
Citation: Schreppel, C.; Pfeiffer, A.;

Ruggaber, J.; Brembeck, J.

Implementation of a C Library of

Kalman Filters for Application on

Embedded Systems. Computers 2022,

11, 165. https://doi.org/10.3390/

computers11110165

Academic Editor: George K. Adam

Received: 14 October 2022

Accepted: 14 November 2022

Published: 18 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Implementation of a C Library of Kalman Filters for
Application on Embedded Systems
Christina Schreppel *, Andreas Pfeiffer, Julian Ruggaber and Jonathan Brembeck

Institute of System Dynamics and Control, Robotics and Mechatronics Center, German Aerospace Center (DLR),
82234 Weßling, Germany
* Correspondence: christina.schreppel@dlr.de; Tel.: +49-8153-28-4507

Abstract: Having knowledge about the states of a system is an important component in most control
systems. However, an exact measurement of the states cannot always be provided because it is either
not technically possible or only possible with a significant effort. Therefore, state estimation plays
an important role in control applications. The well-known and widely used Kalman filter is often
employed for this purpose. This paper describes the implementation of nonlinear Kalman filter
algorithms, the extended and the unscented Kalman filter with square-rooting, in the programming
language C, that are suitable for the use on embedded systems. The implementations deal with single
or double precision data types depending on the application. The newly implemented filters are
demonstrated in the context of semi-active vehicle damper control and the estimation of the tire–road
friction coefficient as application examples, providing real-time capability. Their per-formances were
evaluated in tests on an electronic control unit and a rapid-prototyping platform.

Keywords: Kalman filter; vehicle state estimation; road friction estimation; C implementation;
embedded systems

1. Introduction

In control engineering applications, such as vehicle dynamics control, it is crucial to
identify the states of a system as precisely as possible. In some cases, the states can be
measured by means of appropriate sensors, such as accelerometers for determining the
acceleration of a vehicle tire. However, such sensors are not always available for technical
or economic reasons. This means that it might not be technically possible to measure
a state because of suitable sensor absence, too-high costs, or too-complex incorporation.
One possibility to gain knowledge about the states of a system is to estimate them. This
approach uses information about the system described by a model and about system
measurements in order to determine the states of interest. A well-established and wide-
spread state estimation technique is Kalman filtering. This technique is based on a recursive
estimation of the current states using the estimated states of the previous step and the new
measurements [1]. The popularity of the Kalman filter is due to its capabilities of predicting
the state for the next time step and filtering out noise in the measurements, and its easier
implementation compared to other state estimation techniques [2]. Although the basic
Kalman filter is applied to linear systems, there are also several variants with extensions of
the filter algorithm to handle nonlinearities.

1.1. Application Fields of Kalman Filtering

Kalman filters have applications in numerous fields. The unscented Kalman filter,
for example, is used in [3] for target tracking. A combination of a convolutional neural
network and a Kalman filter is used in [4] for detecting and tracking the motion of pigs
in a video with the aim of determining social interactions. The extended Kalman filter
is applied for the localization of a mobile robot that is provided with multiple sensors

Computers 2022, 11, 165. https://doi.org/10.3390/computers11110165 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers11110165
https://doi.org/10.3390/computers11110165
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0003-4300-9104
https://orcid.org/0000-0002-7671-5251
https://doi.org/10.3390/computers11110165
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers11110165?type=check_update&version=3

Computers 2022, 11, 165 2 of 23

in [5]. The latter variant is also employed in a similar field in [6], together with the Kalman
filter, within a localization and mapping algorithm to measure the position of a robot. A
five-state extended Kalman filter is designed in [7], estimating the speed over the ground
of an unmanned surface vehicle, in addition to other quantities needed for course control,
and experimental results are shown. In [8], a lithium-ion battery cell is modeled and a
state of charge estimation is carried out. An algorithm for pose estimation based on one or
several event-based sensors is presented in [9], incorporating an extended Kalman filter
that is real-time capable in the case of one sensor.

1.2. Embedded Implementation of Kalman Filter Algorithms

When working with road vehicles, robots, or flying devices, it becomes necessary
to implement state estimators on embedded systems that are incorporated in them. This
allows processes to be executed in real time. In [10], a simple 1-D Kalman filter is used to
attenuate noise of the measured accelerations of an unmanned aerial vehicle and is executed
in real time on a microcontroller. The authors of [11] implement an unscented Kalman filter
for data fusion on navigation systems. Therein, the authors choose two microcontrollers
and present platform-dependent modifications along with general customizations in the
filter algorithms. A C library for an embedded extended Kalman filter is proposed in [12],
representing a small implementation usable also for the linear Kalman filter. In [13], a
detailed approach to deriving data fusion of smart sensors using Kalman filters is developed
and the complexities of different filter variants are compared. Finally, the estimation applied
to a 2-D orientation problem is carried out, using a C implementation on a microcontroller.

The implementation of state estimators gains special importance, since some require-
ments on the program code have to be fulfilled. Real-time capability demands that the
program provides a solution within a certain fixed period of time, the specific length of
which depends on the application. Due to limited resources on the embedded system,
a narrower floating-point data type is used compared to desktop implementations, for
example, 32-bit instead of 64-bit precision. The software must be able to yield sufficiently
good results even with this limited number of bits [14]. Furthermore, on an embedded
system, dynamic memory allocation cannot be used. In addition, the software must consist
of self-contained code that does not require any other external libraries. On embedded
systems, the programming language C is widely used. A state estimator implemented fully
standalone and manually in C entails the advantages of this language. It is also possible
to generate C code from other programming languages using appropriate tools, but, in
general, manually written code can provide the additional benefits of better readability
and maintainability, and no unnecessary code overhead is imposed. Another requirement
associated with the use of software in embedded and, especially, safety-critical applications,
is adherence to coding guidelines such as MISRA C [15]. The fulfillment of these rules is
often postulated in the automotive sector and also in other industries [16].

1.3. Contribution of This Work

Considering this framework, this paper presents a newly implemented Kalman filter
library that is suitable for use on embedded systems. It is written in C code and represents
a stand-alone library without the need for any external libraries. Some numerical routines
used inside the estimation algorithms are based on existing Fortran routines of the widely
known Linear Algebra Package (LAPACK) [17], but reimplemented in C. The new library
contains two variants of nonlinear Kalman filters that were implemented in a numerically
efficient way. It supports 64-bit and 32-bit setups, suiting the limited resources on embedded
systems. The implementation incorporates common coding guidelines. The Kalman filter
library is successfully utilized in vehicle state estimation in two different application
scenarios and integrated and validated in real-time embedded environments.

The introduced library represents an in-house development and is used internally for
research projects. It is not currently planned to make it publicly available, though interested
readers may contact the authors.

Computers 2022, 11, 165 3 of 23

The Kalman filter theory is explained in Section 2. Section 3 covers the implementation
of the new library, including the general structure, the integration of user-defined prediction
models, basic numerical routines, and the consideration of coding guidelines. In Section 4,
the applications of the library on an electronic control unit (ECU) and a rapid prototyping
platform are described and validations are carried out. Section 5 presents a conclusion.

2. General Theory on Kalman Filters

This section briefly summarizes the principles for state estimation using the well-
known Kalman filter. Basic theory can be found in [1,18,19]. The following notations are
adapted from [20].

The subsequent nonlinear system is the basis for the state estimation. It represents the
continuous-time plant model in state space form:

.
x = f(x, u),
y = h(x),

(1)

with the vector of states x(t) ∈ Rnx , the time t ∈ R, the vector of inputs u(t) ∈ Rnu , the
vector of outputs y(t) ∈ Rny , and their respective dimensions nx, nu and ny. Since the
aim is to implement Kalman filter algorithms for state estimation on embedded systems,
which represent sampled data systems, model (1) cannot be used directly. Instead, it is
transformed to a discrete-time formulation. This resulting dynamic system with additive
Gaussian noise is utilized in the following discrete-time state estimation:

xk = fk|k−1(xk−1, uk−1) + wk−1,
yk = h(xk) + vk,
wk ∼ N(0, Q),
vk ∼ N(0, R),

(2)

with xk = x(tk), uk = u(tk) and yk = y(tk), where tk denotes the k-th sample time point in
a data system sampled periodically. Both the system and output formulas are perturbed by
white Gaussian noises wk and vk. They are assumed to be uncorrelated with zero mean.
The corresponding covariance matrices for the noises are described by Q and R, which are
regarded to be constant. The discrete-time integration between the last sample point tk−1
and the new one tk is described by the following equation:

fk|k−1 = xk−1 +

tk∫
tk−1

f(x, uk−1)dt, (3)

whereby the integration can be performed by using, e.g., Runge-Kutta or Euler methods.
The required evaluations of the prediction model in the Kalman filter algorithms are
described by (1) and (3).

Figure 1 shows the basic idea of state estimation using Kalman filtering, see also [20].
A recursive algorithm is presupposed, which consists of the two steps predict and

correct, building a cyclic flow. At the beginning, the filter is initialized with x̂+0 and P+
0 ,

which is an initial estimate for the state vector and the state covariance matrix, that indicates
the confidence in this first guess. The first step of the cycle in Figure 1 refers to the predict
step. It represents an a priori estimation of the mean and covariance, which means a gauge
for the trust in the system states. The outcomes of this step have a “−” in their superscripts
in the following. This is succeeded by the correct step, the results of which have a “+” in the
superscript. In this step, the covariance matrix and the estimated states are updated, using
the calculated Kalman gain and the current measurements of the outputs ym

k in the actual
sample k. Afterwards the predict step follows and the procedure repeats with k := k + 1.
The cycle is carried out with a specified sample time Ts. At every sample period, new

Computers 2022, 11, 165 4 of 23

measurements of the outputs are provided and used to update the current estimation of
the states.

Computers 2022, 11, x FOR PEER REVIEW 4 of 23

Figure 1. Scheme of state estimation using Kalman filtering.

A recursive algorithm is presupposed, which consists of the two steps predict and

correct, building a cyclic flow. At the beginning, the filter is initialized with 𝑥̂0
+ and 𝑃0

+,

which is an initial estimate for the state vector and the state covariance matrix, that indi-

cates the confidence in this first guess. The first step of the cycle in Figure 1 refers to the

predict step. It represents an a priori estimation of the mean and covariance, which means

a gauge for the trust in the system states. The outcomes of this step have a “−” in their

superscripts in the following. This is succeeded by the correct step, the results of which

have a “+” in the superscript. In this step, the covariance matrix and the estimated states

are updated, using the calculated Kalman gain and the current measurements of the out-

puts 𝒚𝑘
𝑚 in the actual sample 𝑘. Afterwards the predict step follows and the procedure

repeats with 𝑘:= 𝑘 + 1. The cycle is carried out with a specified sample time 𝑇𝑠. At every

sample period, new measurements of the outputs are provided and used to update the

current estimation of the states.

