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Abstract: Approximate computing is a promising approach to the design of area–power-performance-
efficient circuits for computation error-tolerant applications such as image processing and machine
learning. Approximate functional units, such as approximate adders and approximate multipliers,
have been actively studied for the past decade, and some of these approximate functional units can
dynamically change the degree of computation accuracy. The greater their computational inaccuracy,
the faster they are. This study examined the high-level synthesis of approximate circuits that take
advantage of such accuracy-controllable functional units. Scheduling methods based on integer
linear programming (ILP) and list scheduling were proposed. Under resource and time constraints,
the proposed method tries to minimize the computation error of the output value by selectively
multi-cycling operations. Operations that have a large impact on the output accuracy are multi-cycled
to perform exact computing, whereas operations with a small impact on the accuracy are assigned
a single cycle for approximate computing. In the experiments, we explored the trade-off between
performance, hardware cost, and accuracy to demonstrate the effectiveness of this work.

Keywords: high-level synthesis; approximate computing; scheduling; approximate multiplication

1. Introduction

Computational approximation is a promising paradigm that exploits hardware ca-
pabilities or mitigates computational demands. Approximate computing is an attractive
technique to trade-off high-performance and low-power circuits for applications such as
image processing and machine learning, where the applications have an inherent tolerance
to errors. This tolerance enables the relaxation of the computation requirement regarding
performance or energy because exact computation is not always needed [1,2]. Design tech-
niques for approximate arithmetic circuits have been developed at different design levels,
from the transistor to the architecture level [2–16]. A variety of techniques for approximate
computing have been proposed at the circuit level in the literature, including arithmetic
circuits such as approximate adders [6–8] and multipliers [9–13]. Approximate computing
circuits are generally designed by combining normal (i.e., accurate) functional units with
such approximate functional units, based on the requirements for the circuits.

Computational quality (i.e., accuracy) allowed in an application varies in terms of
degree of error tolerance, and the degree of approximation for functional units at the circuit
level is also different. Approximate functional units have become desirable recently because
they enable configuration of the control of accuracy at runtime [8,12,13]. In order to design a
circuit that satisfies the requirements in terms of resources and time, in addition to accuracy,
it is indispensable to assess how the errors incurred by the approximation circuits propagate
via exact and approximate computations, and thus finally affect the output. It is important
to discuss this topic, especially for high-level synthesis (HLS) of approximate circuits.
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Although a large number of studies on HLS of approximate computing circuits have been
published [14–16], none efficiently utilize such accuracy-controllable functional units.

In this paper, we present a scheduling method that is aware of exact and approximate
computations. We mathematically derive a scheduling problem for approximate computing
circuits with variable-cycle multipliers based on integer linear programming (ILP), where
each arithmetic operation is determined in either exact or approximate mode, and with
the degree of approximation (i.e., the number of cycles) during scheduling satisfying
resource and time constraints such that the error at the output is minimized. In addition,
we extend the problem to take into account operation chaining, which enables the flexible
use of approximate computations and further mitigates the output errors. Furthermore,
we propose a list-scheduling algorithm for the proposed scheduling problem to obtain an
approximate solution in polynomial time.

The main contributions of this paper are twofold:

• Scheduling for approximate computing circuits with accuracy-controllable approxi-
mate multipliers is mathematically derived using an ILP formulation. Our proposed
scheduling takes account of exact and approximate computations, and determines that
each arithmetic operation is scheduled as either exact or approximate under resource
and time constraints such that the error at the output is minimized.

• A list-scheduling algorithm is proposed to solve the proposed scheduling problem in
polynomial time, which can solve faster than the ILP method.

The remainder of this paper is organized as follows. Section 2 introduces related work.
In Section 3, we derive our proposed variable-cycle scheduling problem based on ILP. In
addition, we take into account chaining in the scheduling problem. Section 4 proposes
a list-scheduling algorithm to efficiently find a solution in polynomial time. Section 5
evaluates our proposed methods. Finally, Section 6 concludes this paper.

2. Related Work

Approximate computing has been established as a promising technique, and several
surveys have been reported [1–3]. The research on approximate computing has briefly
encompassed approximate arithmetic circuits [3–13], logic synthesis [14–18], and model-
ing [19–23].

According to the review in [3], approximate arithmetic circuits such as approximate
adders and multipliers have been introduced. The authors in [6] focused on low-power
design, and they developed approximate adders for DSPs to simplify the complexity of
a conventional mirror adder cell at the transistor level by adopting approximate comput-
ing. As another approach to energy-efficient DSP applications, a reverse carry propagate
adder (RCPA) was proposed in [7]. In addition to an approximate adder, the work in [9]
developed an approximate multiplier, where the approximate circuits are a bio-inspired
imprecise adder and multiplier. In [11], the authors also developed an approximate adder
and a multiplier. The proposed multiplier uses the proposed approximate adder for the
accumulation of the error signals in the error vectors to reduce the error at the output. Al-
though the mentioned works aimed to purely pursue energy efficiency, high performance,
or area reduction at the sacrifice of accuracy, the required accuracy of an error-tolerant ap-
plication using approximate computing circuits varies significantly at runtime. In previous
research [8,12,13], accuracy-controllable approximate arithmetic circuits were developed.
The authors in [8] raised the issue that the static approximation, which fixes accuracy, may
fail to satisfy the requirements in terms of energy, performance, or area. They sequen-
tially extended their work to propose an accuracy-controllable approximate multiplier [12].
Sano et al. followed these studies to develop a 32-bit accuracy-controllable approximate
multiplier for FPGAs [13]. The work aimed to trade-off an approximate computing circuit
in terms of energy, performance, and area with respect to the accuracy requirement.

