded from the cached
value results as it fetched the value that was returned in the subsequent requests. The first
measurement was also excluded with other REST measurements to ensure connection with
the OPC UA server. The selected test cases reflect reading or writing a simple status of a
machine via an OPC UA server, such as “system ok” and reading or writing all variables
to the server. For example, the industrial machine in our laboratory had approximately
50 meaningful variables after duplicates are removed.



Computers 2022, 11, 65 11 of 17

Figure 3. The effect of cache server for REST performance was examined by measuring read times
when cached result was returned and when the value needed to be fetched from the OPC UA server.

The network traffic was captured to distinguish the processing of interfaces and
communication with the OPC UA server from the total execution time. For calculating these
shares, the timestamps from Wireshark were used to calculate averages of the processing
time and the communication duration with OPC UA. These averages were then subtracted
from the request execution time recorded by the client. In addition, the TCP payload
(size of headers were excluded) of requests and responses were measured with Wireshark
by running the client, interface, and OPC UA server on the same computer. The query
formatting, that is, the use of spaces, tabulators, and line breaks, significantly affects the
size of requests. Thus, the GraphQL queries were run on an easy-to-read format (which
was also used when measuring request execution times) and minified form, in which only
necessary spaces were present. REST interface, on the other hand, returned an x-token
header, which to the authors’ best knowledge presented the freshest token. The token was
not updated after each request and including the token in each response was considered
unnecessary. Therefore, the sizes of the responses were also measured without the x-token.

5. Results

The request execution times are summarized in Table 2. The measurements show that
using OPC UA directly, without an intermediary interface, is significantly faster, even when
the client needs to first connect to the OPC UA server. However, reading a single cached
value is faster than reading a fresh value from OPC UA server. Writing to OPC UA server
is slightly faster than reading with a single value, but reading becomes quicker when the
number of values increases.

If web interfaces are already connected to the OPC UA server, the median of reading
a single value is 13% slower and writing is 54% slower with GraphQL. With multiple
values, GraphQL outperforms REST with a clear margin: the medians of reading and
writing values are 268% and 24% slower, respectively. This is expected because the REST
interface requires one request per each value, whereas one GraphQL query can be used
to interact with several values. Using cache server significantly reduces read times with
REST server, and fetching a cached value is even faster than connecting to a OPC UA server
and reading fresh value. However, use of cache server increases latency if cached value
cannot be used and the REST server needs to read data from OPC UA server. The standard
deviation of measurements was relatively high, especially with the REST interface, and
the measurements in which the REST server first needed to connect to the OPC UA server
were excluded from the table. The request execution times for the disconnected REST
server were over 1 s for reading/writing a single value and over 2.5 s for reading/writing
50 values.



Computers 2022, 11, 65 12 of 17

Table 2. The request execution times in milliseconds for reading and writing values to the OPC UA
server. SD = standard deviation. Disconnected and connected indicate if the OPC UA session was
established before the request was made.

Min Max Mean Median SD

Read 1 value

Connected
OPC UA 5.3 21.2 7.0 7.1 1.1
REST 47.8 98.6 62.9 63.6 4.9
GraphQL 56.9 148.9 73.0 71.9 8.2
Disconnected
OPC UA 27.6 75.1 36.3 36.3 4.1
GraphQL 78.8 199.1 97.3 96.3 10.7
Cache
REST cached 8.9 19.6 13.0 13.2 1.1
REST via cache 63.1 112.1 77.1 77.9 4.7

Write 1 value

Connected
OPC UA 5.4 17.3 7.3 7.3 1.0
REST 31.4 87.8 42.0 42.2 3.6
GraphQL 55.3 96.9 67.0 65.1 5.1
Disconnected
OPC UA 28.4 70.4 36.7 36.5 4.1
GraphQL 75.1 186.6 90.6 90.0 10.5

Read 50 values

Connected
OPC UA 38.8 47.6 43.6 43.7 1.6
REST 856.0 1057.6 915.9 906.1 35.4
GraphQL 177.7 414.6 248.9 246.3 34.5
Disconnected
OPC UA 32.9 94.1 62.9 70.6 13.7
GraphQL 186.7 441.4 270.7 269.9 38.9
Cache
REST cached 206.6 1328.7 284.6 297.4 79.6
REST via cache 927.0 1258.2 1095.7 1096.0 60.3