2.1. Nonlinear Kalman Filter Variants

Based on this general principle of state estimation, there are several variants of Kal-

man filters. The pure Kalman filter is suited for linear systems. However, real-world sys-

tems often include nonlinearities. In order to be able to also apply the state estimation to

these systems, nonlinear Kalman filters were developed, for example, the extended Kal-

man filter (EKF) and the unscented Kalman filter (UKF). Since these two variants are well

known and widely used, only a short overview is given at this point for the sake of brevity.

A detailed description of the algorithms of both variants can be found in Appendix A.

The EKF linearizes the model using Taylor series expansions, while the UKF does not

use approximations for performing state estimation on nonlinear systems. Instead, it se-

lects specified points, the sigma points, around the current states and propagates them

through the nonlinear function of the system to estimate the next state. As a result, the

UKF has a higher accuracy compared to the EKF. However, its implementation requires

higher computational effort.

As an extension to the EKF and the UKF in terms of numerical robustness, there are

also the extended Kalman filter with square-rooting (EKF-SR) and the unscented Kalman

filter with square-rooting (UKF-SR). These two variants use a decomposition of the state

covariance matrix and employ its positive definiteness, entailing higher numerical stabil-

ity of the square-rooting (SR) variants compared to the original filters.

The filter equations of the EKF and the EKF-SR are summarized in Sections A.1 and

A.2, respectively. The UKF and its modifications to the UKF-SR are described in Sections

A.3 and A.4.

Time Update
(Predict)

Measurement
Update

(Correct)

𝒙 0
+, 0

+ 𝒙 𝑘
−, 𝑘

−

𝒙 𝑘
+, 𝑘

+ 𝒚𝑘
𝑚𝒖𝑘

Figure 1. Scheme of state estimation using Kalman filtering.

2.1. Nonlinear Kalman Filter Variants

Based on this general principle of state estimation, there are several variants of Kalman
filters. The pure Kalman filter is suited for linear systems. However, real-world systems
often include nonlinearities. In order to be able to also apply the state estimation to these
systems, nonlinear Kalman filters were developed, for example, the extended Kalman filter
(EKF) and the unscented Kalman filter (UKF). Since these two variants are well known and
widely used, only a short overview is given at this point for the sake of brevity. A detailed
description of the algorithms of both variants can be found in Appendix A.

The EKF linearizes the model using Taylor series expansions, while the UKF does
not use approximations for performing state estimation on nonlinear systems. Instead, it
selects specified points, the sigma points, around the current states and propagates them
through the nonlinear function of the system to estimate the next state. As a result, the UKF
has a higher accuracy compared to the EKF. However, its implementation requires higher
computational effort.

As an extension to the EKF and the UKF in terms of numerical robustness, there are
also the extended Kalman filter with square-rooting (EKF-SR) and the unscented Kalman
filter with square-rooting (UKF-SR). These two variants use a decomposition of the state
covariance matrix and employ its positive definiteness, entailing higher numerical stability
of the square-rooting (SR) variants compared to the original filters.

The filter equations of the EKF and the EKF-SR are summarized in Section A.1 and
Section A.2, respectively. The UKF and its modifications to the UKF-SR are described in
Sections A.3 and A.4.

2.2. Incorporation of State Constraints

As an augmentation to the methods of state estimation with Kalman filtering described
above, it is also possible to consider additional constraints on the states. This may be
essential in some practical applications where physical limitations on the states are imposed.
These include, for example, the need for positive concentrations in a chemical system.
Taking this additional information about the constraints into account, the estimation of the
states becomes more reliable. An approach to realize this with the UKF is suggested in [21].
Therein, the inequality constraints define a feasible range for the states. If sigma points
for the UKF are outside this range, they are projected to the edge of the admissible region.
This is applied directly after the computation of the sigma points in Equation (A10) and
again after their propagation through the nonlinear function in Equation (A11). The same
method is employed for the estimated states if they do not respect the constraints. Using the
described approach of projecting the sigma points, the constraints also affect the covariance.
In contrast to simply clipping the estimated states, this makes the estimation more precise.

Computers 2022, 11, 165 5 of 23

This state constraint method thus provides additional support for the estimation so that
physically infeasible state values do not occur at all. In [20] an overview of methods for
handling constraints in state estimation is provided.

3. Implementation of the Embedded Kalman Filter Library

The embedded Kalman filter library comprises implementations for the EKF-SR and
the UKF-SR. It is based on an internally developed library; see [22,23]. In contrast, all parts
of the embedded Kalman filter library were newly implemented in C without dependencies
on external libraries.

This section presents details about the implementation of the embedded Kalman filter
library. Its general structure is shown, in addition to its usage with user-defined prediction
models. Additionally, a summary of the employed numerical routines is given and features
of the implementation regarding coding guidelines are described.

3.1. Structure of the Embedded Kalman Filter Library

The library is generally composed of generic filter parts and model-specific parts.
The filter parts contain the routines of the respective filter variant including all necessary
numerical routines, but do not hold any prediction model-specific information. These are
grouped in a separate part of the library. Therefore, the generic filter parts can be applied
without any problem-specific adaptations. Figure 2 shows the general structure of the
library, with the generic filter parts on the left side and the model-specific parts on the right.

Computers 2022, 11, x FOR PEER REVIEW 5 of 23

2.2. Incorporation of State Constraints

As an augmentation to the methods of state estimation with Kalman filtering de-

scribed above, it is also possible to consider additional constraints on the states. This may

be essential in some practical applications where physical limitations on the states are im-

posed. These include, for example, the need for positive concentrations in a chemical sys-

tem. Taking this additional information about the constraints into account, the estimation

of the states becomes more reliable. An approach to realize this with the UKF is suggested

in [21]. Therein, the inequality constraints define a feasible range for the states. If sigma

points for the UKF are outside this range, they are projected to the edge of the admissible

region. This is applied directly after the computation of the sigma points in Equation (A10)

and again after their propagation through the nonlinear function in Equation (A11). The

same method is employed for the estimated states if they do not respect the constraints.

Using the described approach of projecting the sigma points, the constraints also affect

the covariance. In contrast to simply clipping the estimated states, this makes the estima-

tion more precise. This state constraint method thus provides additional support for the

estimation so that physically infeasible state values do not occur at all. In [20] an overview

of methods for handling constraints in state estimation is provided.

3. Implementation of the Embedded Kalman Filter Library

The embedded Kalman filter library comprises implementations for the EKF-SR and

the UKF-SR. It is based on an internally developed library; see [22,23]. In contrast, all parts

of the embedded Kalman filter library were newly implemented in C without dependen-

cies on external libraries.

This section presents details about the implementation of the embedded Kalman fil-

ter library. Its general structure is shown, in addition to its usage with user-defined pre-

diction models. Additionally, a summary of the employed numerical routines is given and

features of the implementation regarding coding guidelines are described.

3.1. Structure of the Embedded Kalman Filter Library

The library is generally composed of generic filter parts and model-specific parts. The

filter parts contain the routines of the respective filter variant including all necessary nu-

merical routines, but do not hold any prediction model-specific information. These are

grouped in a separate part of the library. Therefore, the generic filter parts can be applied

without any problem-specific adaptations. Figure 2 shows the general structure of the li-

brary, with the generic filter parts on the left side and the model-specific parts on the right.

Figure 2. Diagram of the general structure of the embedded Kalman filter library.

Filter algorithms

 xkf_sr_predict_correct

xkf_sr_initialize

Filter subroutines

Model algorithms

get_model_inputs
get_states
get_der_states
get_outputs
get_state_constraints

set_model_states
set_model_der_states
set_model_outputs
set_filter_params
set_covariances
set_x_pre
do_model_initialization

e.g. ukf_sr_sigma_points
 ukf_sr_predict
 ukf_sr_update
 ukf_sr_estimate

Basic numerical routines

e.g. cholesky
 exp_matrix
 lq_fact
 equilibrate
 cholesky_update
 cholesky_downdate

Figure 2. Diagram of the general structure of the embedded Kalman filter library.

The filter algorithms (see the middle part of Figure 2) are divided into an initializa-
tion part and a main part. The corresponding functions are named xkf_sr_initialize and
xkf_sr_predict_correct, where the prefix depends on the respective filter variant, i.e., ekf_sr
or ukf_sr. In the function xkf_sr_predict_correct the actual evaluation of the Kalman filter
routines takes place. Here, the computations for the time and measurement update, the
predict and correct steps, are carried out, see Figure 1. The specific operations depend on
the filter variant used and are listed in the appendix in Tables A1 and A5, respectively
in the modifications (A22)–(A25). Thus, the function xkf_sr_predict_correct constitutes the
cyclic flow of the filter algorithms and is executed in each time step of the estimation. It
utilizes the inputs uk of the prediction model as well as the measured model outputs ym

k .
The output of the function represents the estimated states x̂+k to be computed by the filter
algorithm at sample time tk, cf. Figure 3 for illustration.

Computers 2022, 11, 165 6 of 23

Computers 2022, 11, x FOR PEER REVIEW 6 of 23

The filter algorithms (see the middle part of Figure 2) are divided into an initializa-

tion part and a main part. The corresponding functions are named xkf_sr_initialize and

xkf_sr_predict_correct, where the prefix depends on the respective filter variant, i.e., ekf_sr

or ukf_sr. In the function xkf_sr_predict_correct the actual evaluation of the Kalman filter

routines takes place. Here, the computations for the time and measurement update, the

predict and correct steps, are carried out, see Figure 1. The specific operations depend on

the filter variant used and are listed in the appendix in Tables A1 and A5, respectively in

the modifications (A22)–(A25). Thus, the function xkf_sr_predict_correct constitutes the cy-

clic flow of the filter algorithms and is executed in each time step of the estimation. It

utilizes the inputs 𝒖𝑘 of the prediction model as well as the measured model outputs 𝒚𝑘
𝑚.

The output of the function represents the estimated states 𝒙 𝑘
+ to be computed by the filter

algorithm at sample time 𝑡𝑘, cf. Figure 3 for illustration.

Figure 3. Interfaces of the function xkf_sr_predict_correct to the surrounding software environment.

To include the embedded Kalman filter library in a given software environment for

a known prediction model, the user needs

• to provide prediction model-specific functions using the given interfaces of the li-

brary (right part of Figure 2), see Section 3.2 for more details on these functions,

• to call the function xkf_sr_initialize once in the initialization phase,

• to call the function xkf_sr_predict_correct in each sample time step of the environment,

and

• to provide variables for the inputs 𝒖𝑘 , 𝒚𝑘
𝑚 and the outputs 𝒙 𝑘

+ of the function

xkf_sr_predict_correct.

The filter algorithm functions have the following C prototypes:

• void xkf_sr_initialize (void)

• void xkf_sr_predict_correct (real_t * ptr_u, real_t * ptr_y_meas, real_t * ptr_out)

In the routine xkf_sr_initialize, all global variables are initialized and the model-spe-

cific initialization functions are called, for example for setting the filter parameters,

providing an initial guess for the states and for initializing the model variables.

