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Abstract: This paper investigates the detection of abnormal sequences of signaling packets purposely
generated to perpetuate signaling-based attacks in computer networks. The problem is studied for
the Session Initiation Protocol (SIP) using a dataset of signaling packets exchanged by multiple
end-users. A sequence of SIP messages never observed before can indicate possible exploitation
of a vulnerability and its detection or prediction is of high importance to avoid security attacks
due to unknown abnormal SIP dialogs. The paper starts to briefly characterize the adopted dataset
and introduces multiple definitions to detail how the deep learning-based approach is adopted to
detect possible attacks. The proposed solution is based on a convolutional neural network capable of
exploring the definition of an orthogonal space representing the SIP dialogs. The space is then used
to train the neural network model to classify the type of SIP dialog according to a sequence of SIP
packets prior observed. The classifier of unknown SIP dialogs relies on the statistical properties of the
supervised learning of known SIP dialogs. Experimental results are presented to assess the solution
in terms of SIP dialogs prediction, unknown SIP dialogs detection, and computational performance,
demonstrating the usefulness of the proposed methodology to rapidly detect signaling-based attacks.

Keywords: deep learning; multimedia networks; SIP protocol

1. Introduction

In the previous years, we have observed the banalization and consequent massification
of multimedia services, with greater expression in the recent months due to the needs
created during the COVID-19 pandemic period. The Session Initiation Protocol (SIP) [1]
plays an important role on the operationalization of multimedia sessions, as it supports
a plethora of communication services, including voice calls and legacy Public Switched
Telephone Network (PSTN) systems through Voice over Internet Protocol (VoIP) [2]. In
cellular networks, SIP is also crucial to support all IP Multimedia Subsystem (IMS) services’
signaling [3,4], including multimedia and non-multimedia services. The SIP protocol allows
the establishment of sessions through adequate authentication mechanisms and signaling
control flows that are dynamic enough to accommodate several purposes, e.g., session
initiating, maintaining, and terminating between two peers.

The security of the SIP protocol is of high importance to the telecommunication opera-
tors running cellular and PSTN networks, and in supporting non-commercial VoIP services
in general. It is well known that SIP exhibits a significant number of vulnerabilities [5,6]
associated to the authentication process, malformed SIP messages, and signaling attacks. In
this paper, we focus on the vulnerabilities caused by the combination of different signaling
patterns, which can cause denial-of-service, unauthorized access to a call, billing errors, and
other types of attacks [5]. The identification of potential malicious SIP signaling sequences
received by the SIP servers and peers can minimize or even avoid the consequences of
hypothetical attacks, in particular, the prediction and detection of new signaling sequences
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never observed before. While the already known potential malicious sequences can be
detected in an automated way, the SIP sequences never observed before need to be analyzed
by domain experts who can then assess their level of vulnerability. However, the detection
of anomalous SIP signaling sequences is challenging due to the high number of different
signaling sequences, the order of the messages in the dialog, and the dialogs’ variable
length.

Considering the requirements previously introduced to detect anomalous SIP dialogs,
and, consequently, trustworthy SIP dialogs, in this paper we propose a deep learning
scheme to detect SIP signaling sequences. Through the adoption of a deep learning scheme,
the proposed solution is capable of inferring the most likely SIP dialog identifier based
on the knowledge acquired during a training stage with a lower computation complexity.
Regarding the architecture adopted for the deep learning model, we propose a scheme
based on Convolutional Neural Networks (CNNs) as opposed to [7], where Recurrent
Neural Networks (RNNs) are adopted. Although the RNN models were specifically
designed to process sequential data, a CNN model can also tackle the proposed problem
by considering each temporal sequence as a pattern of SIP messages that compose the SIP
dialog. By using a CNN the computation complexity of the neural network can be reduced
when compared to the LSTM. Additionaly, the LSTM and CNN neural networks’ outputs
are used in two different probabilistic classifiers to detect SIP dialogs never seen before.
The main contribution of the paper relies on the comparison of the performance of the
proposed classifiers, showing their effective capacity to mitigate vulnerabilities originated
by untrustworthy SIP dialogs never observed before. Although the deep learning models
used in the work are not a novelty per se, their adoption in a SIP network scenario is
advantageous due to the increased performance in terms of detection probability and
computation time.

The contributions of this work are summarized as follows:

• We propose a deep learning scheme formed by a Convolution Neural Network (CNN
model) to infer the most likely SIP dialog identifier for each received SIP signaling
pattern.

• To identify possible misdetections on the CNN model, a classification scheme is
proposed to distinguish between already trained and unknown dialogs. The classifier
uses the maximum value of the CNN output vector as a set of input features.