Write 50 values

Connected
OCP UA 44.1 51.8 48.1 48.3 1.4
REST 560.4 1470.9 615.5 602.2 65.6
GraphQL 316.0 788.9 482.4 486.7 60.7
Disconnected
OPC UA 34.6 100.5 59.7 49.4 15.0
GraphQL 403.1 1108.0 574.8 587.4 65.7

Figure 4 shows the amount of time required by the processing, communication with
OPC UA server, and transport of messages between client and interface from the total
request execution time. The processing times are higher with the GraphQL interface
because the query must be parsed to corresponding OPC UA service requests. REST
requires more time to communicate with the OPC UA server due to extra service requests,
such as a browse request to obtain information on referenced nodes. It was also noted
that significantly more time is required for the REST interface to connect to the OPC UA
server due to several extra messages being sent, such as handshakes. Moreover, fetching
authorization token was much slower with the REST interface compared to GraphQL.
Nevertheless, these drawbacks are related to the implementation of the REST interface,
rather than REST itself.



Computers 2022, 11, 65 13 of 17

Figure 4. The share of processing times, times to read/write data from/to OPC UA server, and
transport times from the total request execution times.

Communicating directly with the OPC UA server yields the lowest TCP payloads.
When reading or writing a single value, the difference between REST and GraphQL is
relatively small (Figure 5). Yet, with a larger number of variables, the payload is significantly
smaller using GraphQL (Figure 6). This is because REST needs to send multiple requests,
whereas GraphQL needs only one request. It can be also seen that minifying the request
significantly reduced its size with GraphQL. In addition, leaving the unnecessary x-token
out reduced the REST response size to approximately half. No authorization was used with
OPC UA, which reduced the payload size.

Figure 5. The bytes sent and received (TCP payload) by a client when reading/writing a single value.
min. = minified, w/o = without.



Computers 2022, 11, 65 14 of 17

Figure 6. The bytes sent and received (TCP payload) by a client when reading/writing a value
50 times. min. = minified, w/o = without.

6. Discussion

This paper examined bringing web interfaces, REST and GraphQL, to an industrial
domain as an additional interface to OPC UA servers. The qualitative analysis showed
that GraphQL offers more favorable features than REST. In addition, the performance
measurements and bandwidth use preferred GraphQL over REST. However, OPC UA
binary over TCP outperformed both web-based interfaces.

The hypothesis of the paper was that REST and GraphQL perform similarly with a
single value, but with multiple values, the nested queries and ability to specify the fetched
data favor GraphQL. This hypothesis was otherwise supported by the measurements, but
writing a single values was significantly faster with REST. In addition, it was hypothesized
that direct communication with OPC UA would be slower than communication with web
interfaces if the client first needs to connect to the OPC UA server and the interfaces are
already connected to the server because of the several handshakes required for establishing
OPC UA connection (Figure 1). However, the measurements showed that OPC UA is faster
in each measurement case, except if a cache server is used. Using a cache server improves
the performance significantly, but it might not be possible to use cached values.

Threats to the validity of the measurements were posed by a relatively high standard
deviation. The high deviation can be explained by the communication over the network
and the non-consistent operation of the REST interface. For a more fair comparison between
OPC UA and web interfaces, OPC UA over HTTP with JSON payload should have been
used. Nevertheless, based on the authors’ experience, the OPC UA binary over TCP
stack is a more commonly used method for communication and, thus, was selected for the
comparison. The effect of authentication methods could also be examined in future research.

Even though GraphQL and REST increase the latency, both can be considered suitable
for at least monitoring purposes. Easy data collection from the manufacturing system
enables analyzing the manufacturing process and improving the process based on this
information. In addition, web interfaces can be used to send commands to industrial ma-
chines, for example, ask a crane to drive to a certain position. In the previous work [8], the
authors used GraphQL to control an industrial crane via the web user interface. GraphQL
was also used to monitor and control the crane with augmented reality application [4].
However, web APIs are not suitable for real-time control, in which messages are guaranteed
to arrive within a certain time frame.

It is recommended that GraphQL API is offered as an additional interface for the
OPC UA server. This additional interface would allow accessing data and introspection



Computers 2022, 11, 65 15 of 17

of the OPC UA server from a browser using the GraphiQL tool. GraphQL interface
would also make accessing the OPC UA server easier for the developers and improve the
interoperability of the OPC UA with standard web technologies. This would enable the
development of advanced data-driven applications and pave the way towards Industry 4.0
in which cyber–physical systems communicate with each other over a network.