The function parameters of xkf_sr_predict_correct must be set in the software environ-

ment before the first call. They represent pointers to variables for the inputs 𝒖𝑘 (ptr_u)

and measured outputs 𝒚𝑘
𝑚 (ptr_y_meas) of the prediction model and the estimated states

𝒙 𝑘
+ (ptr_out). In the function, several model-specific functions are called in a generic way,

for example to perform the model evaluations from (1) and (3). Further, filter subroutines

and basic numerical routines are employed, see left part of Figure 2. More details on the

latter functions are given in Section 3.3. The filter subroutines carry out the respective

filter computations, see Appendix A, e.g., ukf_sr_sigma_points performs (A10).

The data type named real_t is defined in the library and used for single or double

precision floating-point variables. By doing this, the whole library is available in both a

float 32-bit and a float 64-bit configuration, where the switch is done by simply activating

a macro in the code. Thus, depending on the application, the data type and the desired

accuracy can be selected. For example, offline simulations with the purpose of validating

the estimation may need a higher accuracy, whereas the use on embedded systems re-

quires single precision computing. The model code needs to support the use of this data

type real_t or to provide another data type that is suitable for the chosen precision, i.e., 32-

bit or 64-bit.

3.2. Incorporation of User-Defined Prediction Models

𝒚𝑘
𝑚

xkf_sr_predict_correct 𝒙 𝑘

+

𝒖𝑘

Figure 3. Interfaces of the function xkf_sr_predict_correct to the surrounding software environment.

To include the embedded Kalman filter library in a given software environment for a
known prediction model, the user needs

• to provide prediction model-specific functions using the given interfaces of the library
(right part of Figure 2), see Section 3.2 for more details on these functions,

• to call the function xkf_sr_initialize once in the initialization phase,
• to call the function xkf_sr_predict_correct in each sample time step of the environment,

and
• to provide variables for the inputs uk, ym

k and the outputs x̂+k of the function xkf_
sr_predict_correct.

The filter algorithm functions have the following C prototypes:

• void xkf_sr_initialize (void)
• void xkf_sr_predict_correct (real_t * ptr_u, real_t * ptr_y_meas, real_t * ptr_out)

In the routine xkf_sr_initialize, all global variables are initialized and the model-specific
initialization functions are called, for example for setting the filter parameters, providing
an initial guess for the states and for initializing the model variables.

The function parameters of xkf_sr_predict_correct must be set in the software environ-
ment before the first call. They represent pointers to variables for the inputs uk (ptr_u)
and measured outputs ym

k (ptr_y_meas) of the prediction model and the estimated states
x̂+k (ptr_out). In the function, several model-specific functions are called in a generic way,
for example to perform the model evaluations from (1) and (3). Further, filter subroutines
and basic numerical routines are employed, see left part of Figure 2. More details on the
latter functions are given in Section 3.3. The filter subroutines carry out the respective filter
computations, see Appendix A, e.g., ukf_sr_sigma_points performs (A10).

The data type named real_t is defined in the library and used for single or double
precision floating-point variables. By doing this, the whole library is available in both a float
32-bit and a float 64-bit configuration, where the switch is done by simply activating a macro
in the code. Thus, depending on the application, the data type and the desired accuracy can
be selected. For example, offline simulations with the purpose of validating the estimation
may need a higher accuracy, whereas the use on embedded systems requires single precision
computing. The model code needs to support the use of this data type real_t or to provide
another data type that is suitable for the chosen precision, i.e., 32-bit or 64-bit.

3.2. Incorporation of User-Defined Prediction Models

It is presupposed that the prediction model whose states are to be estimated is available
as C code, including the model evaluations from (1) and (3). For example, this can be
accomplished by exporting code from a simulation environment in which the model is
designed. The obtained model code then needs to be interfaced to the model-specific part
of the embedded Kalman filter library, see the right side of Figure 2 for the list of functions.
For each prediction model, all the problem-specific information (functions, global data and
macros) can be included in a single separate C file. Some functions are only needed by a
certain filter variant, others by all of them.

The memory concept of the library consists of a set of global variables to be used in
the generic filter functions xkf_sr_initialize or xkf_sr_predict_correct and global variables in
the model-specific part. The size of the generic global arrays depends on the dimensions of
the problem considered, namely the number of states nx and the number of outputs ny of
the underlying model. These sizes must be defined in the model-specific part via macros
NX and NY. A working memory for temporary data is also provided as a global variable
and used for internal calculations in the filter subroutines and basic numerical routines. A

Computers 2022, 11, 165 7 of 23

further important part of the memory concept is global variables for the model inputs uk,
the states xk, the state derivatives

.
xk and the ouputs yk to be declared in the model-specific

code and to be used in the model functions. In the following description of the model
functions it is assumed that these global variables exist.

In the initialization phase of the state estimation, i.e., in the function xkf_sr_initialize,
the following functions being part of the model algorithms are called first:

• void set_model_states(real_t * states[NX])
• void set_model_der_states(real_t * der_states[NX]) (only needed for the EKF-SR)
• void set_model_outputs(real_t * outputs[NY])

These three functions are used to establish a link between the generic filter functions
and the global model variables for states, state derivatives and outputs used in the model
code. The idea is not to use the global model variables by their names but access them in
the generic filter functions via vectors of pointers (states, der_states, outputs). The length of
these vectors is defined by using the macros NX and NY. The vectors are provided by the
function xkf_sr_initialize and their components have to be assigned in the listed functions to
the memory location of the respective global model variables.

Next, the following functions are called in the initialization phase:

• void set_x_pre(real_t xpre[NX])
• void set_filter_params(real_t *alpha, real_t *beta, real_t *kappa) (only needed for the UKF-

SR)
• void set_covariances(real_t CfPpre[NX*NX], real_t CfQ[NX*NX], real_t CfR[NY*NY])
• void do_model_initialization(void)

In the first function, values for the initial guess of the states x̂0 have to be provided. The
second function is only needed for the filter variant UKF-SR and specifies the parameters
α, β and κ from Table A2. In the third function, an initial estimate for the state covariance
matrix P0 and the process and measurement noise covariance matrices Q and R is set.
Throughout the C program, matrices are stored column-wise via arrays and are manipu-
lated accordingly. These three functions apply global variables as function parameters that
are supplied by generic filter functions. The last function of the model-specific part that is
called in xkf_sr_initialize is do_model_initialization. Here, the initialization of the underlying
prediction model is performed, for example by executing a corresponding function from
the user provided model code.

In the cyclically processed function xkf_sr_predict_correct, several functions from the
model algorithms are also called. Concerning the model inputs uk, that arrive in each
sample time step tk, that is:

• void get_model_inputs(real_t *ptr_u)

This function is used to pass the inputs ptr_u provided by the software environment
to the respective inputs of the model code.

In the further processing of xkf_sr_predict_correct, the following functions of the model
algorithms are called:

• void get_der_states(void) (only needed for the EKF-SR)
• void get_outputs(void)
• void get_states(void)
• void get_state_constraints (int state_constr_ind[NX_CONSTR], real_t constrVecLow[NX_

CONSTR], real_t constrVecUp[NX_CONSTR]) (optional)

By executing the first three functions the model evaluations from (1) and (3) are carried
out. These are the evaluation of the state derivatives, outputs, or the updating of the states
by performing the integration between two sample points.

The last function get_state_constraints denotes an optional function. If state constraints
are present, they can be specified here. The function will only be activated if the user has
enabled a macro and the state constraints are then incorporated in the filter algorithms as
described in Section 2.2. It is possible to provide constraints for only some of the total nx

Computers 2022, 11, 165 8 of 23

states. If a state has constraints, both lower and upper constraints must be indicated. The
user needs to define a macro (NX_CONSTR) for the number of states that have constraints
and to give the indices of these states via the array state_constr_ind. The respective con-
straints are then specified in constrVecLow and constrVecUp which are provided with the
appropriate length of constrained states defined by the macro.

In addition to all these mentioned model algorithms, the function xkf_sr_predict_correct
executes the predict and correct steps of the respective filter variants, which do not contain
any model-specific components. The functions utilized in this regard usually receive arrays
as parameter arguments.

At the end of the function xkf_sr_predict_correct, the variables for the states and the
system covariance matrix are set to the respective current estimates and, thus, provide
the starting point for the next iteration step. The estimated states x̂+k , representing the
outputs of the main function xkf_sr_predict_correct, are passed to the surrounding software
environment where the estimator is employed and where they can be further processed.

3.3. Basic Routines Employed in the Library

Most of the basic numerical routines that are used inside the generic filter functions (see
left part of Figure 2) are based on LAPACK [17]. This is a well-known and established library
for computations in numerical linear algebra, written in the programming language Fortran.
The routines employed here include efficient vector-scalar, matrix-vector and matrix-matrix
operations. Furthermore, computational routines for general matrices are used, such as an
LQ factorization of a real matrix. For the embedded Kalman filter library, the mentioned
numerical routines have not been used directly from LAPACK. Instead, they constituted
the basis for a complete reimplementation in the programming language C. This approach
ensures that no external libraries are used and that all routines are available in C.

The newly written routines incorporate details of an efficient implementation from
LAPACK, for example the specification of the leading dimension of an array. This pa-
rameter enables operating with submatrices of a larger matrix. In the embedded Kalman
filter library, a two-dimensional matrix is stored column-wise in a one-dimensional array.
By means of the leading dimension, submatrices in larger arrays can be addressed and
routines can be called with submatrices. To identify the submatrix in the whole array, four
parameters are required. These are the numbers of the rows and columns of the submatrix,
a pointer that defines the first element of the submatrix, and the leading dimension to find
the starting point of the elements of the next column of the submatrix in the whole array. In
the case of column-wise storage, the leading dimension equals the number of rows of the
full matrix.

There are basic matrix operations from linear algebra that are used as essential elements
in this embedded Kalman filter library. Some are applied in every filter variant, such as
the Cholesky factorization, and some are employed only in one variant, such as the matrix
exponential within the EKF-SR. The following main linear algebra routines are used in the
library (their names in the code are given in brackets, see also Figure 2):

• Cholesky factorization (cholesky): A = GGT , where A ∈ Rn×n is a symmetric and
positive definite matrix and G ∈ Rn×n is a lower triangular matrix with positive
diagonal entries. G is called the Cholesky factor. The algorithm is described in [24]. It
is possible to organize the calculations in such a way that the matrix A is overwritten.
Thus, no additional memory is required. The algorithm returns the lower triangle,
with the remaining matrix completed with zeros. This factorization is used to obtain
the matrix square-roots of the covariance matrices, see e.g., Section A.3.

• Matrix exponential (exp_matrix): eAt = ∑∞
k=0

(At)k

k! = I + At + (At)2

2 + (At)3

6 + . . ., with
a real matrix A ∈ Rn×n, the identiy matrix I and a scalar t which is the sampling time
here. The computation is performed by means of a Taylor series expansion. The imple-
mentation, which is employed in Equation (A3), is based on the algorithm used in the
Modelica Standard Library (“Modelica.Math.Matrices.exp”) [25]. It includes balancing
of the matrix A, i.e., a transformation to get a matrix with a smaller condition number.