The approximate computing circuits are basically designed with the combination of ac-
curate functional units with approximate functional units [3–13], based on the requirements
for the circuits. A number of works have proposed logic synthesis techniques for approxi-
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mate computing. Nepal et al. proposed automated behavioral synthesis of approximate
computing circuits, called ABACUS, which synthesizes an approximate computing circuit
by directly operating at the behavioral descriptions of circuits to automatically generate ap-
proximate variants [14,15]. Based on their work, Schafer proposed a method that does not
use approximate computing circuits but uses exact circuits having lower bandwidths [13].
The author focused on enabling resource-sharing-based design space exploration (DSE) for
FPGAs, and did not aim to determine a trade-off between area and error. At the higher level
of abstraction, an approximate high-level synthesis (AHLS) was proposed to synthesize
a register-transfer-level (RTL) implementation from an accurate high-level C description,
which aimed to optimize energy efficiency with voltage scaling [17]. Unlike the works
in [16,17], Leipnitz and Nazar proposed an FPGA-oriented approximation methodology
that combines with various optimizations, such as precision scaling of operators [14],
bitwidth reduction [16], or variable-to-constant (V2C) substitution [17], or uses a set of
libraries in [18,24]. The issue has also been addressed from the perspectives of resources,
throughput, and real-time operation [25–28]. In [29], Shirane et al. proposed a case study of
high-level synthesis of accuracy-controllable approximate multipliers [12].

Modeling techniques for statistical and analytical perspectives are regarded as signifi-
cant approaches to approximate computing designs in order to estimate the error produced
by approximate circuits [19–23]. Venkatesan et al. proposed a modeling and analysis frame-
work for approximate computing circuits [19]. The drawback of this technique is that it
focuses on post-design analysis, and it cannot be easily applied to optimization. In [20], the
authors used the error rate, which represents the probability that a result is approximated
and different from the exact value, but only addressed the frequency of the error and
ignored the magnitude. Some research proposed error propagation rules to overcome
this drawback [21,22]. In addition to [21], the authors in [23] proposed a set of analytical
models to estimate circuit metrics and a DSE method to derive Pareto-optimal solutions for
approximate designs.

Unfortunately, most of the previously mentioned works have paid little attention to
allocation, scheduling, and binding algorithms, which are the crucial techniques in HLS.
Regarding this perspective, our work is similar to [22,30]. However, none of the previous
studies developed scheduling methods that are aware of accuracy-controllable approximate
arithmetic circuits. In this work, we focus on scheduling for approximate computing circuits
of variable-cycle approximate multipliers. The reason for targeting multipliers is that they
are the most common operation in a variety of applications. Although most research
involves approximate adders, we deliberately neglect them because the area and delay of a
multiplier accounts for a larger portion than those of an adder. Instead, we assume that clock
cycles of our approximate multipliers are variable, for which the delay can be controlled
by configuring the accuracy. For example, it is assumed that the exact multiplication takes
two cycles and the approximate multiplication takes one cycle. The accuracy-controllable
multiplier [12,13] can operate with a long delay if an exact multiplication is needed with a
single multiplier, or with a short delay if an approximation is good enough. The novelty of
our work is the variable cycle of approximate multipliers.

3. ILP-Based Scheduling for Variable-Cycle Approximate Functional Units in
High-Level Synthesis
3.1. A Scheduling Example

In Figure 1, the three data flow graphs (DFGs) show an example of scheduling. In
general, a DFG consists of the nodes and the edges that represent operations and precedence
constraints (i.e., data dependencies between the operations), respectively. Each DFG
consists of two adders and three multipliers. The notation labeled S means a clock cycle;
for instance, S1 is the first clock and S2 is the second clock. In this work, we assume a dual-
mode multiplier based on an accuracy-controllable multiplier, which is presented in [12,13].
One mode is used as a normal multiplier that takes two cycles for exact calculation, and
the other is an approximate multiplier that takes one cycle. Figure 1a shows that the
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two multiplications are approximately calculated for each in one cycle, and the whole
operation is performed in three cycles. Note that each multiplication in this case takes one
cycle, so that the performance is maximized without accounting for accuracy. Therefore,
the case in Figure 1a may have a larger error than the case in Figure 1b, where each
multiplier performs in two cycles. However, Figure 1b shows four cycles are necessary for
all the operations and results in the degradation of performance compared with the case in
Figure 1a. Our proposal in Figure 1c is allowed to flexibly employ each multiplier, which is
selected as being either exact or approximate. This case demonstrates that one multiplier is
approximated, and the others are calculated precisely. The output error should be smaller
than the case in Figure 1a. In addition, the total cycle is shown, as well as that in Figure 1b,
without the performance degradation. Given the DFG and constraints on the resources and
the maximum number of time steps, our proposed scheduling determines each mode of
the multipliers and determines an optimal schedule.
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Figure 1. An example of scheduling for approximate computing circuits with variable-cycle approximate
multipliers. (a) Approximate multiplications. (b) Exact multiplications. (c) Variable-cycle multiplications.

3.2. ILP Formulation

Scheduling for variable-cycle approximate functional units is mathematically derived
as an ILP formulation in this paper. Given a DFG that consists of functional units and data
flow dependencies, scheduling determines the number of cycles for each operation under
time and resource constraints such that the error at the output is minimized. We assume
that the multipliers are accuracy-controllable, and can be selected as being in either exact
or approximate mode. The exact mode yields accurate output, but the approximate mode
outputs an inaccurate result. The approximate mode of a multiplier can vary its own cycles,
and scheduling also determines the number of cycles for each multiplication.

Let muli,k denote a binary decision variable to schedule the i-th multiplication in the
k−th cycle. If muli,k becomes 1, multiplication i is being performed in the k−th cycle.
Similarly, let opj,k denote a binary decision variable to schedule the j−th operation other
than multiplication in the k−th cycle. Each multiplication is determined in either the
approximate or exact mode and takes one cycle or several cycles. The number of cycles
for the multiplication is varied dependent on the degree of approximation. The delay
produced by the other operations is relatively shorter than that of the multiplication. For
simplicity, we have classified the operations as multiplication and the other operations, but
we can prepare an operation other than multiplication with a variable cycle, which does
not essentially make any difference.