• The proposed methodology is compared with a Long Short-term Memory (LSTM)
recurrent neural network model proposed in [7]. The comparison between the two
schemes includes the SIP dialogs detection and prediction performance, the amount
of time required to detect a SIP dialog, and the detection of unknown SIP dialogs.

• The performance comparison shows that the CNN and LSTM RNN models achieve
identical performance in detecting the most likely SIP dialog identifier. However, the
CNN model exhibits slightly lower computational times.

• We propose two classifiers to detect abnormal SIP dialogs based on the outputs of the
neural networks. The performance of the classifiers is characterized for the LSTM and
CNN models, showing an abnormal detection rate up to 97.8% computed in less than
300 ms.

The rest of the paper is organized as follows. Section 2 presents the literature re-
view related to SIP security vulnerabilities and different approaches to minimize them.
Section 3 describes the CNN model and the classifiers. Section 4 presents the experimental
dataset and characterizes the performance achieved by the proposed methodology. Finally,
Section 5 concludes the paper.

2. Related Work

SIP [1] is an application-layer protocol designed to initiate, maintain, and terminate
multimedia sessions through the exchange of SIP messages between each user agent. Each
SIP message can be either a request or a response. Initially, a SIP message must be sent with
a request that can be identified by a specific method. In response to one of those methods,
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a response SIP message is sent with a specific code. Every SIP request exchanged between
agents initiates a SIP transaction, and multiple SIP transactions exchanged between two
peers form a SIP dialog, which represents the peer-to-peer relationship over time. A user
agent can identify the different dialogs through the SIP Call-ID, i.e., a unique identifier for
every dialog’s message.

The vulnerabilities of the SIP protocol have been identified in several works such
as [5,6], including works based on real-world data about SIP brute-forcing attempts for
attacking SIP endpoints [8]. The consequences of a SIP attack include service interruption,
service destruction, or unauthorized access to previously reserved computing resources.
The SIP protocol is currently massively used to support multimedia sessions and signaling
of 4G and 5G networks. Improvements of SIP/IMS security have been proposed recently
in [9], where the performance of different authentication schemes is compared. In [10] an
amendment to provide mutual authentication was proposed. Block-chain authentication
schemes were also introduced in [11] to protect the SIP registration process.

SIP service interruption can be caused by flooding attacks, and different solutions
include threshold-based classifiers that compare the traffic patterns with the prior statis-
tics [12,13]. Besides the threshold-based solutions, the works in [14,15] detect flooding
attacks through a recurrent neural network and a hidden markov model, respectively.
Bayesian Networks were adopted in [16] for SIP dialogs’ classification. Furthermore, to
infer the existence of an attack in [14] the model proposed considers only the content of
each SIP message, while in [15] different features are collected, e.g., number of SIP requests,
CPU, and memory usage. Malformed SIP messages are another way of compromising
SIP. Malicious SIP messages are usually detected through intrusion detection systems,
identification of deviations from a priori statistics [17], or rule-based systems that define
how a SIP message should be formatted [18]. Another class of SIP vulnerability, aka SIP
signaling vulnerability, take advantage of defective implementations of the protocol, where
protocol implementation issues can be explored by sending SIP messages to allow improper
authentication mechanisms [5]. A mitigation approach for this type of vulnerability was
proposed in [19], where a rule-based methodology is used according to the contextual
information of the SIP traffic. More recently, the work in [20] has proposed a methodology
based on the SIP sequences and their timings that are then used to detect deviations that
may represent vulnerabilities. Although different SIP signaling vulnerabilities have already
been proposed in [19,20], this work is not assuming a fixed probabilistic model of the
SIP operation. Contrarily, we propose a methodology capable of learning from past SIP
sequences, which is used to detect unknown SIP dialogs that can be further categorized by
domain experts. Moreover, the vulnerability of the abnormal dialogs can also be evaluated
based on prior trustworthy SIP data. Table 1 summarizes each attack using the SIP protocol
and the solutions proposed to prevent them.

Table 1. Type of TIP attacks addressed in the literature.

Work Type of SIP Attack Proposed Solution

[12] Flooding Threshold-based approach (comparison of traffic patterns with the statistics of the network in
normal operation).

[13] Flooding Threshold-based approach.
[14] Flooding Recurrent neural networks.
[15] Flooding Hidden markov model.
[17] Malformed-SIP message Statistical classifiers (e.g., Euclidean distance, Bayesian).

[18] Malformed-SIP message Rule-based approach (SDP parser module that interprets each SIP message body and drops the
messages that do not follow the rules defined in RFC 4566 standard).

[19] SIP signaling Rule-based approach (event graphs to model the protocol activities).

[20] SIP signaling Probabilistic state transition machine (description of normal and abnormal events in each
dialog and transaction).