Computers 2022, 11, 165 9 of 23

Due to the particular design of the algorithm, where the calculations are carried out
by using multiples of two, no roundoff errors are generated. More information about
the matrix exponential can also be found in [24].

• LQ factorization (lq_fact):
• A = LQ, where A ∈ Rm×n is a real matrix, L ∈ Rm×n is a lower triangular matrix and

Q ∈ Rn×n is an orthogonal matrix. The implementation is based on the corresponding
LAPACK routine sgelqf [26]. The algorithm returns the matrix L on the lower triangle
of A, while the matrix Q is only implicitly available. Several other methods for basic
matrix operations are included in this routine. It is used in Equations (A22) and (A23).

• Equilibration (equilibrate): This algorithm can be employed directly preceding the LQ
factorization to equilibrate the corresponding matrix that is to be decomposed. The
use of this routine is optional. It applies a different methodology than the balancing
mentioned above. Its goal is to reduce the condition number of a matrix by computing
row and column scaling. Thereby, roundoff errors can be minimized. The algorithm is
based on the LAPACK routine sgeequ [26].

• Low-rank Cholesky updating and downdating (cholesky_update, cholesky_downdate): This
algorithm performs the updating of the Cholesky factor used e.g., in (A22). Starting
from the Cholesky decomposition A = GGT, the Cholesky factor G∗ is calculated where
A∗ = G∗G∗T. Here, the relation A∗ = A± vvT is considered with a corresponding vector
v. For details about Cholesky updating and downdating, see [24,27].

3.4. Consideration of Coding Guidelines

During the implementation of the introduced embedded Kalman filter library, an
emphasis was placed on certain coding guidelines. One standard that is widely supported
in the automotive field is the MISRA C coding standard [15]. Its consideration is often
demanded when dealing with embedded systems programming and safety-critical appli-
cations. The embedded Kalman filter library is implemented in C code since the use of
this programming language is widespread. Moreover, it offers several advantages. For
example, C code provides easy hardware access, it supports the writing of compact code, it
is specified by international standards and C compiled code performs very efficiently [16].
However, it is further described that in certain cases the C language may also demonstrate
undefined behavior, which includes implementation-defined or unspecified behavior. Nev-
ertheless, such unpredictable or even erroneous behavior should be eliminated as far as
possible for use in safety-critical real-time systems. The MISRA C guidelines help to pre-
clude this by allowing only a subset of the C language to be used. In principle, these rules
contribute to increasing the readability, maintainability and reliability of the C code [16].

One of the MISRA C rules indicates, for example, that in any operation the operands
on the left and on the right side need to be of the same basic data type classification. In
particular, the assignment to a narrower data type is not allowed. Since the embedded
Kalman filter library provides both 64-bit as well as a 32-bit variant, as explained in
Section 3.1, problems may occur with the use of constant values or built-in functions
concerning this rule. To overcome this issue, macros are provided to define whether the
float or double variant, i.e., the 32-bit or the 64-bit configuration, is applied. Table 1 shows
as an example a code segment from the library. Therein, the constant value one is defined
via the macro ONE as 1.0 or 1.0f depending on the respective configuration. The same
applies to the built-in function for the absolute value of a variable via the macro ukf_sr_fabs.
The definition of the data type real_t is also shown.

Computers 2022, 11, 165 10 of 23

Table 1. Code segment to define the data type and macros depending on the chosen precision.

#define single_precision
#ifdef double_precision

typedef double real_t;
#define ukf_sr_fabs fabs
#define ONE 1.0

#elif defined single_precision
typedef float real_t;
#define ukf_sr_fabs fabsf
#define ONE 1.0f

#endif

Another MISRA C rule states that input variables received from an external source
need to be checked. This is because there could be a possibility that such inputs show
invalid values due to errors. If these are later used without prior checking, unintended
effects may be encountered, for example an infinite loop may be created by an invalid
loop controller or an array index bounds error may occur due to invalid memory accesses.
Furthermore, the use of dynamic memory allocation should be avoided according to the
MISRA C guidelines. However, several subfunctions of the filter algorithms performing
internal calculations demand additional memory space for temporary data. This is handled
by introducing a pre-allocated floating-point type working memory, which is passed to the
internal functions as a pointer and is also propagated to further subroutines. The length
of the working array is appropriate and depends merely on the dimensions of the state
and output variables of the underlying model. Thus, the allocation of dynamic memory is
not necessary.

4. Application on Embedded Systems

After describing the structure and implementation details of the embedded Kalman
filter library, its application in two different scenarios is outlined in this section.

The first investigates the use of the library for state estimation in the context of a
vehicle vertical dynamics control workflow with the goal of validating a new interface
standard. In this setup, the EKF-SR was successfully integrated in a small-scale production
series ECU and employed in a real vehicle test drive under demanding real-time conditions,
and has thus demonstrated its applicability. The complete use case, also containing a control
system, is described in [28] and the tool chain and the results are briefly summarized in the
following subsection.

The second scenario addresses the validation of the embedded Kalman filter library
estimates on a rapid prototyping system. It focuses on the tool chain and the comparison
of the results with reference data. The employed vehicle prediction model, simulations of
the UKF-SR estimations and its application on the mentioned system are described.

Differences between the two scenarios relate to the underlying estimation problem,
i.e., to the vehicle prediction models applied, the Kalman filter variant used, and the system
on which the state estimation library is deployed. The first of these application examples is
covered only briefly, since related results have already been published in another context
in [28], whereas the second example is shown and discussed in more detail.

4.1. Application of the EKF-SR in a Small-Scale Production Series ECU

The introduced embedded Kalman filter library has previously been used in an ap-
plication on a small-scale production series ECU [28]. The project involved estimating the
states for a controller for semi-active dampers in a vertical dynamics control problem in
the automotive domain. In the process, the goal was to integrate a model-based controller
together with a nonlinear state estimator onto an ECU using the newly developed eFMI
standard (Functional Mock-up Interface for embedded systems) [29] and to test it under
real-world conditions in a vehicle. Generally, the eFMI standard enables workflows begin-

Computers 2022, 11, 165 11 of 23

ning with physical models of systems or controllers, and ending with efficient production
code for embedded systems through different specialized software tools.

The used prediction model is implemented in the modeling language Modelica [30]
and represents a nonlinear quarter vehicle model incorporating a two-mass system [28].
Utilizing code export by means of the eFMI standard, C code is generated from the Modelica
prediction model, which is interfaced to the Kalman filter model functions. The filter type
EKF-SR is chosen because of its lower execution time compared to the UKF-SR. Together
with the controller, the state estimator is included in the software framework of the ECU
by means of TargetLink [31] and compiled for the ECU. Simulations are carried out, in
addition to real-world demonstrations with a test vehicle equipped with sensors and the
ECU. The Kalman filter runs in real time on the embedded system in the vehicle with a
sample time of 1 ms. It is deduced that the filter is generally able to track the dynamics of
the states. The results of the test drive are shown and evaluated in [28], and details of the
entire setup and the tool chain can also be found therein.

4.2. Application of the UKF-SR on a Rapid Prototyping System

The second application example deals with vehicle state estimation, focusing on the
tire–road friction coefficient. Hence, a proper prediction model needs to be used for the
given problem. It represents a model designed and parameterized for DLR’s ROboMObil
(ROMO) [32]. This is a robotic full x-by-wire research vehicle equipped with four wheel
robots. By adjusting the steering angles of the four wheels and the drive torques of the four
in-wheel motors, the ROMO’s horizontal movement can be controlled. Multiple sensors
are integrated into the ROMO to measure many different quantities. The vehicle model
is implemented in Modelica, like the prediction model in the first scenario. It is adopted
from [33], where it is described in detail.

4.2.1. Vehicle Prediction Model

The prediction model constitutes a nonlinear double-track model whose nonlinearities
are primarily due to the tire model. The state vector x of the vehicle system is composed of
four quantities that are estimated by means of the embedded Kalman filter library in the
following. It is given by:

x =
[

β v µmax
.
ψ
]

(4)

This vector includes the side-slip angle β of the vehicle, its over ground velocity
v, the maximum tire-road friction coefficient µmax and the vehicle’s yaw rate

.
ψ. The

friction coefficient is a particularly interesting variable for the estimation because its direct
measurement is hardly possible and its estimation is rather challenging. In particular, with
regard to automated driving, the friction coefficient is an essential quantity, as it describes
the road condition and, therefore, strongly influences the steering and braking dynamics of
the vehicle.

The vehicle prediction model expects 11 input components:

u =
[
δfl δfr δrl δrr ωfl ωfr ωrl ωrr ax,in ay,in

.
ψin

]
. (5)

This includes the respective steering angles δi and speeds ωi of the four wheels,
where the subscript i indicates the front or rear and the right or left wheels. Finally, the
longitudinal and lateral acceleration ax,in and ay,in, respectively, as well as the yaw rate

.
ψin

represent the input quantities for the Kalman filter.
The values of ax,in and ay,in are unknown inputs in the tire force equations, whose

outputs are in turn the same acceleration values. Thus, this structural dependency re-
sults in an algebraic loop, see [33] (Appendix B). It is possible to obtain its solution by
considering a nonlinear system of equations which is computationally expensive to solve.
In addition to the limited computational capacity on embedded systems, this aspect is
also problematic from a real-time capability view due to its iterative solution procedure.

Computers 2022, 11, 165 12 of 23

However, the aforementioned algebraic loop can be eliminated by including ax,in and
ay,in as input variables for the prediction model, since these vehicle accelerations can be
measured accurately and cost-effectively. Moreover, the yaw rate

.
ψin, whose accurate

measurement is also possible, is taken as an additional input variable enabling open-loop
evaluation of the prediction model. This is particularly advantageous in scenarios where
the feedback through the measurement update (closed-loop) cannot be performed, e.g.,
due to measurement interruptions.

Regarding the outputs y of the prediction model, the following 10 quantities are
selected and are available as measurands:

y =
[

βout vout Fy f Fyr Fx f Fxr Mz f ax,out ay,out
.
ψout

]
(6)

This vector includes the virtual side-slip angle βout and the virtual speed vout, in
addition to the virtual longitudinal (Fx f , Fxr) and lateral (Fy f , Fyr) forces of the front and
rear axles, respectively. Details about these virtual measurands, which are computed by
means of other measured variables, and their derivations are described in [33]. Another
output of the model is the tire self-aligning torque on the front axle Mz f , and, furthermore,

the longitudinal and lateral accelerations ax,out and ay,out, in addition to
.
ψout. All of these

variables are used as measured outputs in the measurement update step of the Kalman
filter, see also the vector ym

k in Figure 1 and Equations (A5) and (A20).