Here, we define the number of cycles for each multiplication and the other operations.
For comprehension, we assume in Equations (1) and (2) that muli,k takes either one or two
cycles and opj,k takes one cycle. However, the number of cycles for muli,k and opj,k can be
easily extended as a decision variable and an arbitrary number of cycles, respectively.

∀i,
(
∑k muli,k = 1) ∨ (∑k muli,k = 2) (1)
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∀j,∑k opj,k = 1 (2)

Let cycle_muli, start_muli, f inish_muli denote the number of cycles, the start time,
and the finish time of i-th multiplication, respectively. Each multiplication is assumed to
be performed in one or two cycles, and the start time and finish time are the same if the
multiplication is determined to be performed in one cycle.

∀i,∑k muli,k = cycle_muli (3)

∀i, k,max(k·muli,k)i = finish_muli (4)

∀i, (finish_muli − 1 = start_muli) ∨ (finish_mul i = start_muli) (5)

∀i,finish_muli − start_muli + 1 = cycle_muli (6)

Next, let time_opj denote the number of cycles for the j-th operation other than mul-
tiplication. On the assumption that aluj,k takes only one cycle in the description, we can
easily extend the number of cycles to an arbitrary number of cycles with similar equations
to Equations (3)–(6).

∀j, k,max
(

k·opj,k

)
j
= time_opj (7)

The DFG, which is given as an input, includes precedence constraints between the
operations. Let Flowi1,i2 denote a binary value of the dependency between i1-th and i2-th
operations. If Flowi1,i2 is given as one, there are the constraints between i1-th and i2-th
operations. Equation (8) indicates that the start time of the successor operation i2 must be
followed after the finish time of the predecessor operation i1. The constraints for operations
other than multiplication can be easily taken into account by adding equations similar
to Equation (8).

∀i1, i2,Flowi1,i2 → finish_muli1 + 1 ≤ start_muli2 (8)

Most of the scheduling requires resource and time constraints. Both of the constraints
are assumed to be given in advance. The resource constraints for the multiplication and
other operations are fixed as MULmax, and then the number of multipliers is limited. The
number of the multipliers assigned to active multiplications cannot exceed the number of
the total number of multipliers in any cycle k as follows. Assume unlimited availability
for the purpose of avoiding overhead in sharing, except for multipliers such as adders
and ALUs.

∀k,∑i muli,k ≤ MULmax (9)

Furthermore, the time constraints are given as TIMEconst, which limit the finish time
of multipliers and other operations. All the operations must finish performing before
the time constraint. Let f inish_opj denote the finish time of the j−th operation other
than multiplication. In this paper, f inish_opj and time_opj are synonymous because it is
assumed that operations other than multiplication can be performed in one cycle. The time
constraints are given as follows:

∀i,1 ≤ finish_muli ≤ TIMEconst (10)

∀j 1 ≤ f inish_opj ≤ TIMEconst (11)

Accuracy is evaluated by the magnitude of the error. In other words, the smaller the
error, the higher the accuracy of the circuit. We describe how errors are produced if the
operations are approximated, using a multiplication operation. Consider multiplication
operation p = a× b. Let the errors propagated before a and b be denoted as εa and εb, and
the errors of the multiplication and its product be denoted as ε∗ and εp, respectively. Here,
we derive the approximate multiplication in Equation (12). It should be noted that εaεb can
be ignored due to negligible loss of accuracy, as in [21,22].
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p + εp = a · b + aεb + bεa + ε+ + εaεb (12)

Based on the assumption, let ε_muli denote the errors produced in the i-th multipli-
cation. Let εi denote an error generated if the i-th multiplication is approximated and
becomes non-zero if the multiplication is approximated. In other words, εi is zero if multi-
plication i is exactly performed without approximation. Note that Equation (13) assumes
that the exact multiplication takes two cycles. However, it can easily be extended to take an
arbitrary number of cycles if the error that increases in a linear manner with the increase in
the degree of approximation is allowed. The same formulation is also used for operations
other than multiplication.

∀i,ε_muli = a·εb + b·εa + (2 − cycle_muli)εi (13)

Let εo denote the error at the output, which means the error produced by a final output
of the operation, either ε_muli or the error of other operations. The error at the output
derives from each error propagated from each of the operations. In this work, the objective
of our scheduling is to minimize the error at the output.

Minimize ε_muli = a·εb + b·εa + (2 − cycle_muli)εi (14)

We formulate this problem as ILP and can solve it using an ILP solver. In this work,
the multiplications are performed in one or two cycles; however, the presented formulation
can be easily changed to be performed in any number of cycles.

3.3. Chaining

Scheduling algorithms for high-level synthesis that cannot handle optimization tech-
niques are of no practical value. Among the several optimization techniques that exist,
we consider chaining in this work. For the proposed method, the aim of chaining is to
speed up the circuit and improve the computational accuracy by increasing the number of
accurate multiplications.

The chaining assumed in this work is shown in Figure 2. We assume two types of
chaining. The first is general addition chaining, in which the number of stages is changed
based on the given delay constraints. Without considering addition chaining, it takes
two cycles to perform two additions, as shown in Figure 2a. If two adders are used, as
in Figure 2b, it can be performed in one cycle. Thus, the configuration of the functional
unit is important when performing chaining. Next, we consider not only the chaining of
additions, but also the chaining of exact multiplications and additions. Here, we assume
that exact multiplication is performed in two cycles. If chaining is not considered, it takes
three cycles, as shown in Figure 2c. If we perform exact multiplication and addition with
chaining, it can be performed in two cycles, as shown in Figure 2d. Since the scheduling
problem in this work is to minimize the error under the constraints of resources and time,
we predict that exact multiplication and addition chaining will have a significant impact on
the error reduction.

The important point in chaining is which operations are chained. In particular, under
resource constraints, the overall number of execution cycles differs greatly depending on
which operations are chained. In the ILP method, the following changes are made to some
equations to take chaining into account.