[7] SIP signalling Recurrent neural network.
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3. Materials and Methods

The system model assumed in this work is depicted in Figure 1. We consider a SIP
network, where a SIP Source node establishes a signaling session with a Destination node.
The source and destination nodes are the peer nodes, also called SIP user agents. The server
nodes are responsible for routing the SIP messages between the SIP peers, constituting the
so-called SIP path.

The methodology to detect abnormal SIP dialogs can be implemented locally at
each SIP server or SIP peer. Additionally, the SIP peers or servers can also send the SIP
messages to cloud services running the proposed methodology. The methodology is fed
by the information collected in the consecutive SIP messages exchanged between the SIP
Source and SIP Destination nodes, represented in the figure by the “SIP gathering” block.
Specifically, the “SIP gathering” block is responsible to organize the multiple SIP messages
into a SIP dataset that is used for training purposes in an offline manner. The block model
“Model training” implements the training of the neural networks and the computation of
the abnormal classifiers’ thresholds. Additionally, the “SIP gathering” block also feeds the
SIP messages processed in the SIP path to the “Detection/Prediction model” block. The
“Detection/Prediction model” block implements the neural network models trained offline
and provides the input to the abnormal SIP dialogs classifiers represented in the figure by
the block “Unknown SIP dialog classifier”.

Network SIP path

Source
SIP server SIP server SIP server

Destination

Offline phase

SIP 

gathering

SIP 

dataset

Model

training 

Detection/

Prediction

model

Unknown

SIP dialog

classifier

Normal SIP dialog

Unknown SIP dialog

Online phase

Figure 1. System model.

Next we detail the model to perform the detection and prediction of SIP dialogs
through their identifiers (problem a), and the identification of new types of SIP dialogs never
trained by the model and thus labeled as unknown or abnormal (problem b). The proposed
model is able to classify the dialogs already known and label them as safe, anomalous, or
according to different vulnerabilities ranks, but also to isolate dialogs never observed before
for further analysis, i.e., to posterior send them to a domain expert. To solve the problems
mentioned before, the model is divided into two blocks: the “Detection/Prediction model”
is described in Section 3.1; the detection of unknown SIP dialogs is presented in Section 3.2.

Figure 2 illustrates the proposed CNN system model. In a nutshell, an observed
sequence of SIP messages is initially pre-processed to serve the requisites of the CNN
model. After being trained, the neural network of the CNN model provides information
to the “Unknown SIP dialog classifier” responsible for detecting if the observed sequence
represents a known SIP dialog identifier, or if it is an unknown SIP dialog.
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Figure 2. Proposed CNN system model.

3.1. CNN Model

Before introducing the proposed model, we summarize the notation used in the paper
in Table 2. To perform the detection and prediction of a SIP dialog identifier we adopted
the CNN model illustrated in Figure 3, comprising the CNN, Max Pooling, Flatten, and
Dense layers.

Table 2. Table of symbols.

Symbols Definitions

mk SIP message k.
m′k Encoded SIP message k.
M Number of all SIP methods and responses.
dk SIP dialog k.
ok Observation k.
sk Pad sequence of an observation ok.
Ld Length of a SIP dialog dk.
Lo Length of an observation ok.
LS Length of a pad sequence sk.
LM Length of the encoded SIP message m′k.
n Number of zeros added into the pad sequence.
N Number of unique SIP dialogs.
yk Identifier of dialog k.
X Input state space.
Y Output state space.
Skew(.) Skewness function.
Kurt(.) Kurtosis function.
λMax(k) Maximum average threshold value for SIP dialog k (maximum output-based classifier).
λS Skewness threshold (skewness and kurtosis-based classifier).
λK Kurtosis threshold (skewness and kurtosis-based classifier).
H0 Hypothesis 0 (classifier detects a trained dialog).
H1 Hypothesis 1 (classifier detects an unknown dialog).
µS Mean of the skewness of the trained dialogs.
µK Mean of the kurtosis of the trained dialogs.
σ2

S Variance of the skewness of the trained dialogs.
σ2

K Variance of the kurtosis of the trained dialogs.

Although the CNNs were not originally designed to process temporal sequences as
opposed to the Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNNs)
adopted in [7], the CNNs can also be trained to recognize a specific SIP dialog.

Sequence preprocessing

CNN model

ok
Pad

Sequence

One Hot 

Encoder
CNN

Max 

Pooling

2D

Flatten Dense

yk
^

1 2 3 4

6

5

7

Figure 3. CNN model.
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Before introducing the model we assume that it can be adopted by the SIP user agents
or by the SIP servers traversed by the SIP messages. The first concept to be introduced
is the SIP message mk. SIP messages are the atomic unit exchanged by the SIP peers to
establish, maintain, update, and terminate a signaling session.

Definition 1. A SIP message carried in a SIP packet and denoted by mk, 1 ≤ k ≤ M, is a SIP
request or SIP response of a specific type. The variable M denotes the total number of unique SIP
requests and responses.