4.2.2. Integration of the Model Code in the Embedded Kalman Filter Library

In several steps the outlined Modelica prediction model of ROMO‘s vehicle dynamics
is processed to suitable C code, which is finally interfaced to the model-specific functions
of the embedded Kalman filter library. The process is based on the eFMI workflow [29] as
described in [28] for the application example in Section 4.1. It includes the following steps:

• the export of the Modelica model to eFMI GALEC code [29] by a Dymola prototype
implementation,

• manual modifications of the generated GALEC code to provide all necessary features
and function interfaces for state estimation, and

• the generation of eFMI production C code based on the modified GALEC code by an
CATIA ESP prototype implementation. CATIA ESP is a newly developed production
code generator not yet released by Dassault Systèmes.

In the first of the listed steps the prediction model equations are automatically dis-
cretized with the Explicit Euler method to ensure real-time capable code. The manual
modifications in the second step are related to the eFMI function DoStep and its interface.
The GALEC code is modified to enable several calls of DoStep within one sample period for
different additional purposes such as repeating the integration step with different values of
the states and evaluating the state derivatives and outputs for given states. These features
have not yet been included in the eFMI standard proposal [29]. The generated C code of
DoStep is interfaced to the library functions get_states, get_der_states and get_outputs, see
Figure 2. More details on the applied process can be found in [28]. For the state estimation,
the filter type UKF-SR is chosen in this application because of its higher numerical accuracy
compared to the EKF-SR and a significant nonlinearity caused by the tire model.

The filter’s process and measurement noise covariance matrices Q and R, and the
filter parameters α, β and κ from Table A2 are determined via an optimization approach
described in [33]. They are specified using a reference trajectory obtained by means of a
high-precision validated multiphysics Modelica model of the ROMO, see [33]. In contrast
to the prediction model, this model represents a very detailed full vehicle model combined
with an environmental model. It is utilized to generate reference data for the state estimator.
The covariance matrices Q and R are determined to minimize the quadratic tracking error,
i.e., the quadratic error between the estimated states and the states of the reference trajectory.
The relevant system and measurement noise covariances are used as tuning parameters in

Computers 2022, 11, 165 13 of 23

this minimization problem. The optimization is carried out by applying the optimization
software MOPS [34]. In the same way, the filter parameters α, β and κ are determined.
For the initial guess of the state vector, which is to be set in the initialization phase of the
estimation, the initial states of the reference trajectory are used.

For the estimation of the state µmax, the maximum tire friction coefficient, state con-
straints are introduced according to [33]. They arise from the physical limitations. The
upper limit for the friction coefficient is given by the constant 1. The lower limit, which is
represented here by the currently utilized friction value, can be approximated by consider-
ing Kamm’s friction circle [33]. This limit is calculated using the longitudinal and lateral
accelerations ax,in and ay,in and the gravitational acceleration g:

1
g

√
ax,in

2 + ay,in
2. (7)

These constraints are implemented in the function get_state_constraints, see Section 3.2.

4.2.3. Simulation in Simulink

As the software environment surrounding the embedded Kalman filter library, a
MATLAB S-function framework was chosen [35], since it can be integrated on real-time
systems. Thus, simulations for validating the estimation results can be carried out in
Simulink [36] by building a Simulink model that contains an S-function block. The structure
of an S-function enables an easy integration of the filter algorithms, namely ukf_sr_initialize
and ukf_sr_predict_correct, in the appropriate sections of the S-function. The interfaces of
the S-function are adapted to provide inputs and outputs of the data type single, i.e., float,
since the state estimation is also calculated with single precision. For the filter, a sample
time of 20 ms is chosen, constituting a good balance between effort and precision of the
state estimation.

The measured data used for ym
k , see Figure 1, is synthetically generated by means of

the high-fidelity Modelica model of the ROMO. Similarly, the input vector u (see (5)) and
the reference data used for validating the results of the UKF-SR state estimation are also
obtained by simulations of this vehicle model.

Figure 4 shows the results of the simulation of the Simulink model, which contains
the UKF-SR algorithm and the prediction model code with single precision data type as an
S-function and the derived inputs.

The estimated states of the model (see (4)) are depicted, as well as the reference
trajectory for each state. The comparison over the entire simulation period of 60 s shows
good agreement, especially for the side-slip angle β, the over ground velocity v and the
yaw rate

.
ψ. The maximum friction coefficient µmax can also follow its reference trajectory

well. Corresponding to the introduced state constraints, the friction coefficient does not
exceed the upper limit of 1. However, slight deviations of the estimation occur, e.g., at 15 s,
44 s and 55 s. An explanation for this relates to the excitation of the system as follows.

The prescribed driving path of the reference vehicle to generate the input data u
represents a crossing eight; see [33]. Different lateral and longitudinal excitations occur in
the process, due to braking, accelerating and steering. The overall excitation results from
the consideration of Kamm’s friction circle and is given by the following formula [33]:

1
g · µmax

√
ax,in

2 + ay,in
2. (8)

It utilizes the lateral and longitudinal accelerations of the vehicle ay,in and ax,in, respec-
tively, and the gravitational acceleration g. Figure 5 shows the time dependent plot of this
excitation and of the friction coefficient from Figure 4 for convenient comparison.

Computers 2022, 11, 165 14 of 23

Computers 2022, 11, x FOR PEER REVIEW 14 of 23

Figure 4 shows the results of the simulation of the Simulink model, which contains

the UKF-SR algorithm and the prediction model code with single precision data type as

an S-function and the derived inputs.

Figure 4. Results of the UKF-SR state estimation in Simulink, depicting the estimated states of (4)
as well as reference trajectories from the simulation of the high-fidelity Modelica vehicle model.

The estimated states of the model (see (4)) are depicted, as well as the reference tra-

jectory for each state. The comparison over the entire simulation period of 60 s shows

good agreement, especially for the side-slip angle 𝛽, the over ground velocity 𝑣 and the

yaw rate 𝜓̇. The maximum friction coefficient 𝜇max can also follow its reference trajectory

well. Corresponding to the introduced state constraints, the friction coefficient does not

exceed the upper limit of 1. However, slight deviations of the estimation occur, e.g., at 15

s, 44 s and 55 s. An explanation for this relates to the excitation of the system as follows.

The prescribed driving path of the reference vehicle to generate the input data 𝒖

represents a crossing eight; see [33]. Different lateral and longitudinal excitations occur in

the process, due to braking, accelerating and steering. The overall excitation results from

the consideration of Kamm’s friction circle and is given by the following formula [33]∶

1

𝑔 ⋅ 𝜇max
√𝑎𝑥,𝑖𝑛

2 + 𝑎𝑦,𝑖𝑛
2. (8)

It utilizes the lateral and longitudinal accelerations of the vehicle 𝑎𝑦,in and 𝑎𝑥,in ,

respectively, and the gravitational acceleration 𝑔. Figure 5 shows the time dependent plot

of this excitation and of the friction coefficient from Figure 4 for convenient comparison.

Figure 4. Results of the UKF-SR state estimation in Simulink, depicting the estimated states of (4) as
well as reference trajectories from the simulation of the high-fidelity Modelica vehicle model.

Computers 2022, 11, x FOR PEER REVIEW 15 of 23

Figure 5. Estimated and reference friction coefficient from Figure 4, compared to the excitation of

the system from (8).

The parts of the simulation range, where the friction coefficient shows the outliers,

correspond to phases with a low input excitation. In [33] it is demonstrated that, in these

passages the observability of the dynamical system decreases since the excitation is below

a necessary threshold. For the friction coefficient, this leads to episodes where the estima-

tion drifts away from the reference.

4.2.4. Execution on the Rapid Prototyping Platform

After this successful validation of the UKF-SR filter in a simulation, the algorithm is

further employed on a dSPACE MicroAutoBox II (MABX) [37]. This represents a real-time

system enabling fast function prototyping. The applied Simulink model contains, again,

the UKF-SR algorithm with the prediction model code in 32-bit precision as an S-function.

The inputs 𝒖 and 𝒚𝑘
𝑚 for the state estimation, which were already used for the simula-

tion in Figure 4, are included as time dependent data points in the model. The Simulink

model is processed by means of Real-Time Interface [38]. This software provides an inter-

face between the MABX and Simulink and generates code for the model. After the suc-

cessful completion of the build procedure for the Simulink model comprising the filter,

the generated files are loaded into ControlDesk [39], which runs the application on the

real-time system and performs the measurement and logging of the signals.

The UKF-SR estimator was successfully run in real-time. The time needed to execute

one task on the MABX resides at a maximum of 1.3 ms which is significantly lower than

the sample time of the filter, which is 20 ms. The evaluation of the recorded signals on

the platform shows a high agreement with the corresponding results of the offline Sim-

ulink simulation in Figure 4. The maximum absolute differences between these two esti-

mations are in the range of 10−3 to 10−6, depending on the considered state. They are

thus in the expected range when comparing two single precision signals. In total, the good

results of the state estimation from the offline Simulink simulation are reproduced on the

embedded platform in real-time.

The application employed here represents a desktop setup with the MABX and a

laptop. However, the state estimator could also be used in the equivalent configuration in

a MABX installed in a vehicle. In this scenario, the inputs for the estimation would be

provided directly by the measurements of the real sensors and the results of the estimation

could be processed in real driving operation.

Figure 5. Estimated and reference friction coefficient from Figure 4, compared to the excitation of the
system from (8).

Computers 2022, 11, 165 15 of 23

The parts of the simulation range, where the friction coefficient shows the outliers,
correspond to phases with a low input excitation. In [33] it is demonstrated that, in these
passages the observability of the dynamical system decreases since the excitation is below a
necessary threshold. For the friction coefficient, this leads to episodes where the estimation
drifts away from the reference.

4.2.4. Execution on the Rapid Prototyping Platform

After this successful validation of the UKF-SR filter in a simulation, the algorithm
is further employed on a dSPACE MicroAutoBox II (MABX) [37]. This represents a real-
time system enabling fast function prototyping. The applied Simulink model contains,
again, the UKF-SR algorithm with the prediction model code in 32-bit precision as an
S-function. The inputs u and ym

k for the state estimation, which were already used for
the simulation in Figure 4, are included as time dependent data points in the model. The
Simulink model is processed by means of Real-Time Interface [38]. This software provides
an interface between the MABX and Simulink and generates code for the model. After the
successful completion of the build procedure for the Simulink model comprising the filter,
the generated files are loaded into ControlDesk [39], which runs the application on the
real-time system and performs the measurement and logging of the signals.

The UKF-SR estimator was successfully run in real-time. The time needed to execute
one task on the MABX resides at a maximum of 1.3 ms which is significantly lower than
the sample time of the filter, which is 20 ms. The evaluation of the recorded signals on the
platform shows a high agreement with the corresponding results of the offline Simulink
simulation in Figure 4. The maximum absolute differences between these two estimations
are in the range of 10−3 to 10−6, depending on the considered state. They are thus in the
expected range when comparing two single precision signals. In total, the good results of
the state estimation from the offline Simulink simulation are reproduced on the embedded
platform in real-time.