First, in the ILP method without considering chaining, Equations (1) and (2) were
classified into multiplication and non-multiplication operations. However, these are clas-
sified into multiplication, addition, and other operations by adding Equation (15). Let
addm,k be a 0–1 decision variable that is m when addition m is performed in cycle k. More-
over, let time_addm be the execution time of addition m. Thus, addition is defined as in
Equations (15) and (16), and time constraints are defined as in Equation (17), as in ILP
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without considering chaining. To avoid sharing overhead, an unlimited number of adders
are assumed to be available.
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∀m, k ∑k addm,k = 1 (15)

∀m, k, max(k·addm,k)l = time_addm (16)

∀m, 1 ≤ time_addm ≤ TIMEconst (17)

Let add_stepm be the number of steps when chaining additions together, and let STEP
be the maximum number of steps that an addition can chain. To avoid chaining beyond the
delay condition, STEP is defined from the delay condition.

∀m, 1 ≤ add_stepm ≤ STEP (18)

We also make changes to the dependencies. In the case of the dependency between
additions, it is defined as in Equation (19). In the case of no chaining, the two additions are
executed in different cycles. In the case of chaining, the two additions are performed in the
same cycle.

∀m1, m2, Flowm1,m2 → (time_add m1 + 1 ≤ time_addm2 && add_stepm2 =
1) || (time_add m1 = time_addm2 && add_stepm1 + 1 ≤ add_stepm2)

(19)

The dependency between addition and multiplication is defined as in Equations (20)
and (21). Equation (20) shows the dependency from multiplication to addition and
Equation (21) shows the dependency from addition to multiplication. Define mul_chaini1
as 1 for chaining from exact multiplication to addition, and 2 for chaining from addition to
exact addition. As in the case of chaining between additions, it is performed in different cy-
cles when not chaining, and in the same cycle when chaining. Approximate multiplication
is not performed using chaining in this work.

∀m1, i1, Flowi1,m1 → (finish_mul i1 + 1 ≤ time_addm1)
∣∣∣∣ (finish_muli1 + 2 − cycle_muli =

time_addm1 && mul_chaini1 = 1)
(20)
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∀m1, i1, Flowm1,i1 → (time_add m1 + 1 ≤ start_muli1)
∣∣∣∣ (time_addm1 + 2 − cycle_muli =

start_muli1 && mul_chaini1 = 2)
(21)

4. Heuristic Scheduling Algorithms Based on List Scheduling
4.1. List-Scheduing Algorithm

Table 1 shows the symbols used in the list scheduling. We propose a heuristic al-
gorithm for the variable-cycle scheduling problem and show pseudo-code based on the
conventional resource-constrained list scheduling in Algorithm 1. For a given DFG G(V,E),
let V, M, A, and Apx be the set of all operations, i.e., multiplication, operations other than
multiplication, and approximate multiplication, respectively. In this case, V = M∪A and
Apx ⊆ M. Let σ denote the operations that can be executed, τ denote the operations that
are being executed, and π denote the operations that have completed execution. Initially,
π, τ = {∅}. The length of the number of execution cycles for approximate multiplication,
exact multiplication, and other operations is Tapx, Tres, and Top, respectively. These are
given as preconditions. Let t_alapi be the execution cycle of each operation calculated by
As Late As Possible (ALAP). Let pi be the priority of the list scheduling to be created based
on it. Let the start time of each operation i be tsi and the end time be tf i. If the operation is
executed in a single cycle, these will be the same values. Let tri be the remaining time until
the execution of operation i is completed, and t be the current cycle. In the constraints, i.e.,
resource constraints and time constraints, Constmul limits the number of multipliers and
Consttime limits the overall number of execution cycles. The number of currently available
multipliers is defined as Nmul. This is updated every cycle. Let ei be an index of the magni-
tude of the error given to the output value when approximating the multiplication. This
value is obtained from the calculation of error propagation. To minimize the output error,
scheduling is performed by switching to the exact mode in order of the multiplication with
the largest error. The set of multiplications that have never been made exact is denoted as
M′, and we loop until all the multiplications have been made exact once. In the initial state,
M′ = M.

Algorithm 1 List-Scheduling Algorithm

1 ListScheduling(G(V,E)) begin
2 for i ∈ V do
3 t_alapi ← ALAP_schedule
4 end for
5 for i ∈ V do
6 ei ← Obtain resi, erri from G(V, E) and any input
7 end for
8 for n in 1..|M|+1 do
9 for i ∈ V do
10 if i ∈ A∪ i ∈ Apx then
11 pi = t_alapi
12 else pi = t_alapi − (T res − Tapx

)
end if

13 end for
14 t=0, π = {∅}, τ = {∅}
15 while π 6= V do
16 Nmul = Constmul, t ++
17 for i ∈ V do
18 for i ∈ τ do
19 if i ∈ M then
20 tri = tri − 1, Nmul = Nmul − 1
21 if tri = 0 then
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22 π = π ∪ i, τ = τ ∩ ¬i, tf i = t
23 σ← successor nodes of operation i in V
24 end if
25 end if
26 if i ∈ A then
27 tri = tri − 1
28 if tri = 0 then
29 π = π ∪ i, τ = τ ∩ ¬i, tf i = t
30 σ← successor nodes of operation i in V
31 end if
32 end if
33 end for
34 if Nmul ≥ 1∩ {i|i ∈ (σ ∩M) ∩min(pi)} then
35 tsi = t, Nmul = Nmul − 1, σ = σ ∩ ¬i
36 if i ∈ Apx ∩ Tapx = 1 then
37 π = π ∪ i, tf i = t
38 σ← successor nodes of operation i in V
39 elif i ∈ Apx ∩ Tapx>1 then
40 τ = τ ∪ i, tri = Tapx − 1
41 else τ = τ ∪ i, tri = Tres − 1 end if
42 end if
43 if {i|i ∈ (σ ∩A) ∩min(p i)} then
44 tsi = t, σ = σ ∩ ¬i
45 if i ∈ A ∩ Top = 1 then
46 π = π ∪ i, tf i = t
47 σ← successor nodes of operation i in V
48 else τ = τ ∪ i, tri = Top − 1, end if
49 end if
50 end for
51 end while
52 if ∀i, tf i ≤ Consttime then
53 best_tsi = tsi, best_tf i = tf i, best_ Apx = Apx
54

{
M′ = M′ ∩ ¬i} ∩ {i|i ∈ M′ ∩max(e i)}

55 else {Apx = Apx ∪ i} ∩ {i|i ∈ M′ ∩max(e i)}
56

{
M′ = M′ ∩ ¬i} ∩ {i|i ∈ M′ ∩max(e i)}

57 end if
58 {Apx = Apx ∩ ¬i} ∩ {i|i ∈ M′ ∩max(e i)}
59 end for
60 end

Table 1. Symbols for list-scheduling algorithm.