Proposed future work includes a comparison of web interfaces to OPC UA over HTTP.
In addition, it should be examined if OPC UA servers could be made available to the
Internet via web interfaces. The web interfaces would act as a gateway between the private
network inside a factory and the public Internet. Finally, more use-case-driven tests could
be conducted to assess the performance of REST and GraphQL.

7. Conclusions

This paper compared REST and GraphQL interfaces for OPC UA servers in the
industrial domain. GraphQL was considered to be easier to use because it provides the
GraphiQL tool, which allows introspection of OPC UA servers and assists in writing
queries. Both REST and GraphQL use HTTP protocol making OPC UA interoperable with
common Web technologies. Therefore, the OPC UA server can be accessed without an OPC
UA specific client.

GraphQL was considerably faster than REST when multiple values were read or
written, and REST offered a better performance when a single value was written. However,
to achieve the best performance, OPC UA should be directly used without an intermediate
interface server. If extremely high scalability is required, the use of REST might be justified
since it allows load-balancing and more versatile caching. In all other use cases, this paper
recommends using GraphQL over REST because it offers better performance with multiple
values, lower bandwidth usage, and ease of use. This paper also recommends providing
the GraphQL interface parallel with direct access to the OPC UA server to obtain the best
of both solutions, such as interoperability, developer-friendliness, and performance.

Author Contributions: Conceptualization, R.A.-L., J.A. and K.T.; methodology, R.A.-L., J.M. and
J.A.; software, R.A.-L., J.M., J.H. and H.L.; validation, R.A.-L., J.A. and K.T.; formal analysis, R.A.-L.,
J.M. and J.A.; investigation, R.A.-L. and J.M.; resources, K.T.; data curation, R.A.-L., J.M. and J.H.;
writing—original draft preparation, R.A.-L. and J.A.; writing—review and editing, R.A.-L., J.M., J.A.
and K.T.; visualization, R.A.-L. and J.M.; supervision, H.L. and K.T.; project administration, K.T.;
funding acquisition, H.L. and K.T. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Business Finland under Grant 3508/31/2019 and ITEA 3
Call 5 MACHINAIDE.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: R. Ala-Laurinaho would like to thank Tekniikan edistämissäätiö.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Cavalieri, S.; Salafia, M.G.; Scroppo, M.S. Integrating OPC UA with web technologies to enhance interoperability. Comput.

Standards Interfaces 2019, 61, 45–64. [CrossRef]
2. Gruner, S.; Pfrommer, J.; Palm, F. RESTful Industrial Communication With OPC UA. IEEE Trans. Ind. Inform. 2016, 12, 1832–1841.

[CrossRef]
3. OPC Foundation. OPC Unified Architecture Specification Part 1: Overview and Concepts Release 1.04; OPC UA Foundation: 2017.

Available online: https://reference.opcfoundation.org/v104/Core/docs/Part1/ (accessed on 13 March 2022).
4. Tu, X.; Autiosalo, J.; Jadid, A.; Tammi, K.; Klinker, G. A Mixed Reality Interface for a Digital Twin Based Crane. Appl. Sci. 2021,

11, 9480. [CrossRef]
5. Paronen, T. A Web-Based Monitoring System for the Industrial Internet. Master’s Thesis, Aalto University, Espoo, Finland, 2015.

http://doi.org/10.1016/j.csi.2018.04.004
http://dx.doi.org/10.1109/TII.2016.2530404
https://reference.opcfoundation.org/v104/Core/docs/Part1/
http://dx.doi.org/10.3390/app11209480


Computers 2022, 11, 65 16 of 17

6. Schiekofer, R.; Scholz, A.; Weyrich, M. REST based OPC UA for the IIoT. In Proceedings of the 2018 IEEE 23rd International
Conference on Emerging Technologies and Factory Automation (ETFA), Turin, Italy, 4–7 September 2018; pp. 274–281. [CrossRef]

7. Hietala, J. Real-Time Two-Way Data Transfer with a Digital Twin via Web Interface. Master’s Thesis, School of Engineering,
Aalto University, Espoo, Finland, 2020.

8. Hietala, J.; Ala-Laurinaho, R.; Autiosalo, J.; Laaki, H. GraphQL Interface for OPC UA. In Proceedings of the 2020 IEEE Conference
on Industrial Cyberphysical Systems (ICPS), Tampere, Finland, 10–12 June 2020; pp. 149–155. [CrossRef]

9. OPC Foundation. Unified Architecture. 2022. Available online: https://opcfoundation.org/about/opc-technologies/opc-ua
(accessed on 11 March 2022).