The application employed here represents a desktop setup with the MABX and a
laptop. However, the state estimator could also be used in the equivalent configuration
in a MABX installed in a vehicle. In this scenario, the inputs for the estimation would be
provided directly by the measurements of the real sensors and the results of the estimation
could be processed in real driving operation.

5. Conclusions

In this paper, a new embedded Kalman filter library is introduced. It was implemented
in C with the goal of performing state estimation on embedded systems, for example, in
the context of designing controllers for vehicle system dynamics. The library contains
different variants of nonlinear Kalman filters: the EKF-SR and the UKF-SR. The UKF-SR
provides the advantage of higher accuracy compared to the EKF-SR, whereas the EKF-
SR allows for a shorter execution time. The square-rooting (SR) variants increase the
numerical stability and provide a greater robustness compared to the base filters. During
implementation, an emphasis was placed on ensuring that the code complies widely with
the requirements for safety-critical applications in the automotive sector. The commonly
used programming language C is suitable for this purpose and was, therefore, chosen
for the new library. It also enables an easy integration into tool chains for embedded
systems. The MISRA C coding guidelines were also considered during the implementation.
Numerical computations required for the state estimation algorithms are partially based on
existing and well-established functions such as LAPACK routines, as they have already
proven their efficiency. All of these are newly implemented in C, yielding self-contained
software without the need for external libraries.

For execution on embedded systems, the real-time capability of the software is an-
other important factor, in addition to running in a 32-bit single precision configuration.
The library proved its real-time capability in two application examples for vehicle state
estimation. The two Kalman filter variants, the EKF-SR and the UKF-SR, were tested in two

Computers 2022, 11, 165 16 of 23

different scenarios. The vehicle models used in the respective cases comprise a nonlinear
quarter vehicle model and a nonlinear double-track model. In both cases, the code for the
model representations was generated through a modified eFMI export and then interfaced
to the model-specific functions of the library. The filter algorithms were integrated in two
different embedded systems. Code generation for the respective platforms was carried out
by means of TargetLink and Real-Time Interface. The underlying C code of the Kalman
filter library was incorporated into the executed production code as custom code.

The two scenarios were aimed at different purposes. First, it was shown that the
state estimator was able to provide reasonably good results under challenging real-time
conditions in a small-scale production series ECU within a vehicle in real-world driving
tests. In the second application, special emphasis was placed on the accuracy of the filter,
which was able to follow well the synthetically generated reference data on a rapid proto-
typing platform. In both examples, the embedded Kalman filter library was successfully
implemented on an embedded system using appropriate tool chains and it achieved good
results under real-time constraints.

The embedded Kalman filter library will be used in future internal research projects.
For common research projects with interested readers, the authors may be contacted.

Author Contributions: Conceptualization, C.S., A.P. and J.B.; methodology, C.S., A.P. and J.R.; library
software, C.S.; application software and data, C.S., A.P. and J.R.; validation, C.S., A.P. and J.R.; formal
analysis, C.S. and A.P.; investigation, C.S., A.P. and J.R.; visualization, C.S.; writing—original draft
preparation, C.S.; writing—review and editing, C.S., A.P., J.R. and J.B.; supervision, J.B. and A.P. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was mainly funded by DLR internal projects. Parts of the work were funded
by the German Federal Ministry of Education and Research (grant number 01|S17023B) within the
European ITEA3 project EMPHYSIS (Embedded systems with physical models in the production
code software) under the project number 15016.

Data Availability Statement: Not applicable.

Acknowledgments: The authors’ thanks go to Dassault Systèmes for providing prototypical tools for
eFMI export and to Daniel Baumgartner for his support with the real-time tests.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Kalman Filter Algorithms

In this appendix, the basic theory of four nonlinear Kalman filter based state estimation
algorithms is described: the EKF, EKF-SR, UKF and UKF-SR. Detailed information about
this subject can be found in [1,18,19]. The following overview is based on [20], particularly
with regard to formulas and notations.

Appendix A.1. Extended Kalman Filter (EKF)

The EKF is able to handle models including nonlinearities by linearizing the model
around the last estimation point. Therefore, a Taylor series evaluation is carried out, which
can be implemented numerically by means of a forward difference quotient. The steps of
the EKF algorithm are shown in Table A1 as a pseudo code, see [20].

Computers 2022, 11, 165 17 of 23

Table A1. Pseudo code of the EKF algorithm.

Initialization:
x̂+0 = E(x0)

P+
0 = E

((
x0 − x̂+0

)(
x0 − x̂+0

)T
) (A1)

For k = 1, 2, . . .
Predict:

x̂−k = fk|k−1

(
x̂+k−1, uk−1

)
(A2)

P−k = Fk−1P+
k−1FT

k−1 + Q with Fk−1 = e(Jk−1·Ts) = e
(∂f

∂x |x̂+k−1
·Ts) (A3)

Correct:
Kk = P−k HT

k ·
(
HkP−k HT

k + R
)−1 with Hk = ∂h

∂x

∣∣∣
x̂−k

(A4)

x̂+k = x̂−k + Kk ·
(
ym

k − h
(
x̂−k
))

(A5)
P+

k = (I−Kk ·Hk) · P−k (A6)

The operator E(·) in the initialization phase determines the expectation value of the
specified variables [20]. Ts represents the sample time and Kk the Kalman gain. The
covariance matrices Q and R are defined by the user and they can be employed to adjust
the filter to the respective application. The matrix Q denotes the process noise covariance. It
evaluates the trust in the a priori estimation. The measurement noise covariance R reflects
the confidence in the measurements ym

k . The matrix Fk−1 is the state transition matrix of
the function f with respect to x at the point x̂+k−1. It is computed by means of a matrix
exponential function evaluating the system state Jacobian Jk−1. The latter can be calculated
numerically, if it is not available in analytical form. This can be carried out using a forward
difference quotient as follows:

For i = 1, 2, . . . , nx :
(Jk−1)i =

f(x̂k−1+∆·ei ,uk−1)−f(x̂k−1,uk−1)
∆

with ∆ ∼=
√

ε

(A7)

In this formula, nx denotes the number of states of the system and ei is the i-th
unit vector. The radicand ε represents the respective machine precision of the employed
computer system. The output Jacobian matrix Hk of the function h with respect to x at the
point x̂−k is computed analogous to the Jacobian Jk−1 with a forward difference quotient as
in (A7). Performing the steps in Table A1, the new estimated states vector x̂+k is computed
using the results from the last sample time step and the current output measurement vector
ym

k . In Table A1, the model evaluation of the underlying system equations is necessary
for computing the Jacobians Jk−1 and Hk, h, and fk|k−1, whereas the latter denotes the
integration from the last sample point to the new one; see Equation (3).

Appendix A.2. Extended Kalman Filter with Square-Rooting (EKF-SR)

The approach of the EKF implementation described in Section A.1 may possibly lead to
numerical difficulties, as briefly outlined in [1]. In particular, the use on embedded systems
with limited memory and computing resources is sensitive in this respect. For example,
the computation of the matrix P+

k as a difference of two matrices in (A6) may result in
a matrix that is not positive definite in case of insufficient accuracies. This constitutes
a problem because the matrix P+

k is a covariance matrix and is therefore required to be
positive definite. These numerical difficulties can be handled by using the square-root form
of a matrix. This can be implemented by a Cholesky factorization:

P+
k = LkLT

k (A8)

Thereby, a symmetric and positive definite matrix P+
k is decomposed into a product of

a lower triangular matrix Lk and its transpose. Instead of the original matrix, the decom-
positions are used in the algorithm. This approach provides a higher numerical stability

Computers 2022, 11, 165 18 of 23

and the positive definiteness of the covariance matrix is easier to maintain. Furthermore, as
shown in [20], the square-root of a matrix has a condition number that is the square-root
of the condition number of the original matrix, which helps to improve the numerical
accuracy of the algorithm.

Appendix A.3. Unscented Kalman Filter (UKF)

Another observer design that can handle state estimation with nonlinearities in the
model is the unscented Kalman filter (UKF). The name is derived from the unscented trans-
formation of disturbed state vectors. It represents a way of obtaining the statistics, i.e., the
mean and covariance, of a random variable that is subject to a nonlinear transformation [40].
In comparison to the EKF, the nonlinear approximation is at least twice as accurate, and
therefore the UKF is better suited for models with strong nonlinearities [40]. Furthermore,
it is not necessary to calculate the state and output Jacobian matrices of the nonlinear
prediction model in the UKF. The basic idea of this filter variant is briefly described below,
based on [19,20,40], which can also be referred to for further details.

The use of the unscented transformation is carried out because of the assessment
that a Gaussian distribution is easier to approximate than another arbitrary nonlinear
transformation [20]. As in the EKF, a Gaussian random variable is used to display the
state distribution. The new aspect in the UKF is its representation by a minimum setup of
properly selected sample points. These are the so-called sigma points. They are selected
around the current estimation point and are chosen in a heuristic way. The sigma points
are propagated through the nonlinear function of the underlying prediction model, with no
approximation performed [19]. In this way, the estimated mean and covariance is obtained
with an accuracy of the third order of a Taylor series expansion for Gaussian inputs. For
non-Gaussian distributions the achieved accuracy of the approximation is of the second
order [19]. This is the reason for the beforementioned higher approximation accuracy of
the UKF in comparison to the EKF, where the linearization approach leads to an accuracy
of the first order.

An important component within the UKF algorithm is the evaluation of the sigma
points. Their selection is carried out by means of a static scaling parameter and the
covariance matrix P+, which was calculated in the a posteriori step, see Figure 1. A total of
2nx + 1 sigma vectors is obtained. The resulting vectors are used as disturbed state inputs
for 2nx + 1 integrations of the nonlinear system, which are performed from the last sample
point tk−1 to the new one tk. Some parameters are necessary for the calculation of the
sigma points and their corresponding weightings. They must be set at the beginning of the
algorithm and can be tuned for the respective application. A summary of these parameters
is shown in Table A2, see also [20].

Table A2. Parameters of the UKF.

Parameter Description

α Spread of the sigma points around the current mean x̂
β Characteristic of the stochastic distribution
κ Scaling kurtosis of the sigma points

For the utilized approach of the unscented transformation a matrix X ∈ Rnx×(2nx+1) is
created. It is composed of the 2nx + 1 sigma vectors representing the columns of the matrix.
These sigma vectors are calculated using the current mean x̂ and the covariance matrix P+.
The formulas for the calculation of the vectors is shown in Table A3. It is related to [40].

Computers 2022, 11, 165 19 of 23

Table A3. Sigma vectors with scaling parameter γ.

γ = α ·
√

nx + κ
X1 = x̂

Xi = x̂ +
(

γ ·
√

P+
)

i−1
, i = 2, . . . , nx + 1

Xi = x̂−
(

γ ·
√

P+
)

i−1−nx
, i = nx + 2, . . . , 2nx + 1

The expression
√

P+ in these equations determines the matrix square-root of the
covariance matrix. Table A3 also specifies the scaling parameter γ, which depends only on
the parameters of Table A2 and the dimension of the system states. The term

(
γ ·
√

P+
)

i
denotes the ith column of the corresponding matrix.