G(V,E) Data Flow Graph (DFG)

V Set of operations
E Set of data dependencies between operations
M Set of multiplications (M ⊆ V)
A Set of operations other than multiplication (A⊆ V)

Apx Set of approximate multiplications (Apx ⊆ M)
M′ Set of multiplications that have never been performed as exact multiplications (M′ ⊆ M)
σ Set of operations that can be executed
τ Set of operations that are being executed (set of operations currently running in multi-cycle)
π Set of operations that have completed execution

Tapx Number of cycles required for approximate multiplication
Tres Number of cycles required for exact multiplication
Top Number of cycles required for operations other than multiplication

i i-th of all operations
t Current clock cycle
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Table 1. Cont.

G(V,E) Data Flow Graph (DFG)

tsi Execution start time of the i-th operation
tf i Execution finish time of the i-th operation
tri Remaining time until the end of the execution of the i-th operation

Constmul The number of available multipliers (resource constraints)
Consttime The number of execution cycles for the entire circuit (time constraint)

Nmul Remaining number of multipliers available for the current clock cycle
t_alapi Execution time of the i-th operation in ALAP (result of ALAP)

resi Exact value of the i-th operation
erri Error of the i-th operation
ei The magnitude of error given to the final output when approximating the i-th operation
pi Priority based on ALAP results

Tadd Number of cycles required for addition
j i-th of addition

Condition_chaining_mul Value indicating whether exact multiplication and addition can be performed chaining
Condition_chaining_add Value indicating whether additions can be performed chaining

D Set of additions

In Algorithm 1, ALAP scheduling is first performed in line 3. Here, all the multi-
plications are scheduled as approximate multiplications. This result is used as a priority
when performing resource-constrained list scheduling from line 8. Next, line 6 finds the
multiplication whose error becomes large if it is approximated by calculating the error
propagation, and finds its influence ei. Between line 8 and line 59, if all the multiplications
are approximate multiplications or if they are exact one-by-one multiplications, the total
number of multiplications plus one time resource-constrained list scheduling is performed.
Scheduling is performed to minimize the error under resource and time constraints. As a
new change, in line 12, we reduce the priority used for resource-constrained list scheduling
only for exact multiplications. This is to avoid performing ALAP again when some of the
multiplications are switched to the exact mode and to make it easier to satisfy the time
constraints. Lines 18 to 35 process the multicycle operations that are being executed. Lines
36 to 51 execute the operations with the highest priority among the operations that can be
executed. After executing all the operations, satisfaction of the time constraint is checked
at line 52. If it satisfied, it is retained as the best solution. If not, the exact multiplication
is returned to approximate multiplication. Finally, the approximate solution that satisfies
the resource and time constraints and minimizes the error is output. The computational
complexity of this algorithm is O(n 2 logn) because the list scheduling is repeated one time
plus the number of multiplications.

4.2. Proposed List-Scheduling Example

For the operation from lines 8 to 59 of Algorithm 1, an example problem in DFG with
three multiplications and two additions is shown in Figure 3. We assume one cycle for ap-
proximate multiplications, two cycles for exact multiplications, and one cycle for additions.
The resource constraint is list scheduling as two accuracy-controllable approximate multi-
pliers and one adder. The time constraint is four cycles. Figure 3a shows the DFG given,
and the number at the bottom left of the multiplication is assumed to be the magnitude of
the influence of the error on the output value obtained in line 6 of Algorithm 1. First, as
shown in Figure 3b, all the multiplications are approximate multiplications, and resource
constraint-based list scheduling is performed. Next, the list scheduling is performed again
with the multiplications made exactly with the largest errors. At this time, since all the
operations can be performed within the time constraint of four cycles, the multiplication
that was made exact in Figure 3c is kept exact for the next scheduling. Next, as shown
in Figure 3d, the multiplication with the second-largest error is made exact and list schedul-
ing is performed. However, in Figure 3d the time constraint of four cycles is exceeded, so
the upper left multiplication is returned to approximation. Next, the multiplication with
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the smallest error is made exact and list scheduling is performed. The result of Figure 3e
satisfies the time constraint, so we keep the multiplication as exact. Finally, since all the
multiplications have been performed correctly, the result of Figure 3e, which will have the
smallest error so far, is output as the final solution as shown in Figure 3f. In this example,
we show 1–2 cycles for simplicity, but our proposed method can be applied to operations
with more than 3 cycles by changing the values of Tres and Tapx.
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Figure 3. Proposed list-scheduling example. (a) A given DFG. (b) Approximate all multiplications
(result of first list scheduling). (c) Exact multiplication with the largest error(result of second list
scheduling). (d) Exact multiplication with the second largest error (result of third list scheduling).
(e) Exact multiplication with the smallest error (result of fourth list scheduling). (f) Final output that
satisfies resource and time constraints.

4.3. Chaining

List scheduling takes chaining into account by adding the following process. Similar
to ILP, list scheduling classifies operations into three categories: multiplication, addition,
and others. Algorithms 2 and 3 are the additions to of list scheduling, where D is the set of
additions. Tadd is the length of the execution cycle of the additions. Algorithm 2 is added
after line 25 and Algorithm 3 is added after line 42 to perform resource constraint-based
list scheduling. It also assumes that an unlimited number of adders are available to avoid
sharing overhead as in ILP.

