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Abstract: Manufacturing industries based on Internet of Things (IoT) technologies play an im-
portant role in the economic development of intelligent agriculture and watering. Water availability 
has become a global problem that afflicts many countries, especially in remote and desert areas. An 
efficient irrigation system is needed for optimizing the amount of water consumption, agriculture 
monitoring, and reducing energy costs. This paper proposes a real-time monitoring and auto-wa-
tering system based on predicting mathematical models that efficiently control the water rate 
needed. It gives the plant the optimal amount of required water level, which helps to save water. It 
also ensures interoperability among heterogeneous sensing data streams to support large-scale ag-
ricultural analytics. The mathematical model is embedded in the Arduino Integrated Development 
Environment (IDE) for sensing the soil moisture level and checking whether it is less than the pre-
defined threshold value, then plant watering is performed automatically. The proposed system en-
hances the watering system’s efficiency by reducing the water consumption by more than 70% and 
increasing production due to irrigation optimization. It also reduces the water and energy consump-
tion amount and decreases the maintenance costs. 

Keywords: agricultural development; watering management; IoT architecture; predicting models; 
irrigation performance 
 

1. Introduction 
The need for efficient management irrigation systems has become crucial in many 

regions worldwide due to the scarcity of water resources because of the changes in cli-
matic conditions, high atmosphere temperature, and the negative impact of human be-
havior on the environment. The availability of water has become a global problem affect-
ing many countries, especially in remote and desert areas. Oman is one of the countries 
with large desert areas that lack potable water sources, and the rise in temperatures also 
leads to the rapid loss of water from the land. Therefore, there is a need for an efficient 
irrigation system that works automatically to improve irrigation operations, reduce water 
consumption, and reduce energy costs. The purpose of watering is to give the plants the 
right amount of water to ensure ideal growth. Optimal irrigation management aims to 
determine the timing and quantity of water suitable for irrigation to achieve the most sig-
nificant effectiveness. Developments in industry tools, information technology, and com-
munication have helped innovate irrigation methods that consume less water than man-
ual and old technologies [1]. Therefore, intelligent irrigation methods lead to less water 
consumption and reduce the field’s excess water, which leads to better crop production 
[2]. Finding improved techniques that improve the water use efficiency and lower the 
energy usage has become an affluent research area. Developing an autonomous architec-
ture is considered an ideal approach for processing and analyzing the sensed data for 
supporting real-time monitoring of agricultural parameters. It also ensures interoperabil-
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ity among heterogeneous sensing data streams to support large-scale agricultural analyt-
ics [3]. In recent years, precision agriculture has received considerable concern due to the 
increasing demand for food production with high-quality crops, minimum cost, and re-
ducing the effects of environmental pollution. Wireless sensor network technologies are 
utilized for providing solutions in the agricultural domain. It aims to provide an optimal 
tool for collecting, processing, managing, and analyzing the relevant agricultural infor-
mation and farming activities [4]. The main advantage of these technologies is their ability 
to create a network of enabled devices (i.e., sensors) that can capture environmental pa-
rameters related to agriculture fields and transmit them to the predefined application for 
further processing and analysis [5]. However, many plantations’ attributes such as soil 
types, fertilizer processes, water requirements, and weather conditions in agriculture 
fields have different needs and considerations [6]. Many researchers have discussed the 
need to develop a self-watering mechanism to increase the efficiency of farming systems 
and reduce the percentage of discharged water. 

This work suggested an automatic irrigation method based on a developed mathe-
matical model derived according to the nature of the land and climatic conditions such as 
temperature and humidity. The proposed model can be easily and quickly changed to 
meet any changes in climatic conditions. 

Additionally, the proposed model helps to manage and monitor plants’ needs in an 
efficient manner. The use of sensors helps to use water efficiently and reduce the water 
consumption and energy needed for irrigation, reducing the need for labor to turn the 
motor ON and OFF, controlled by the automated irrigation system based on renewable 
energy. 

Most existing systems require a connection to the Internet and external data storage 
to manage and control the plant’s needs. The proposed method helps manage and control 
the plants’ needs automatically without the need for the Internet. It is embedded in the 
field and can easily update it for any new conditions. 