The resulting sigma points are assigned with weights in the UKF algorithm. These
scalar weightings are summarized in Table A4, see also [20]. They depend on the parameters
in Table A2.

Table A4. Set of weights in the UKF.

Weight Description

λ = α2 · (nx + κ)− nx Scaling parameter
a = α2 · (nx + κ) Scaling parameter

wm
0 = λ

a Weight of unmodified mean prediction
wc

0 = λ
a + 1− α2 + β Weight of unmodified output mean prediction

wm
i = wc

i =
1
2a , i = 1, . . . , 2nx Weight of sigma points of states and outputs

With these prerequisites, the steps of the UKF algorithm can now be outlined. The
general structure of the UKF resembles the corresponding EKF algorithm setup in Table A1.
Its scheme is again composed of a predict and a correct step after an initialization, like in
Figure 1. The algorithm of the UKF is given as pseudo code in Table A5 and is based on [20].

Table A5. Pseudo code of the UKF algorithm.

Initialization:
x̂+0 = E(x0)

P+
0 = E

((
x0 − x̂+0

)(
x0 − x̂+0

)T
) (A9)

For k = 1, 2, . . .
Predict:

Xk−1 =
[
x̂+k−1, X̂+

k−1 + γ ·
√

P+
k−1, X̂+

k−1 − γ ·
√

P+
k−1

]
(A10)

Xk|k−1 = fk|k−1(Xk−1, uk−1) (A11)

x̂−k = ∑2·nx
i=0 wm

i ·
(

Xk|k−1

)
i+1

(A12)

P−k = ∑2·nx
i=0 wc

i ·
[(

Xk|k−1

)
i+1
− x̂−k

][(
Xk|k−1

)
i+1
− x̂−k

]T
+ Q (A13)

X′k =
[
x̂−k , X̂−k + γ ·

√
P−k , X̂−k − γ ·

√
P−k
]

(A14)

Yk = h
(
X′k
)

(A15)
ŷ−k = ∑2·nx

i=0 wm
i · (Yk)i+1 (A16)

Correct:
Pyk

= ∑2·nx
i=0 wc

i ·
[
(Yk)i+1 − ŷ−k

][
(Yk)i+1 − ŷ−k

]T
+ R (A17)

Pxkyk
= ∑2·nx

i=0 wc
i ·
[(

Xk|k−1

)
i+1
− x̂−k

][
(Yk)i+1 − ŷ−k

]T (A18)

Kk = Pxkyk
P−1

yk
(A19)

x̂+k = x̂−k + Kk ·
(
ym

k − ŷ−k
)

(A20)
P+

k = P−k −Kk · Pyk
·KT

k (A21)

In the above notations, there are some expressions of a function with a matrix instead of
a vector as an argument, for example h

(
X′k
)

in (A15). This term corresponds to evaluating

Computers 2022, 11, 165 20 of 23

each column of the matrix separately and returning this as a result, again in a matrix
representation. It is defined X̂+

k−1 :=
[
x̂+k−1, x̂+k−1, . . . , x̂+k−1

]
∈ Rnx×nx in (A10) and X̂−k :=[

x̂−k , x̂−k , . . . , x̂−k
]
∈ Rnx×nx in (A14). The matrix square-roots of the covariance matrices

are calculated by means of Cholesky factorizations. The time and measurement update
equations comprise more calculations in the UKF, compared to the EKF, including the
evaluation of the sigma points. The concatenated matrix Xk−1 provides the sigma vectors
from Table A3. The following step in the pseudo code in (A11) represents the integration
performed 2nx + 1 times between the last sample point tk−1 and the new one tk. For this
purpose, for example, an Euler method can be applied and the sigma points serve as
disturbed state inputs for the integration. The set of scalars as determined in Table A4, is
employed in the calculations of x̂−k , ŷ−k and P−k in the predict step, where weighted sums
are used. The matrices Q and R define again, as in the EKF, the respective covariances
for process and measurement noises. By tuning them, the trust in the measurements can
be stated.

Appendix A.4. Unscented Kalman Filter with Square-Rooting (UKF-SR)

As it is the case with the EKF, a square-rooting approach also applies to the UKF,
which is accordingly called UKF-SR. The principle algorithm equations are maintained
compared to the UKF, and also the parameters, sigma points and weights as described in
Tables A2–A4 remain the same. A new aspect of this filter variant is the exploitation of the
structure of the covariances. As shown in Table A5, in the UKF the full covariance P+

k is
recursively updated in each step, although the square-root of this matrix is an essential part

of the algorithm [19]. As such, only the Cholesky factors
√

P+
k−1 and

√
P−k , respectively,

are used to determine the sigma points, and the entire covariance matrix is not required
in these calculations. Another step where the use of Cholesky factors is valuable is the
evaluation of the Kalman gain matrix Kk. In the UKF, this is performed in (A19) by solving
a linear system of equations Kk = Pxkyk

P−1
yk

. With the means of Cholesky factors, this
step can be performed more efficiently. Moreover, since the covariance matrix is uniquely
determined by its Cholesky factors, it is not necessary to perform its explicit computation
at each step.

As in the UKF, in the UKF-SR algorithm a Cholesky factorization is also carried out
at the beginning to calculate the square-root of the state covariance matrix. Since this
matrix is symmetric and positive definite, a Cholesky decomposition is always feasible.
The factorization is performed into a lower and upper triangular matrix; see (A8). In the
following steps, only the lower triangular matrix is considered. In contrast to the UKF, with
the UKF-SR only this Cholesky decomposition is propagated directly and updated in the
following iterations of the algorithm. Therefore, rank one updates or downdates of the
Cholesky factor matrix are deployed. By using these, modifications are applied directly
to the Cholesky factor and there is no need to perform a new matrix decomposition. The
calculation of the matrix P−k in (A13) in the predict step of the UKF in Table A5 is now
replaced by the following two operations, see [20]:

CP−k = LQ
([√

wc
1 ·
((

Xk|k−1

)
i
− x̂−k

)
i=2:2·nx+1

,
√

Q
])

CP−k := cholupdate
(

CP−k ,
(

Xk|k−1

)
1
− x̂−k , wc

0

) (A22)

The expression CP−k denotes the Cholesky factor of the covariance matrix P−k . In the
first step of (A22) a LQ factorization is carried out. The operand is a composed matrix
including the weighted propagated sigma vectors and the square-root of the process noise
covariance matrix Q. The LQ factorization partitions the resulting matrix into a lower
triangular matrix with positive diagonal elements and an orthogonal matrix. Only the first
is computed directly and returned by the function LQ. The LQ factorization replaces an
equivalent QR decomposition. It is used to achieve consistency with other operations where

Computers 2022, 11, 165 21 of 23

the lower triangular part of a matrix is incorporated [20]. In the next step of (A22), a rank
one update of the Cholesky factor is performed. It is assumed P = CPCPT. The notation
cholupdate(CP, v,±1) calculates a lower triangular matrix CP∗ = CP± vvT where the
positive definiteness of the matrix P∗ = CP∗CP∗T is guaranteed [20]. More details about
rank updates for Cholesky decompositions can be found in [24,27]. The second step in
(A22) is required because the weight wc

0 could be negative. These two operations in (A22)
perform the time update of the Cholesky factor; see also [19].

The same approach is utilized in the calculation of the Cholesky factor of the observa-
tion error covariance. The calculation of the matrix Pyk

in (A17) in the correct step of the
UKF in Table A5 is thus replaced by the following two steps:

CPyk
= LQ

([√
wc

1 ·
(
(Yk)i − ŷ−k

)
i=2:2·nx+1,

√
R
])

CPyk
:= cholupdate

(
CPyk

, (Yk)1 − ŷ−k , wc
0
) (A23)

These operations are similar to the corresponding steps in (A22). The evaluation of
the Kalman gain matrix Kk in (A19) is performed by the equation:

Kk = Pxkyk
·
(

CPyk
TCPyk

)−1
(A24)

This can be solved efficiently using backward substitutions. The last adaptation of the
UKF algorithm concerns the last item of Table A5 where the measurement update of the
state covariance P+

k is calculated in (A21). It is replaced by these operations:

U = Kk · CPyk
CP+

k = cholupdate
(
CP−k , U,−1

) (A25)

To the former computed Cholesky factor CP−k , several consecutive Cholesky rank one
downdates are applied, see [19]. They are executed using the ny columns of the matrix U,
where ny denotes the dimension of the outputs of the system equations.

With these modifications of the UKF algorithm, the UKF-SR algorithm is adequately
described. The refactorization of the covariance matrices in each step can be omitted because
the decomposed Cholesky factors are propagated directly. Hence, the state covariance
matrices acquire the ensured property of positive semi-definiteness [19]. This advantage
promotes the improvement in numerical properties of the UKF-SR algorithm and provides
greater robustness to numerical instabilities in comparison to the UKF [20].

References
1. Haykin, S. Kalman Filtering and Neural Networks; John Wiley & Sons, Inc.: New York, NY, USA, 2001.
2. Karamta, M.R.; Jamnani, J.G. Implementation of extended kalman filter based dynamic state estimation on SMIB system

incorporating UPFC dynamics. Energy Procedia 2016, 100, 315–324. [CrossRef]
3. Li, J.-M.; Chen, C.W.; Cheng, T.-H. Estimation and Tracking of a Moving Target by Unmanned Aerial Vehicles. In Proceedings of

the American Control Conference (ACC), Philadelphia, PA, USA, 10–12 July 2019.
4. Wutke, M.; Heinrich, F.; Das, P.P.; Lange, A.; Gentz, M.; Traulsen, I.; Warns, F.K.; Schmitt, A.O.; Gültas, M. Detecting animal

contacts—A deep learning-based pig detection and tracking approach for the quantification of social contacts. Sensors 2021, 21, 7512.
[CrossRef] [PubMed]

5. Al Khatib, E.I.; Jaradat, M.A.; Abdel-Hafez, M.; Roigari, M. Multiple Sensor Fusion for Mobile Robot Localization and Navigation
Using the Extended Kalman Filter. In Proceedings of the 10th International Symposium on Mechatronics and Its Applications
(ISMA), Sharjah, United Arab Emirates, 8–10 December 2015.