Moreover, Algorithm 4 is added after Algorithm 1 to the chaining process. Three
chaining processes are performed in sequence: exact multiplication to addition, addition
to exact multiplication, and addition to addition. Condition_chaining_mul is a value that
indicates whether chaining is possible based on the delay condition of exact multiplication.
When this value is 1, exact multiplication and addition can be chained, and when it is
0, chaining is not possible. Similarly, let Condition_chaining_add be a value that indicates
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whether or not chaining is possible between additions based on the delay condition of
the addition.

Algorithm 2 Add in List-Scheduling Algorithm 1©

1 if i ∈ D then
2 tri = tri − 1,
3 if tri = 0 then
4 π = π ∪ i, τ = τ ∩ ¬i, tf i = t
5 σ← successor nodes of operation i in V
6 End if
7 End if

Algorithm 3 Add in List-Scheduling Algorithm 2©

1 if {i|i ∈ (σ ∩D) ∩min(p i)} then
2 tsi = t, σ = σ ∩ ¬i
3 if i ∈ D ∩ Tadd = 1 then
4 π = π ∪ i, tf i = t
5 σ← successor nodes of operation i in V
6 else τ = τ ∪ i, tri = Tadd − 1, end if
7 End if

Algorithm 4 Chaining in List-Scheduling Algorithm

1 if Condition_chaining_mul = 1 then
2 for i ∈ V do
3 if ∩{i ∈ M, π ∩ tf i = t ∩ i followed by j ∈ D} then
4 tsj = t, σ = σ ∩ ¬i
5 if j ∈ D ∩ Tadd = 1 then
6 π = π ∪ j, tf j = t
7 σ← successor nodes of op j in V
8 else τ = τ ∪ j, trj = Tadd − 1, end if
9 end if
10 if Nmul ≥ 1∩ {i ∈ D, π ∩ tf i = t ∩ i followed by j ∈ M} then
11 tsi = t, Nmul = Nmul − 1, σ = σ ∩ ¬i
12 if i ∈ M ∩ Tres = 1 then
13 π = π ∪ i, tf i = t
14 σ← successor nodes of op i in V
15 else τ = τ ∪ i, tri = Tres − 1, end if
16 end if
17 end for
18 end if
19 ifCondition_chaining_add = 1 then
20 for i ∈ V do
21 if {i ∈ D, π ∩ tf i = t ∩ i followed by j ∈ D} then
22 tsi = t, σ = σ ∩ ¬i
23 if i ∈ D ∩ Tadd = 1 then
24 π = π ∪ i, tf i = t
25 σ← successor nodes of operation i in V
26 else τ = τ ∪ i, tri = Tadd − 1, end if
27 end if
28 end for
29 end if

Let operation j be the subsequent operation of operation i. In Algorithm 4, the first line
determines whether exact multiplication and addition can be chained based on the delay
condition in line 1. To perform exact multiplication to addition chaining, line 3 determines
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if exact multiplication has been completed in this cycle, and if there is a subsequent addition.
If the above conditions are met, exact multiplication and addition chaining is performed.
Similarly, chaining from addition to exact multiplication is performed from line 10. Finally,
the process of chaining addition to addition is performed from line 19. The reason why the
processing is done in this order is that the objective function of this scheduling problem is
to minimize the output error and the emphasis is on accurate multiplication and addition
chaining rather than addition to addition chaining.

In this method, chaining is performed after processing the resource constraint list
scheduling for each cycle; however, chaining is always performed if it is possible to chain at
that time. Under resource constraints, the overall number of execution cycles varies greatly
depending on which operations are chained; therefore, this approximation algorithm may
not be optimal in terms of the number of execution cycles. However, list scheduling is
an algorithm used to shorten the algorithm runtime, and the objective function aims to
minimize the error. Therefore, the chaining process is straightforward.

With the above changes, the scheduling is undertaken with the aim of minimizing the
output error under resource and time constraints. In this work, exact multiplication and
addition are used for chaining; however, depending on the delay conditions, it can easily
be modified so that approximate multiplication or other operations are used for chaining.

5. Experiment
5.1. Exprimental Setup

In order to demonstrate the effectiveness of our proposed method, we conducted
experiments. We used CPLEX 12.10 as the solution solver for the ILP, scheduling up to
one hour in real-time on a PC with an AMD Ryzen 7 PRO 4750G CPU and 64 GB main
memory. If an optimal solution could not be found in one hour, the best solution at the
time was used. The list-scheduling algorithms were implemented in Python with the
Numpy library. Due to various resource constraints, we compared the error of conventional
resource constrained-scheduling, which does not consider the error, and the proposed
variable-cycle scheduling, which minimizes the output error. The number of accuracy-
controllable approximation multipliers is restricted as a resource constraint. Adders, ALUs,
etc., are assumed to be used without restriction because of their large sharing overhead.

In a conventional resource-constrained scheduling that minimizes the number of
execution cycles, the schedule is based on the assumption that each operation is performed
in a fixed number of cycles. Therefore, the minimum number of cycles can be found when
all the multiplications are scheduled in one cycle (n cycles) and the minimum number of
cycles when all the multiplications are scheduled in two cycles (m cycles). We increase the
number of functional units as a resource constraint until the minimum number of cycles (n
and m) does not change. The proposed method is given the time constraint between n to m
cycles under each resource constraint and performs variable-cycle scheduling where each
of the multiplications is performed in one or two cycles with the aim of minimizing the
output error.

We used MediaBench [31] as a benchmark program. In the ILP-scheduling method
and list-scheduling algorithm, the delay for each operation is scheduled assuming that
approximate multiplication is performed in one cycle, exact multiplication in two cycles,
and operations other than multiplication in one cycle. We synthesized the circuits in which
each of the approximate multipliers has 32-bit accuracy control, taken from [13] based
on the scheduling results. Then, we compared the area and the error for the synthesized
circuits for a xc7z020clg484-1 device with Vivado 2020.1 provided by Xilinx. The error was
evaluated by Monte Carlo simulation. We compared the following methods:

• All-exact (AE): each of the multiplications is performed without approximation and
takes two cycles.