2. Related Work 
Many researchers have proposed autonomous methods for watering plants based on 

mathematical models derived by machine learning methods. 
Abrishambaf et al. proposed an autonomous approach to improving the irrigation 

efficiency based on water needs through field data such as temperature, wind, soil mois-
ture, and soil evapotranspiration estimation. The results show that the proposed approach 
schedules irrigation efficiently and lowers the cost periods and energy price [7]. Munir et 
al. suggested a smart watering system (SWS) based on a Fuzzy Logic controller using an 
Android to optimize water waste in small and medium-scale fields. They deployed a set 
of sensors based on Blockchain technology that allows trusted devices to capture plants’ 
real-time data and environmental conditions such as soil moisture, humidity, temperature 
etc. The Fuzzy Logic method is used to control the watering requirements and make the 
right decisions for turning water tunnels ON/OFF [8]. Similarly, Kolias et al. proposed the 
GreenIQ Smart Garden system that schedules the watering plan for plants based on the 
current and historical forecasted weather conditions. The proposed approach provides a 
friendly user interface that allows users to select weather forecasting services and instru-
ments. The proposed algorithm compensates for lacking the correct weather information. 
It helps save water accurately by managing the duration of the irrigation cycle, taking into 
account the weather variables such as the humidity, temperature, wind speed, etc. [9]. 
Pienaar et al. presented an automated irrigation scheme with a low cost using an imped-
ance moisture sensor method. The proposed Arduino technology is implemented for con-
trolling the irrigation process of the greenhouse. An efficient algorithm is proposed to 
determine and optimize the water level by comparing the plant environmental data such 
as the temperature, humidity, and soil level with the statistical results [10]. 

Harun et al. introduced an enhanced indoor farming IoT monitoring system for re-
mote monitoring the growth of the Brassica Chinensis plant. Light sensors were used to 
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monitor the spectrum from a distance and sensors to measure carbon dioxide content, 
ambient temperature, humidity, and leaf area index. The watering method is controlled 
by the pulse-width modulated (PWM) actuator using an IoT embedded device. The study 
demonstrated the light spectrum and intensity effect on Brassica Chinensis in determining 
the optimal plant physiology and morphology, such as water use efficiency, leaf photo-
synthesis, and chlorophyll rate [11]. Ashton K. [12] suggested the interconnection method 
between different devices using the Internet of things (IoT), which provided a facility for 
sensing, processing, and analyzing environmental information. These devices are com-
monly using standard network protocols to perform intercommunication with each other. 
Ashton’s approach aimed to develop devices that self-generated reports in a real-time 
manner for enhancing the efficiency and accumulating relevant information. Ofrim et al. 
[13] used the ZigBee wireless sensor network for developing an automating irrigation sys-
tem for managing irrigation timing and watering needs in different soil moisture condi-
tions. The irrigation process is considered one of the essential issues in the agriculture 
domain, where different irrigation approaches are used for managing water wastage in 
conventional irrigation methods. Damas et al. [14] proposed a remote-controlled water 
irrigation system for several agricultural regions. They used computer networks to con-
nect all the areas with the central controller to automate the irrigation process. The empir-
ical results have shown that the proposed system saved up to 30–60% of the consumed 
water. In addition, the method proposed by Evans and Bergman [15] controlled the irri-
gation process by using wireless sensors to collect the surrounding environmental infor-
mation to help produce an irrigation schedule. 

Various sensor-based systems have been proposed to help control irrigation water 
and improve the utilization of water resources and production. Basu et al. [16] presented 
an automatic irrigation control system based on sensors for sensing environmental-related 
agriculture parameters and storing the sensed information for further statistical analysis. 
Kim et al. [17] also proposed an irrigation system that remotely monitors environmental 
parameters such as soil moisture using GPS and Bluetooth technologies. They deployed a 
sensor-based system that helps to increase the productivity of the crop and reduce water 
consumption. Kim and Evans [18] developed a site-specific sprinkler irrigation system 
using remote sensors based on Bluetooth wireless radio communication. They integrated 
a site-specific controller to support real-time decision-making on irrigation processes. 
Using wireless sensors in the agriculture domain is currently the focus area of research. 
Fourati et al. [19] proposed a wireless sensors system to measure environmental attributes 
such as humidity, temperature, and solar radiation to develop a web-based decision 
support system that provides irrigation scheduling in agriculture fields. 

Kaewmard and Saiyod [20] also proposed an automation agriculture approach based 
on long-term sustainability. The connected sensors can be moved in the vegetable fields 
to record all possible changes in the environmental parameters. Hashim et al. [21] 
developed an Arduino-based system for measuring and monitoring soil moisture and 
temperature parameters through a smartphone application. They compared the 
advantages of small-scale and large-scale agriculture-related architectures. It claimed that 
small-scale systems do not cost as much as large-scale systems that require expensive 
components. Srbinovska [22] proposed another aspect of real-time monitoring in the 
agricultural fields to improve the quality of products using wireless sensor network 
architecture. They are focused on the faulty tolerance and energy efficiency of employed 
sensors in sensing agriculture-related parameters. 

Nawandar et al. [23] proposed a low-cost intelligent irrigation system using a neural 
network method for determining the sensor input based on the irrigation schedule for 
efficient irrigation. The proposed devices offered several facilities, such as irrigation 
schedule estimation, decision making, and remote data monitoring. Sarkar et al. [24] 
developed a virtual sensing framework (VSF), which helped to reduce the network’s data 
traffic and transmission. They deployed a cross-correlation method for predicting 
multiple consecutive sensed data and achieved an accuracy of 98%. Benyezza et al. [25] 
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developed an automated irrigation embedded system based on Arduino for optimizing 
water use and monitoring the field. 