The SIP protocol relies on Request and Response SIP messages. A SIP message can
be formed by either a numerical code representing the type of the SIP response or a text
field indicating the type of the SIP request. However, to use the SIP message as an input
we need to encode each SIP message, since the CNN model can only process numerical
values. The encoding process is performed using the One Hot Encoder algorithm [21] to
transform each SIP message mk into a unique Boolean vector orthogonal to the others.

Definition 2. An encoded SIP message m′i is represented by a Boolean vector with length LM
that univocally identifies the type of the SIP message mi, i.e., m′i =< 0, . . . , 0︸ ︷︷ ︸

(LM−i)

, 1, 0, . . . , 0︸ ︷︷ ︸
(i−1)

>.

All interactions of a SIP session are implemented through SIP messages, which create
different transactions. A SIP session for a specific purpose (e.g., a voice call) is composed of
multiple SIP messages. The set of all messages exchanged during the session forms the SIP
dialog. A SIP dialog is completed when the multimedia session formed by the multiple
transactions is terminated.

Definition 3. A SIP dialog denoted by dk =< m′(1), m′(2), . . . , m′(Ld) > is formed by a se-
quence of consecutive SIP messages m′(j), where j represents the position of the SIP message in
the dialog sequence. The length of the SIP dialog is represented by Ld. The SIP messages forming
the SIP dialog contain the same Call ID string as well as the sender and receiver addresses in the
packet’s header.

Although a SIP dialog is only defined when all SIP messages are exchanged, we
assume that the model can estimate the dialog when only part of the SIP dialogs’ messages
has been exchanged. Therefore, instead of considering only sequences with length Ld, the
model can process their subsequences, i.e., 1 ≤ Lo ≤ Ld. Thus, depending on the length of
the observation, the CNN model is either predicting (Lo < Ld) or detecting (Lo = Ld) a SIP
dialog identifier.

Definition 4. An observation k is a sequence of consecutive encoded SIP messages denoted as
ok =< m′(1), m′(2), . . . , m′(Lo) >, where Lo represents the observation length. To describe the
consecutive relation of the messages, each encoded SIP message is represented by m′(j) = m′i,
1 ≤ i ≤ M. The SIP messages in the observation constitute either a sub or complete dialog and,
consequently, they share the same SIP Call ID.

The observations can have different lengths (1 ≤ Lo ≤ Ld), being transformed into a
fixed-length stuffed sequence sk defined as follows.

Definition 5. A pad sequence sk is formed for each observation ok, by adding n zeros at the end
of the observation ok, i.e., sk =< ok, 0, 0, . . . , 0︸ ︷︷ ︸

(n)

>. The length of the pad sequences is denoted by

LS, where LS = Lo + n,.
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So far, we have considered that a padding symbol is added to each ok. Besides
the encoding of each SIP message, the padding symbols are also encoded according to
Definition 2. Consequently, the encoded SIP message has length LM = M + 1, considering
all types of SIP messages (M) and the zero-padding symbol.

Next, we describe the input and output state spaces, which are created during the
training stage of the CNN model. The state spaces are then used in the prediction/detection
stages to map the SIP dialogs with their correspondent identifier.

Definition 6. The input state space X of the supervised learning implemented through the CNN
is the set of padded sequences X = {s1, . . . , sk}, with k = LM

LS learnt in the model’s training
stage.

Definition 7. The set Y = {y1, y2, . . . , yN} represents the output state space of the neural
network, where N denotes the number of unique SIP dialogs in the training dataset and, yk =<
0, . . . , 0︸ ︷︷ ︸
(N−k)

, 1, 0, . . . , 0︸ ︷︷ ︸
(k−1)

> the identifier of SIP dialog dk.

In the detection stage, the CNN model can compute the most likely SIP dialog identifier
for a given observed sequence, which can be viewed as a regression problem ŷk = f (sk, β).
The estimated SIP dialog identifier ŷk is obtained through the estimate function f (.) which
is defined by interactively computing the weights of the CNN model (β) during the training
period, so that the input and output state spaces are correctly mapped. The steps followed
by the CNN model during the prediction/detection of a SIP dialog identifier are identified
in Table 3.

Table 3. CNN model.

Step 1: An observed sequence ok with length 1× Lo × 1 is requested to be processed by the system model.
Step 2: The Pad Sequence block appends zeros at the end of ok, creating a stuffed sequence sk with length 1× N × 1.

Step 3:
The One Hot Encoder block encodes each element of sk (SIP messages and padding symbol) into an orthogonal Boolean
vector. The length sk is changed into 1× N × LM × 1. At this stage, the observed sequence is ready to be processed by the
CNN model.