6. Ullah, I.; Su, X.; Zhang, X.; Choi, D. Simultaneous localization and mapping based on Kalman filter and extended Kalman filter.
Wirel. Commun. Mob. Comput. 2020, 2020, 2138643. [CrossRef]

7. Fossen, S.; Fossen, T.I. Five-state extended Kalman filter for estimation of Speed over Ground (SOG), Course over Ground (COG)
and Course Rate of Unmanned Surface Vehicles (USVs): Experimental results. Sensors 2021, 21, 7910. [CrossRef] [PubMed]

8. Vergori, E.; Mocera, F.; Somà, A. Battery modelling and simulation using a programmable testing equipment. Computers 2018, 7, 20.
[CrossRef]

9. Colonnier, F.; della Vedova, L.; Orchard, G. ESPEE: Event-based sensor pose estimation using an extended Kalman filter. Sensors
2021, 21, 7840. [CrossRef] [PubMed]

http://doi.org/10.1016/j.egypro.2016.10.184
http://doi.org/10.3390/s21227512
http://www.ncbi.nlm.nih.gov/pubmed/34833588
http://doi.org/10.1155/2020/2138643
http://doi.org/10.3390/s21237910
http://www.ncbi.nlm.nih.gov/pubmed/34883912
http://doi.org/10.3390/computers7020020
http://doi.org/10.3390/s21237840
http://www.ncbi.nlm.nih.gov/pubmed/34883852

Computers 2022, 11, 165 22 of 23

10. Ponte, S.; Ariante, G.; Papa, U.; del Core, G. An embedded platform for positioning and obstacle detection for small unmanned
aerial vehicles. Electronics 2020, 9, 1175. [CrossRef]

11. Fico, V.M.; Arribas, C.P.; Soaje, Á.R.; Prats, M.Á.M.; Utrera, S.R.; Vázquez, A.L.R.; Casquet, L.M.P. Implementing the Unscented
Kalman Filter on an Embedded System: A Lesson Learnt. In Proceedings of the IEEE International Conference on Industrial
Technology (ICIT), Seville, Spain, 17–19 March 2015.

12. EEKF—Embedded Extended Kalman Filter. 2015. Available online: https://github.com/dr-duplo/eekf (accessed on 4 October 2022).
13. Valade, A.; Acco, P.; Grabolosa, P.; Fourniols, J.-Y. A study about Kalman filters applied to embedded sensors. Sensors 2017, 17, 2810.

[CrossRef] [PubMed]
14. Rasmussen, T.B.; Yang, G.; Nielsen, A.H.; Dong, Z.Y. Implementation of a Simplified State Estimator for Wind Turbine Monitoring

on an Embedded System. In Proceedings of the 2017 Federated Conference on Computer Science and Information Systems,
Prague, Czech Republic, 3–6 September 2017; pp. 1167–1175.

15. Motor Industry Software Reliability Association. MISRA-C:2012. 2012. Available online: https://www.misra.org.uk/ (accessed
on 4 October 2022).

16. Bagnara, R.; Bagnara, A.; Hill, P.M. The MISRA C Coding Standard and Its Role in the Development and Analysis of Safety-
and Security-Critical Embedded Software. In Proceedings of the Static Analysis: The 25th International Symposium (SAS 2018),
Freiburg, Germany, 29–31 August 2018.

17. Anderson, E.; Bai, Z.; Bischof, C.; Blackford, L.S.; Demmel, J.; Dongarra, J.; Croz, J.D.; Greenbaum, A.; Hammarling, S.;
McKenney, A.; et al. LAPACK Users’ Guide, 3rd ed.; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1999.

18. Simon, D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches; John Wiley & Sons, Inc.: Cleveland, OH, USA, 2006.
19. van der Merwe, R.; Wan, E.A. The Square-Root Unscented Kalman Filter for State and Parameter-Estimation. In Proceedings of

the IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, UT, USA, 7–11 May 2001.
20. Brembeck, J. Model Based Energy Management and State Estimation for the Robotic Electric Vehicle ROboMObil. Ph.D. Thesis,

Technische Universität München, Munich, Germany, 2018.
21. Kandepu, R.; Imsland, L.; Foss, B.A. Constrained State Estimation Using the Unscented Kalman Filter. In Proceedings of the 16th

Mediterranean Conference on Control and Automation, Ajaccio, France, 25–27 June 2008; pp. 1453–1458.
22. Brembeck, J. A physical model-based observer framework for nonlinear constrained state estimation applied to battery state

estimation. Sensors 2019, 19, 4402. [CrossRef] [PubMed]
23. Brembeck, J. Nonlinear constrained moving horizon estimation applied to vehicle position estimation. Sensors 2019, 19, 2276.

[CrossRef] [PubMed]
24. Golub, G.H.; Van Loan, C.F. Matrix Computations, 4th ed.; The Johns Hopkins University Press: Baltimore, MA, USA, 2013.
25. Modelica Association. Modelica Standard Library v4.0.0. 2020. Available online: https://github.com/modelica/ModelicaStanda

rdLibrary/releases/tag/v4.0.0 (accessed on 21 September 2022).
26. Netlib. LAPACK Documentation. 2022. Available online: http://www.netlib.org/lapack/explore-html/ (accessed on 4 October 2022).
27. Seeger, M. Low Rank Updates for the Cholesky Decomposition; Department of EECS, University of California at Berkeley: Berkeley,

CA, USA, 2008.
28. Ultsch, J.; Ruggaber, J.; Pfeiffer, A.; Schreppel, C.; Tobolář, J.; Brembeck, J.; Baumgartner, D. Advanced controller development

based on eFMI with applications to automotive vertical dynamics control. Actuators 2021, 10, 301. [CrossRef]
29. Lenord, O.; Otter, M.; Bürger, C.; Hussmann, M.; le Bihan, P.; Niere, J.; Pfeiffer, A.; Reicherdt, R.; Werther, K. eFMI: An Open

Standard for Physical Models in Embedded Software. In Proceedings of the 14th International Modelica Conference, Linköping,
Sweden, 20–24 September 2021.

30. Modelica Association. Modelica Language Specification 3.5. 2021. Available online: https://modelica.org/documents/MLS.pdf
(accessed on 23 September 2022).

31. dSPACE GmbH. TargetLink. 2022. Available online: https://www.dspace.com/en/pub/home/products/sw/pcgs/targetlink.c
fm (accessed on 6 September 2022).

32. Brembeck, J.; Ho, L.M.; Schaub, A.; Satzger, C.; Tobolar, J.; Bals, J.; Hirzinger, G. ROMO—The Robotic Electric Vehicle. In
Proceedings of the 22nd IAVSD International Symposium on Dynamics of Vehicle on Roads and Tracks, Manchester, UK,
11–14 August 2011.

33. Ruggaber, J.; Brembeck, J. A novel Kalman filter design and analysis method considering observability and dominance properties
of measurands applied to vehicle state estimation. Sensors 2021, 21, 4750. [CrossRef] [PubMed]

34. Joos, H.-D.; Bals, J.; Looye, G.; Schnepper, K.; Varga, A. A Multi-Objective Optimisation-Based Software Environment for Control
Systems Design. In Proceedings of the IEEE International Conference on Control Applications and International Symposium on
Computer Aided Control Systems Design, Glasgow, UK, 18–20 September 2002.

35. The MathWorks, Inc. Write Level-2 MATLAB S-Functions. 2022. Available online: https://de.mathworks.com/help/simulink/s
fg/writing-level-2-matlab-s-functions.html (accessed on 4 October 2022).

36. The MathWorks, Inc. Simulink. 2022. Available online: https://www.mathworks.com/products/simulink.html?s_tid=hp_ff_p_
simulink (accessed on 6 September 2022).

37. dSPACE GmbH. MicroAutoBox II. 2022. Available online: https://www.dspace.com/en/inc/home/products/hw/micautob/mi
croautobox2.cfm (accessed on 4 October 2022).

http://doi.org/10.3390/electronics9071175
https://github.com/dr-duplo/eekf
http://doi.org/10.3390/s17122810
http://www.ncbi.nlm.nih.gov/pubmed/29206187
https://www.misra.org.uk/
http://doi.org/10.3390/s19204402
http://www.ncbi.nlm.nih.gov/pubmed/31614570
http://doi.org/10.3390/s19102276
http://www.ncbi.nlm.nih.gov/pubmed/31100983
https://github.com/modelica/ModelicaStandardLibrary/releases/tag/v4.0.0
https://github.com/modelica/ModelicaStandardLibrary/releases/tag/v4.0.0
http://www.netlib.org/lapack/explore-html/
http://doi.org/10.3390/act10110301
https://modelica.org/documents/MLS.pdf
https://www.dspace.com/en/pub/home/products/sw/pcgs/targetlink.cfm
https://www.dspace.com/en/pub/home/products/sw/pcgs/targetlink.cfm
http://doi.org/10.3390/s21144750
http://www.ncbi.nlm.nih.gov/pubmed/34300490
https://de.mathworks.com/help/simulink/sfg/writing-level-2-matlab-s-functions.html
https://de.mathworks.com/help/simulink/sfg/writing-level-2-matlab-s-functions.html
https://www.mathworks.com/products/simulink.html?s_tid=hp_ff_p_simulink
https://www.mathworks.com/products/simulink.html?s_tid=hp_ff_p_simulink
https://www.dspace.com/en/inc/home/products/hw/micautob/microautobox2.cfm
https://www.dspace.com/en/inc/home/products/hw/micautob/microautobox2.cfm

Computers 2022, 11, 165 23 of 23

38. dSPACE GmbH. Real-Time Interface (RTI). 2022. Available online: https://www.dspace.com/en/inc/home/products/sw/imp
sw/real-time-interface.cfm (accessed on 6 September 2022).

39. dSPACE GmbH. ControlDesk. 2022. Available online: https://www.dspace.com/en/pub/home/products/sw/experimentand
visualization/controldesk.cfm (accessed on 6 September 2022).

40. Wan, E.A.; van der Merwe, R. The Unscented Kalman Filter for Nonlinear Estimation. In Proceedings of the IEEE Symposium on
Adaptive Systems for Signal Processing, Communications, and Control, Lake Louise, AB, Canada, 4 October 2000.

https://www.dspace.com/en/inc/home/products/sw/impsw/real-time-interface.cfm
https://www.dspace.com/en/inc/home/products/sw/impsw/real-time-interface.cfm
https://www.dspace.com/en/pub/home/products/sw/experimentandvisualization/controldesk.cfm
https://www.dspace.com/en/pub/home/products/sw/experimentandvisualization/controldesk.cfm

	Introduction
	Application Fields of Kalman Filtering
	Embedded Implementation of Kalman Filter Algorithms
	Contribution of This Work

	General Theory on Kalman Filters
	Nonlinear Kalman Filter Variants
	Incorporation of State Constraints

	Implementation of the Embedded Kalman Filter Library
	Structure of the Embedded Kalman Filter Library
	Incorporation of User-Defined Prediction Models
	Basic Routines Employed in the Library
	Consideration of Coding Guidelines

	Application on Embedded Systems
	Application of the EKF-SR in a Small-Scale Production Series ECU
	Application of the UKF-SR on a Rapid Prototyping System
	Vehicle Prediction Model
	Integration of the Model Code in the Embedded Kalman Filter Library
	Simulation in Simulink
	Execution on the Rapid Prototyping Platform

	Conclusions
	Appendix A
	Extended Kalman Filter (EKF)
	Extended Kalman Filter with Square-Rooting (EKF-SR)
	Unscented Kalman Filter (UKF)
	Unscented Kalman Filter with Square-Rooting (UKF-SR)

	References