10. Imtiaz, J.; Jasperneite, J. Scalability of OPC-UA down to the chip level enables “Internet of Things”. In Proceedings of the
2013 11th IEEE International Conference on Industrial Informatics (INDIN), Bochum, Germany, 29–31 July 2013; pp. 500–505.
[CrossRef]

11. OPC Foundation. OPC Unified Architecture Part 5: Information Model, Release 1.04; OPC UA Foundation: 2017. Available online:
https://reference.opcfoundation.org/v104/Core/docs/Part5/ (accessed on 13 March 2022).

12. Fielding, R.T. Architectural Styles and the Design of Network-Based Software Architectures. Ph.D. Thesis, University of
California, Irvine, CA, USA, 2000.

13. Rodríguez, C.; Baez, M.; Daniel, F.; Casati, F.; Trabucco, J.C.; Canali, L.; Percannella, G. REST APIs: A Large-Scale Analysis of
Compliance with Principles and Best Practices. In Web Engineering; Bozzon, A., Cudre-Maroux, P., Pautasso, C., Eds.; Springer
International Publishing: Cham, Switzerland, 2016; pp. 21–39. [CrossRef]

14. Microsoft. Web API Design. 2022. Available online: https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-
design (accessed on 11 March 2022).

15. Webber, J.; Parastatidis, S.; Robinson, I. REST in Practice: Hypermedia and Systems Architecture; O’Reilly Media, Inc.: Sebastopol,
CA, USA, 2010.

16. OPC Foundation. OPC Unified Architecture Part 4: Services, Release 1.04; OPC UA Foundation: 2017. Available online: https:
//reference.opcfoundation.org/v104/Core/docs/Part4/ (accessed on 13 March 2022).

17. Schiekofer, R.; Weyrich, M. Introduction of Group-Subscriptions for RESTful OPC UA clients in IIoT environments. In Proceedings
of the 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain,
10–13 September 2019; pp. 1355–1358. [CrossRef]

18. Cavalieri, S.; Salafia, M.; Scroppo, M. OPC UA Web Platform. 2019. Available online: https://github.com/OPCUAUniCT/
OPCUAWebPlatformUniCT (accessed on 14 April 2022).

19. Derhamy, H.; Ronnholm, J.; Delsing, J.; Eliasson, J.; van Deventer, J. Protocol interoperability of OPC UA in service oriented
architectures. In Proceedings of the 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), Emden, Germany,
24–26 July 2017; pp. 44–50. [CrossRef]

20. GraphQL Foundation. Introduction to GraphQL. 2022. Available online: https://graphql.org/learn/ (accessed on 11 March 2022).
21. Byron, Lee. GraphQL: A Data Query Language. 2015. Available online: https://engineering.fb.com/2015/09/14/core-data/

graphql-a-data-query-language/ (accessed on 11 March 2022).
22. Brito, G.; Valente, M.T. REST vs GraphQL: A Controlled Experiment. In Proceedings of the 2020 IEEE International Conference

on Software Architecture (ICSA), Salvador, Brazil, 16–20 March 2020; pp. 81–91. [CrossRef]
23. Porcello, E.; Banks, A. Learning GraphQL: Decalarative Data Fetching for Modern Web Apps; O’Reilly Media, Inc.: Sebastopol, CA,

USA, 2018.
24. Vogel, M.; Weber, S.; Zirpins, C. Experiences on Migrating RESTful Web Services to GraphQL. In Lecture Notes in Computer Science

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2018;
Volume 10797, pp. 283–295. [CrossRef]

25. Wittern, E.; Cha, A.; Laredo, J.A. Generating GraphQL-Wrappers for REST(-like) APIs. In Web Engineering. ICWE 2018. Lecture
Notes in Computer Science; Mikkonen, T., Klamma, R., Hernández, J., Eds.; Springer: Cham, Switzerland, 2018; Volume 10845,
pp. 65–83. [CrossRef]

26. GraphQL Contributors. GraphQL Specification October 2021. 2021. Available online: http://spec.graphql.org/October2021/
(accessed on 13 March 2022).

27. Hietala, J.; Autiosalo, J.; Ala-Laurinaho, R.; Laaki, H. GraphQL API for OPC UA Servers. 2021. Available online: https:
//github.com/AaltoIIC/OPC-UA-GraphQL-Wrapper (accessed on 14 April 2022).

28. Bradshaw, G. GraphQL schema for OPC UA. 2016. Available online: https://github.com/gilesbradshaw/uaQL (accessed on
14 April 2022).