Step 4: The CNN layer processes the encoded SIP message m′k of the padded sequence sk and returns a 1× N sequence of real
numbers in [0, 1].

Step 5: The Maximum Pooling block reduces the dimension of the CNN output by locally selecting the maximum value using a
2× 2 filter.

Step 6: The Flatten block converts the 2-dimensional vector into a 1-dimensional vector.

Step 7: The Dense layer receives the outputs from the Flatten block and generates an output vector ŷk of length 1× N of real
numbers in [0, 1].

Knowing that the field of deep learning is focused on different techniques and model
architectures that are hard to compare in a formal way (e.g., regularization, latent space
representation, efficient loss functions, gradient-based optimization, etc.), we highlight
that the deep learning models used in our work are not a novelty per see and the focus
of our work is not on innovative learning models but on their use to derive the classifiers
proposed in Section 3.2. In this way, the proposed CNN topology is compared against
an LSTM topology proposed in [7]. Tables 4 and 5 describe the parameters adopted in
the CNN and LSTM models, respectively. We highlight that more complex models were
also evaluated in our work; however, we did not consider them as a solution because they
achieved similar classification performance results but have higher computation times.
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Table 4. Description of the CNN model.

Layer Type Ouput Activation Parameters

1 Conv2D 56× 1× 16 relu 592
2 MaxPooling 28× 1× 16 - 0
3 Flatten 448 - 0
4 Dense 928 softmax 416672

Table 5. Description of the LSTM RNN model.

Layer Type Ouput Activation Parameters

1 LSTM 928 tanh 3515264
2 Dense 928 softmax 862112

3.2. Unknown SIP Dialogs’ Classifiers

Although the CNN model identifies the most likely SIP dialog identifier given an
observed sequence of SIP messages, ok, we cannot assume that the SIP dialog identifier
is always correctly detected. An example of a misdetection can be observed whenever
the CNN model detects/predicts the identifier of an unknown observed sequence, i.e., a
sequence not considered in the input and output state spaces during the CNN training stage.
Thus, two classifiers were developed to distinguish between unknown and trained/known
SIP dialogs. The classification is performed considering the output vector from the CNN
model ŷk.

In the first classifier, proposed in [7], the detection of unknown SIP dialogs is based
on statistical information computed from the output vectors ŷk of the neural network,
particularly the skewness and kurtosis standardized moments. Therefore, the first step to
be taken is to compute the skewness and kurtosis standardized moments, i.e., Skew(ŷk) and
Kur(ŷk). Then, in the second step the classifier evaluates the statistical information collected
from ŷk and classifies the SIP dialog as already trained/known dialog (hypothesis H0) or
unknown dialog (hypothesis H1). The abnormal SIP dialogs are included in the unknown
dialogs, and only a further analysis of all unknown SIP dialogs allows the evaluation of its
vulnerability level.

The statistical information of the trained dialogs is used to classify the SIP dialogs
observed in real-time. The conceptual model of the first classifier and the steps needed to
classify each dialog are illustrated in Figure 4. The classifier evaluates if the skewness and
kurtosis of neural network outputs of the trained dialogs are above certain threshold values,
given by λS = µS − σ2

S and λK = µK − σ2
K, respectively. The variables µS, µK, σ2

S , and σ2
K

denote the average µ and variance σ2 of the skewness or kurtosis central standardized of
the trained dialogs. The hypotheses tested in the second step are written as

H0 : Skew(ŷk) ≥ λS, Kurt(ŷk) ≥ λK,

H1 : Skew(ŷk) < λS, Kurt(ŷk) < λK,

where H0 represents the case when an observed SIP dialog is classified as normal and H1
represents the condition to classify it as unknown. Note that the classification is computed
through the comparison of the skewness and kurtosis computed from the outputs of the
trained neural model for the observed SIP dialog, Skew(ŷk) and Kurt(ŷk) with the statistics
of the trained SIP dialogs, λS and λK.
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Classifier 1

Skew(yk)

Kurt(yk) 

Normal 

SIP dialog

Unknown

SIP dialog

yk
^

1 2

H0

H1

^

^

Figure 4. Skewness and kurtosis-based classifier.

Rather than computing the standardized moments of the set of features, the sec-
ond classifier detects possible unknown dialogs by comparing the output inferred by
the CNN model ŷk with the outputs from the SIP dialogs previously trained. Specifi-
cally, whenever an observed SIP dialog is detected, the maximum output-based classi-
fier compares the maximum value of the CNN output vector max(ŷk) with an average
threshold value λMax(k) computed with the trained SIP dialogs. The threshold value
λMax(k) represents the average of the maximum output value from each SIP dialog la-
belled as trained dialog. However, the classifier’s threshold is not computed based on
the average of the maximum output of all trained dialogs. Instead, we compute N av-
erage thresholds, once per unique SIP dialog as represented in the vector of thresholds

λMax =< λMax(1), λMax(1), . . . , λMax(N) = ∑kN max(ŷN)
kN

>, where kN denotes the number
of occurrences of dialog dN in the training subdataset. Therefore, the classifier compares the
maximum value of the predicted SIP dialog identifier ŷk with the corresponding threshold
value λMax(k). The decision between a trained dialog (hypothesis H0) or an unknown
dialog (hypothesis H1) is written as

H0 : max(ŷk) ≥ λMax(k),

H1 : max(ŷk) < λMax(k).