• All-approximated (AA): each of the multiplications is approximated and performed in
one cycle.
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• Mixed: each multiplication is determined as being either exact or approximated in
two cycles or one cycle, respectively.

• Mixed-chain: each multiplication is determined as being either exact or approximated
in two cycles or one cycle, respectively, and considering chaining.

5.2. Exprrimental Results

Figure 4 shows the scheduling results for each benchmark. The output error is denoted
as the relative value of the error included in the output for the exact result. In Figure 4b, the
output error is shown in logarithmic terms and is denoted as −∞ when all multiplications
are performed in two cycles (i.e., when there is no error). The higher the point, the more
stringent the time constraint. The fewer the number of functional units that are constraints
of the resource, the larger the difference between the number of cycles required to perform
all the multiplications in one cycle and in two cycles. The scheduling results with a wide
distribution of errors provide more options for circuit design. Because of this, it possible to
find a solution that meets the designer’s requirements based on the area, execution time,
and output error.
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The Elliptic Wave Filter is regular and poses a short critical path of DFG compared
to Matrix Inversion. Therefore, when the time constraint is increased and the number of
approximate multiplications is reduced, the error of Mixed decreases slowly, as shown
in Figure 4a. By comparison, Matrix Inversion is a complex DFG. In such a case, the
magnitude of the error differs greatly depending on which multiplication is approximated.
In Matrix Inversion, there is a multiplication on the critical path that has a large impact
on the output error. Therefore, the distribution of the graph becomes narrower when the
resource constraint is increased and the execution time is short. AA and AE in Figure 4 do
not take error into account, and there is a trade-off between area and execution time. By
comparison, Mixed minimizes the output error due to resource and time constraints, and a
trade-off is established between area, execution time, and output error.

Table 2 shows the comparison between list-scheduling algorithm and the ILP-based
technique. In the table, Nodes represents the total number of operations for each benchmark.
Mult means the number of multiplications among them. Designs indicates the number
of design problems for a variety of resource and time constraints. Wins, Losses, and
Draws represent the number of designs of our proposed algorithm that outperform the
ILP-based technique in terms of accuracy, even slightly; the number of designs of the
ILP-based technique that outperform our proposed algorithm; and the number where the
same solutions are found, respectively. The number of times it takes more than one hour
for ILP indicates the number of times the optimal solution is not obtained with ILP. In the
Elliptic Wave Filter, there are three cases where the approximate solution for list scheduling
is inferior to the optimal solution for ILP, but all the results in Figure 4a are close to the
optimal solution. In Matrix Inversion, about half of the ILPs are not able to find the optimal
solution in one hour. Most have no solution or a solution that is far from optimal and is
inferior to the approximate solution of list scheduling. In contrast, list scheduling obtained
solutions with a wide distribution regardless of the number of nodes. It can be said to be
effective even for large applications.

Table 2. Comparison of the list-scheduling solution with the ILP solution.

Benchmarks Nodes (Mult) Designs Wins Losses Draws ILP Exceeding 1 h

HAL 11 (6) 14 0 0 14 0
FIR filter 21 (11) 19 0 0 19 0

Auto Regression Filter 28 (16) 36 0 0 36 0
Motion Vectors Decoder 32 (14) 37 0 15 22 0

Elliptic Wave Filter 34 (8) 16 0 3 13 0
Cosine 42 (14) 52 0 1 51 0

Feedback Points 53 (17) 43 0 10 33 1
Matrix Multiplication 109 (40) 129 1 20 108 4

Smooth Triangle 197 (69) 257 35 63 159 55
Matrix Inversion 333 (140) 516 235 104 177 257

Table 3 shows the longest, shortest, and mean runtimes required for scheduling for
each benchmark. ILP was unable to find an optimal solution in one hour when the number
of nodes exceeded 50. However, list scheduling was able to find an approximate solution
within three minutes even when the number of nodes exceeded 300. With ILP, scheduling
can already take a long time for Cosine with 42 nodes; thus, if the number of nodes exceeds
300, it is expected to take several days to a month or more. As the number of nodes increases,
the runtime increases exponentially, making ILP impractical. With list scheduling, there is
a difference between the longest and shortest runtime with Matrix Inversion, which has a
wide range of given time constraints. It is possible to obtain a near-optimal solution in a
short time.
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Table 3. Runtime for scheduling (s).

Benchmarks
ILP List Scheduling

Max Min Mean Max Min Mean

HAL 0.130 0.010 0.083 0.006 0.005 0.006
FIR filter 0.860 0.080 0.214 0.020 0.013 0.017

Auto Regression Filter 8.730 0.080 0.899 0.049 0.023 0.037
Motion Vectors Decoder 35.380 0.080 1.269 0.050 0.024 0.036

Elliptic Wave Filter 0.220 0.050 0.127 0.033 0.029 0.031
Cosine 2387 0.050 46.490 0.087 0.039 0.058

Feedback Points >3600 0.080 85.617 0.138 0.066 0.100
Matrix Multiplication >3600 0.200 149.748 2.044 0.527 1.092

Smooth Triangle >3600 0.300 1155 15.804 2.865 7.204
Matrix Inversion >3600 1.020 2116 170.288 16.217 70.913

Table 4 shows the logic synthesis results of some of the scheduling results in Auto
Regression Filter using Vivado 2020.1 on the xc7z020clg484-1 device. In the conventional
method, we synthesized a circuit with AE performing in 12 cycles. In ILP and list schedul-
ing, we synthesize Mixed circuits performing in 12 cycles. In these circuits, the performance
of the circuit (number of cycles) was scheduled with the same constraints. Circuits designed
with the two proposed methods both achieved low area and power by approximation.
Furthermore, it is clear from the PSNR values that the magnitude of the error is minute.
Therefore, the proposed method can design circuits with the same performance as that of
the conventional method, having a low area and low power, without much loss of accuracy.
Comparison of the PSNR of the proposed method shows that the approximate solution
of list scheduling is almost equal to the optimal solution of ILP. The difference in area
and power between the proposed methods, despite their equal accuracy, can be attributed
mainly to the optimization of synthesis tools.