29. Vogler, A. Frankenstein Automation Gateway. 2022. Available online: https://github.com/vogler75/automation-gateway
(accessed on 14 April 2022).

30. Naik, N. Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP. In Proceedings of the 2017
IEEE International Systems Engineering Symposium (ISSE), Vienna, Austria, 11–13 October 2017. [CrossRef]

31. Loreto, S.; Ericsson; Saint-Andre, P.; Cisco; Salsano, S.; University of Rome “Tor Vergata”; Wilkins, G.; Webtide. Known Issues
and Best Practices for the Use of Long Polling and Streaming in Bidirectional HTTP. Internet Engineering Task Force Request
Comments, 2011, RFC 6202. Available online: https://www.rfc-editor.org/rfc/rfc6202 (accessed on 13 March 2022).

32. GraphQL Foundation. Caching. 2022. Available online: https://graphql.org/learn/caching/ (accessed on 11 March 2022).

http://dx.doi.org/10.1109/ETFA.2018.8502516
http://dx.doi.org/10.1109/ICPS48405.2020.9274754
https://opcfoundation.org/about/opc-technologies/opc-ua
http://dx.doi.org/10.1109/INDIN.2013.6622935
https://reference.opcfoundation.org/v104/Core/docs/Part5/
http://dx.doi.org/10.1007/978-3-319-38791-8_2
https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design
https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design
https://reference.opcfoundation.org/v104/Core/docs/Part4/
https://reference.opcfoundation.org/v104/Core/docs/Part4/
http://dx.doi.org/10.1109/ETFA.2019.8869282
https://github.com/OPCUAUniCT/OPCUAWebPlatformUniCT
https://github.com/OPCUAUniCT/OPCUAWebPlatformUniCT
http://dx.doi.org/10.1109/INDIN.2017.8104744
https://graphql.org/learn/
https://engineering.fb.com/2015/09/14/core-data/graphql-a-data-query-language/
https://engineering.fb.com/2015/09/14/core-data/graphql-a-data-query-language/
http://dx.doi.org/10.1109/ICSA47634.2020.00016
http://dx.doi.org/10.1007/978-3-319-91764-1_23
http://dx.doi.org/10.1007/978-3-319-91662-0_5
http://spec.graphql.org/October2021/
https://github.com/AaltoIIC/OPC-UA-GraphQL-Wrapper
https://github.com/AaltoIIC/OPC-UA-GraphQL-Wrapper
https://github.com/gilesbradshaw/uaQL
https://github.com/vogler75/automation-gateway
http://dx.doi.org/10.1109/SysEng.2017.8088251
https://www.rfc-editor.org/rfc/rfc6202
https://graphql.org/learn/caching/


Computers 2022, 11, 65 17 of 17

33. Sayago Heredia, J.; Flores-García, E.; Solano, A.R. Comparative Analysis Between Standards Oriented to Web Services: SOAP,
REST and GRAPHQL. In Communications in Computer and Information Science; Springer: Cham, Switzerland, 2020; Volume 1193,
pp. 286–300. [CrossRef]

34. Brito, G.; Mombach, T.; Valente, M.T. Migrating to GraphQL: A Practical Assessment. In Proceedings of the 2019 IEEE 26th
International Conference on Software Analysis, Evolution and Reengineering (SANER), Hangzhou, China, 24–27 February 2019;
pp. 140–150. [CrossRef]

35. Amundsen, M. Roy Fielding on Versioning, Hypermedia, and REST. 2014. Available online: https://www.infoq.com/articles/
roy-fielding-on-versioning/ (accessed on 11 March 2022).

36. FreeOpcUA. FreeOpcUa Library. 2021. Available online: https://github.com/FreeOpcUa/python-opcua (accessed on
14 April 2022).

http://dx.doi.org/10.1007/978-3-030-42517-3_22
http://dx.doi.org/10.1109/SANER.2019.8667986
https://www.infoq.com/articles/roy-fielding-on-versioning/
https://www.infoq.com/articles/roy-fielding-on-versioning/
https://github.com/FreeOpcUa/python-opcua

	Introduction
	Background
	OPC UA
	REST
	RESTful OPC UA
	GraphQL
	GraphQL for OPC UA

	Comparison of REST and GraphQL
	Communication Model
	Protocol
	Cache
	Scalability
	Uniform Interface
	Ease of Use
	Ease of Development
	Bandwidth Usage
	Performance
	Information Model
	Other Features

	Measurement Setup
	Results
	Discussion
	Conclusions
	References