The conceptual model for the maximum output-based classifier is described in Figure 5.
Regarding the steps represented in the conceptual model, in the first step, the classifier
computes the maximum value of the neural network output. Then, in the second step, the
threshold value corresponding to the detected SIP dialog identifier is returned from λMax.
Finally, with the coefficients assigned, the classifier evaluates which of the hypotheses
holds true.

Classifier 2

SIP 

Dialog ID

Normal 

SIP dialog

Unknown

SIP dialog

yk
^

1

3

H0

H1

2 λMax(k)

^max(yk)

Figure 5. Maximum output-based classifier.

4. Results and Discussion

To assess the performance of the proposed approach we characterize several per-
formance metrics, including the detection and prediction probabilities, the computation
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time, and the classification of unknown SIP dialogs. The results from the CNN model are
compared with a LSTM RNN model proposed in [7]. Henceforth, each result reported was
obtained using TensorFlow 2.0 running over a 64bit Ubuntu 18.04.5 LTS with 128 GB of
RAM and running over an Intel(R) Core(TM) i7-9800X CPU @ 3.80GHz and GeForce RTX
2080 Ti 11GB.

4.1. Sip Dialog Dataset

The experimental results were obtained using the dataset created by Nassar et al.
in [22], which was also adopted in [7]. The SIP dataset is composed of 18782 SIP dialogs
created by 254 user agents, where the 18782 dialogs correspond to 1492 unique SIP dialogs.
Each of the 18782 SIP dialogs is formed by a combination of 17 types of SIP messages,
which results in dialogs with a length between 3 and 56. To evaluate the performance of
our model in different scenarios the dataset was randomly divided into three different
subdatasets: training, validation, and testing. The proportions followed for each dataset
were the same defined in [7], where the training set is composed of 50% of the original
dataset, the validation 20%, and the testing with 30% of all the transactions.

The dialogs were randomly selected from the datasets for training and testing purposes.
Furthermore, considering a sample as an ordered sequence of SIP messages observed by
a SIP peer/server (SIP dialog), the sampling methodology adopted in the work does not
introduce any bias that could affect the results because the dialogs are independent of
each other.

Finally, Table 6 describes the parameter values adopted in the proposed model, where
some of them are based on the distribution of the dialogs forming the training subdataset,
i.e., M, LM, LS, N. As a consequence, instead of considering 1492 unique SIP dialogs for
the variable N, only 928 were used. The different values of N are explained by the number
of occurrences of each dialog since 66.23% of the 1492 types of SIP dialogs only occur
once. Therefore, with the division of the original dataset, some dialogs are specific to each
subdataset.

Table 6. CNN parameters.

Model Parameters

M 17
LM 18
LS 56
N 928

CNN number of filters 16
CNN filter size 2× 56

Dense layer activation function Relu
Max Pooling filter size 2× 2

Dense layer units 928
Dense layer activation function Softmax

Early Stopping condition Minimum of the validation loss
Batch size 64

Loss Function Categorical cross entropy
Optimizer Adam (learning rate = 0.001)

4.2. Detection and Prediction Performance

The first result to be evaluated is the CNN detection probability, which measures the
probability of correctly detecting the SIP dialog identifier when the observed sequence
has length Lo = Ld, i.e., the multimedia session created by the user agents is terminated.
Therefore, to compute the detection probability we compared for each observed sequence ok
if the output value of the CNN model ŷk was similar to the SIP dialog identifier represented
in the dataset yk. Table 7 expresses the detection probability obtained for each subdataset for
the proposed CNN model and the LSTM RNN model. To compute the detection probability
the CNN and LSTM RNN models were trained during 30 and 255 epochs, respectively.
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Table 7. Detection probability for each subdataset.

Model Train Validation Test Joint

LSTM RNN
model [7] 1.0000 0.9280 0.9354 0.9660

CNN model 1.0000 0.9280 0.9354 0.9660

The results show that the CNN model correctly detects all the dialogs in the training
subdataset, but it misdetects some of the dialogs in the test and validation subdatasets,
as in the LSTM RNN model. The reason for the lower detection performance in the test
and validation subdatasets is related to the value N, since in the training subdataset there
are only 928 types of SIP dialogs instead of 1492. Therefore, the input and output state
spaces, created during the training stage, do not characterize all the SIP dialogs leading to
the misdetection of some of the dialogs in the test and validation subdatasets.