Table 4. Comparison of synthesized auto regression filter.

AE (12 Cycle) Mixed-ILP (12 Cycle) Mixed-List (12 Cycle)

LUT 2686 2126 2228
FF 612 582 518

DSP 16 12 12
PSNR ∞) 94.57 94.44

Power (uW) 29,189 25,924 27,777

Figure 5 shows the scheduling results when chaining is considered. AA and AE
here do not have chaining and are plotted at the same locations as in Figure 4. Compar-
ing Figures 4a and 5a, the execution time has been reduced and the error has been reduced.
This is due to the fact that they are not only adding, but also chaining exact multiplication
and addition. Comparing Figures 4b and 5b, we can see that the results are similar to those
of the Elliptic Wave Filter. Moreover, in the case of chaining, a wide distribution in terms of
error is obtained even when resource constraints are large.

Table 5 shows the results of comparing the list-scheduling solution with the ILP solu-
tion in terms of output error for each benchmark and summarizes the results, as shown
in Figure 5. Compared to Table 1, there was no significant increase in the number of times
the ILP exceeded one hour. The number of times the approximate solution for list schedul-
ing is inferior to the optimal solution for ILP has increased. This is because the approximate
algorithm does not perform chaining as effectively as ILP. However, as the number of nodes
increases, the number of times that list scheduling outperforms ILP increases, indicating
that the approximate algorithm is more effective for large-scale applications.
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Table 6 shows the longest and shortest runtimes required for chaining considered
scheduling for each benchmark. In ILP, the runtime does not increase that much even when
chaining is taken into account. In list scheduling, the runtime is approximately doubled by
chaining. This is simply due to the increase in processing. However, list scheduling can
still be solved in polynomial time.

The overall experimental results show that the proposed method can take advantage
of approximate multipliers whose accuracy can be dynamically controlled in high-level
synthesis. Although conventional scheduling explores circuits that meet the requirements
through the trade-off between resource and performance, the proposed method incorpo-
rates approximate computing searches for circuits that meet requirements that are lower
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than those of the trade-off between resource, performance, and accuracy. Due to its flexibil-
ity, high-level synthesis can identify a more efficient circuit suitable for an application.

Table 5. Comparison of the list-scheduling solution with the ILP solution with chaining.

Benchmarks Nodes (Mult) Designs Wins Losses Draws ILP Exceeding 1 h

HAL 11 (6) 13 0 7 6 0
FIR filter 21 (11) 22 0 3 19 0

Auto Regression Filter 28 (16) 36 0 3 33 0
Motion Vectors Decoder 32 (14) 34 0 31 3 0

Elliptic Wave Filter 34 (8) 10 0 10 0 0
Cosine 42 (14) 47 0 35 12 0

Feedback Points 53 (17) 44 0 2 42 2
Matrix Multiplication 109 (40) 124 3 111 10 4

Smooth Triangle 197 (69) 248 35 91 122 61
Matrix Inversion 333 (140) 518 235 105 178 321

Table 6. Runtime for scheduling with chaining (s).

Benchmarks
ILP List Scheduling

Max Min Mean Max Min Mean

HAL 0.140 0.050 0.083 0.014 0.008 0.010
FIR filter 17.530 0.090 1.141 0.044 0.020 0.032

Auto Regression Filter 60.840 0.090 3.220 0.115 0.039 0.079
Motion Vectors Decoder 43.250 0.130 2.071 0.117 0.039 0.073

Elliptic Wave Filter 0.530 0.160 0.049 0.058 0.042 0.380
Cosine 1675 0.090 38.162 0.192 0.078 0.115

Feedback Points >3600 0.110 161.273 0.291 0.116 0.188
Matrix Multiplication >3600 0.630 448.173 4.266 0.791 2.162

Smooth Triangle >3600 0.360 1273 30.939 4.555 13.714
Matrix Inversion >3600 8.750 2418 327.881 24.718 132.795

Our proposed ILP and list-scheduling methods have different characteristics in target
applications. Although the ILP method can obtain an optimal schedule, the computational
time becomes very long with the increase in the number of operations in applications. In
contrast, the list-scheduling method can quickly find a circuit schedule while it sometimes
fails to obtain an optimal schedule. In summary, the ILP method is preferred for use in
a large application, and the list-scheduling method is suitable for a small application. In
addition, we considered an optimization technique in high-level synthesis, and the two
proposed methods show its practicality by chaining.

The circuit synthesis results show that the proposed method achieves lower power
and lower cost with the same performance by applying approximations. Furthermore,
it can be said that both the ILP and list-scheduling methods have small errors, although
approximations are applied. This means that the proposed method improves resource and
power use without much impact on the application. However, there is a large difference
in power and resources used between list scheduling and ILP, even though the accuracy
is almost the same. This indicates that it is necessary to consider memory resources and
other factors when scheduling, and this is one of the issues to be addressed in the future.
In addition, this research can be applied to ASICs. However, since we only experimented
with FPGAs, this is also an issue to be addressed in the future.

6. Conclusions

We present a scheduling algorithm that exploits the difference in latency between
approximate and exact operations in variable-cycle multiplication. The two proposed
methods efficiently utilize approximate functional units whose accuracy can be dynamically
controlled. The first method uses ILP to search for the optimal solution over time. The
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second method searches for a good solution in a short time by list scheduling. The two
proposed methods extend the design search space compared to the conventional methods.
This enables the design of approximate computing circuits that meet the requirements of
resources, performance, and accuracy. The synthesized circuits based on the proposed
method consumer less power and resources than conventional accurate circuits at the
expense of small errors. In addition, they can be combined with optimization techniques
and are practical. Although this paper focuses on approximate multipliers, the presented
approach can be combined with other approximate methods.

Future studies will combine the presented approach with other optimization tech-
niques such as pipelining and bitwidth reduction. In addition, since experiments were
conducted only on FPGAs, we believe that experiments on ASICs will be necessary.
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