Besides the detection probability, in Figure 6 we illustrate the prediction probability
expressed as a function of the percentage of the SIP dialog’s messages sequentially observed
so far, i.e., as more SIP messages of the dialog are observed over time. The rationale of
Figure 6 is to enable the evaluation of the CNN model performance during the prediction
and detection of each SIP dialog regardless of their length, since through the amount
of information received we can evaluate the prediction (Lo/Ld < 100%) and detection
((Lo/Ld = 100%) performance. Regarding the computation of each curve in the figure,
the CNN model processes each SIP dialog considering their observed subsequences, i.e.,
o1 =< m(1) >, o2 =< m(1), m(2) >, . . . , oLd =< m(1), m(2), . . . , m(Ld) >. Then, we evaluate
if the inferred SIP dialog identifier ŷk is similar to the true identifier yk.

Figure 6. SIP dialogs prediction probability over the amount of available information.

The results obtained for the joint datasets (training, test, and validation subdatasets)
indicate that the CNN model has a similar performance to the LSTM RNN model. However,
the LSTM RNN model is capable of recognizing a higher number of SIP dialogs except when
the amount of information received is approximately between 73% and 83%. Additionally,
the minimum amount of information to correctly predict a SIP dialog is 44.64% and 33.93%
for the CNN and the LSTM RNN model, respectively. Finally, when all SIP messages are
received both models achieve a probability of correctly identifying a SIP dialog identifier of
approximately 0.9660, which corresponds to the detection probability of the joint dataset,
as described in Table 7.
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Despite the performance of each model during the detection and prediction of each
SIP dialog identifier, in Figure 7 we depict the computation time needed to detect each SIP
dialog identifier from the original dataset. Through the measurement and comparison of
the computation time, we are able to evaluate the performance of each model in a practical
deployment. The computation time represented in the figure is plotted using the Cumula-
tive Distribution Probability (CDF). The results demonstrate that both models have similar
behavior, but the CNN model has a lower computation time. Particularly, the average
computation time for the CNN and LSTM RNN model is 0.02567s and 0.02703s, respectively.
The different computation times are related to the complexity of each model, which can be
measured by the number of parameters in the model. The number of training parameters
of the CNN model is 646,916 while the LSTM RNN model has 4,377,376 parameters, thus
validating the high complexity of the LSTM model.

Figure 7. CDFs of the detection computation times.

4.3. Detection of Unknown SIP Dialogs

As stated the two classifiers presented in Section 3.2 take as input the outputs of the
detection model (CNN or LSTM RNN model) and perform the classification based on the
SIP dialogs already trained. The outcome of each classifier is a binary output indicating if
the observed SIP dialog is a trained/known dialog or a unknown dialog.

The skewness and kurtosis-based classifier uses the statistical information collected
from the output of the detection models, which is represented in Figure 8a,b, for CNN and
LSTM RNN models, respectively.
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Figure 8. Normalized skewness and kurtosis of the: (a) CNN output values (b) LSTM RNN output
values.

In Figure 8 the features are distinguished by its corresponding label: trained dialog,
and unknown dialog. While in Figure 9, we also plotted the threshold values for the
skewness (λS) and kurtosis (λK) standardized moments of the CNN and LSTM RNN
models given by λS = 0.993982 and λK = 0.992029, and λS = 0.999995 and λK = 0.999994,
respectively. According to the threshold values and its plot, we conclude that the trained
dialogs lead to lower uncertainty of the neural network outputs and higher values in
comparison with the unknown dialogs.
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Figure 9. Skewness and kurtosis-based classifier inputs from the: (a) CNN model (b) LSTM RNN
model.

However, for some of the unknown dialogs, the outputs of the neural networks are
above the threshold value. The reason for achieving a higher skewness and kurtosis value
for some unknown dialogs is related to its similarity to the dialogs represented in each state
space, i.e., X and Y .

To evaluate the performance of the skewness and kurtosis-based classifier, the confu-
sion matrix and other evaluation metrics are represented in Table 8.
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Table 8. Performance evaluation of skewness and kurtosis-based classifier.

Model CNN Model LSTM RNN Model [7]

True negative 0.958333 0.964063
True positive 0.791166 0.936721

False negative 0.208834 0.063279
False positive 0.041667 0.035938

Precision 0.998122 0.998648
Accuracy 0.796933 0.937653
F1-score 0.882675 0.966694

Four possible outcomes compose the confusion matrix, describing the probability of:
correctly classifying a dialog as a trained dialog (true positive), misclassifying a dialog
as a trained dialog (false positive), correctly classifying a dialog as an unknown dialog
(true negative), and misclassifying a dialog as an unknown dialogs (false negative). The
skewness and kurtosis-based classifier achieves a higher performance when used along
with the LSTM RNN model, since it reduces the number of unknown dialogs incorrectly
classified as a trained dialog. Through the confusion matrix, we computed the remaining
metrics: precision, accuracy, and f1-score. However, in none of the remaining metrics, the
classification based on the CNN model outputs outperforms the classifier that uses the
output from the LSTM RNN model.

In the maximum output-based classifier, the detection of unknown SIP dialogs consists
of evaluating if the maximum value of ŷk is above the average threshold λMax(k), where
the threshold value depends on the SIP dialog identifier k inferred by the detection model.
Figure 10 illustrates the Probability Distribution Function (PDF) of the maximum value of
the detection model output during the detection of each SIP dialog in the joint dataset. The
set of features are identified as trained dialog and unknown dialog.

Trained dialog

Unknown dialog

(a)

Trained dialog

Unknown dialog

(b)

Figure 10. PDF of the maximum output considering: (a) CNN model (b) LSTM RNN model.

Through the distributions presented in Figure 10, we observe that the unknown
dialog class tends to have a lower maximum value, while the trained dialog class has a
higher maximum value, especially in the LSTM RNN model. Furthermore, comparing the
distributions of the trained dialog, we can observe that there is higher uncertainty for the
CNN model, while in the LSTM RNN model the majority of these dialogs have a maximum
value closer to 1. Together, the conclusions obtained explain why the LSTM RNN model
has higher threshold values in the skewness and kurtosis-based classier.

As in the previous classifier, the performance of the maximum output threshold-based
classifier is presented in Table 9.
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Table 9. Performance evaluation of maximum output-based classifier.

Model CNN Model LSTM RNN Model [7]

True negative 0.958333 0.978125
True positive 0.639462 0.458880

False negative 0.360538 0.541120
False positive 0.041667 0.021875

Precision 0.997677 0.998321
Accuracy 0.650463 0.476573
F1-score 0.779380 0.628753

According to the results obtained, the performance of the second classifier exhibits
lower performance than the first one. However, there are some similarities between the
two classifiers, since the true negative and false positive performance is identical in both
classifiers when the features are collected from the CNN model’s output. Furthermore,
the classification of unknown SIP dialogs (true negative) is improved in the maximum
output-based classifier when the features are computed by the LSTM RNN model. To
compare the performance of each classifier we used the f1-score metric, which is used when
there is a binary classification and the dataset is unbalanced. Therefore, using the f1-score
metric, we conclude that the first classifier has a higher performance, achieving an f1-score
gain of 10.33% when the set of features is obtained with the CNN model and a gain of
33.94% for the LSTM RNN model.

4.4. Future Directions

The computational resources required to run the proposed neural networks are mainly
due to the fact that we extend shorter SIP sequences into fixed-length sequences so that
fixed-length sequences can be considered in a single neural network model. The pro-
posed assumption increases the neural network complexity because shorter SIP sequences
are padded until having the length of the longer SIP sequence already observed and,
consequently, the number of inputs and neurons increases due to the use of the padded
sequences.

To reduce the computational resources, a different methodology can be explored and
based on having multiple neural network models tailored to the length of the SIP sequence,
thus avoiding sequence padding. Although the methodology based on multiple neural
network models requires higher training times due to the multiple networks associated
with the different SIP sequence lengths, it brings two advantages:

• It does not require so complex neural networks, as the number of inputs is significantly
lower due to the shorter SIP sequences. Only a single network will have exactly the
same number of inputs as the one adopted in the proposed methodology, but it is used
to classify a lower number of different SIP sequences.

• Because the different SIP sequences have variable lengths and each network can
only tackle a specific length, the number of different sequences to train each network
decreases. Consequently, the complexity of each network can be lowered because it
classifies a lower number of SIP sequences when compared to a single network used
to classify all SIP sequences.

5. Conclusions

In this paper, we have proposed a methodology to detect and predict SIP dialogs
based on convolution neural networks. The advantage of the CNN model in comparison to
the LSTM RNN model proposed in [7] is the lower computational complexity, which leads
to a lower computation time during the detection and prediction of SIP dialogs. Several
experiments are presented to evaluate the CNN performance against the LSTM RNN
model, confirming its advantage in terms of computation time. Furthermore, a classifier
based on the maximum output value of the detection model (CNN/LSTM RNN model)
was proposed to detect SIP dialogs never observed before. Comparing the performance
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of the maximum output-based classifier to the skewness and kurtosis-based classifier,
proposed in [7], we conclude that the latter achieved higher performance independently
of the detection model. The experimental assessment and the results achieved in terms
of detection probability and computation times show the effectiveness of the proposed
methodology to improve the security of SIP-based services.
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