The analysis of the literature survey indicates the gaps that need to be addressed: 
• There is no suitable control and management model that determines the water level 

needed for irrigation. 
• Provide the scalability, privacy, and reliability of sensing data using cloud computing 

and Blockchain technologies. 
• Lack of a customizable model that can determine the water conditions based on the 

type of plant, even in the same soil and weather conditions.  
• Lack of correct weather information such as humidity, temperature, and wind speed 

is used accurately to determine the level of needed water and manage the irrigation 
cycle’s duration. 
On the other hand, there is a need for an automatic irrigation model with the 

following features: 
• Simple and easy to install and configure. 
• Save energy and time to water at the correct time, utilizing anywhere with less effort. 
• Use the needed amount of water and reduce the amount of overwatering to improve 

the crop performance. 
• Reduce the need for labor to turn the motor ON and OFF, controlled by the 

automated irrigation system. 
• Reduce human error elimination in adjusting available soil moisture levels. 
• This manuscript introduces an IoT embedded system for an auto-watering and real-

time monitoring approach to improving the efficiency of irrigation needs based on 
mathematical models that determine the plantations’ water requirement. 

3. Materials and Methods 
This section describes the proposed IoT architecture based on experimental and 

mathematical models for auto watering and real-time monitoring of heterogeneous 
sensing agricultural parameters. 

This manuscript deployed a model-based design (MBD) and experimental research 
methods for developing an embedded automatic irrigation control system. The MBD per-
forms verification and validation by testing the proposed mathematical model and algo-
rithms developed to control the Arduino microcontroller, sensors, running motor, pump, 
and solar energy. The experimental design ensures that the proposed model controls and 
monitors the automated irrigation system to obtain feedback from sensors, water levels, 
and activate the watering motor automatically ON/OFF. 

Figure 1 shows the main components of the proposed architecture. 
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Figure 1. The main components of the proposed architecture. 

3.1. System Set-Up and Instalation 
The proposed experimental system was installed, tested, and evaluated in Sohar city, 

Oman—located at latitude: 24°21′0.79″ N, longitude: 56°42’27.54″ E—to evaluate its per-
formance and effectiveness. The proposed agriculture-related architecture is imple-
mented using a Libelium Smart Agriculture Vertical Kit, including various agricultural-
related sensors [26]. This architecture consists of five layers: data source layer, data collec-
tion layer, data transmission layer, data processing layer, and data viewing layer. Unlike 
existing cloud-based architectures, whereas the connection to the cloud platform is essen-
tial for receiving analyzed information, the proposed architecture allows the farmers to 
remotely measure and monitor the agricultural parameters in real time directly via wire-
less communication technologies. The data source layer is responsible for sensing agricul-
tural parameters (data) using different types of sensors. 

These sensors can be installed in the soil and the surrounding environment. Soil sen-
sors are mainly water-resistant and usually sensing parameters related to soil moisture, 
temperature, and other soil properties. Surrounding environment sensors, however, 
measure environmental parameters such as air temperature, air humidity, atmospheric 
pressure, rain level, wind speed and direction, solar radiation, and leaf wetness [27]. 

The sensors are connected directly with a sensor node consisting of a wireless an-
tenna, the ports panel for interfacing with the sensors, and a built-in solar energy source, 
as shown in Figure 2. This experiment configured each sensor node to send a frame of 
collected data to the data processing layer approximately every 15 min through the LoRa 
communication channel. This is because it helps reduce the power consumption and save 
its associated charged battery using an external solar panel. The installed weather station 
used three types of wireless communication technologies to connect the data collection 
and processing layers: LoRa, WIFI, and ZigBee. LoRa is used to achieve long-range con-
nections, and Wi-Fi provides a decent communication range up to 100 m with a data trans-
mission rate of 2 to 54 Mbps at 2.4 GHz radiofrequency. ZigBee is a short-range radio 
communication technology used for transmitting data frames over long distances using 
LoRa technology. 
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Figure 2. Sensor node architecture. 

Table 1 summarizes the communication technologies that are used in the proposed 
agriculture-related architecture. 

Table 1. A comparative of the used communication technologies. 

Communication 
Technology 

Data Rate 
(Bandwidth) 

Transmission 
Range 

Operating Frequency 

LoRa 0.3–50 Kbps 2–5 km 433,868,780,915 MHz 
WiFi 2–54 Mbps 20–100 m 2.4 GHz 

ZigBee 20–250 Kbps 10–20 m 868/915 MHz, 2.4 GHz 

3.2. Experemintal Set-Up and Instalation 
This experiment’s agricultural system and its components are all based on the flow 

chart in Figure 3. Firstly, the weather station is installed. The scenario involves two 
weather station nodes, each in different plant pots (5 kg soil per pot). The experiments are 
made using two sensor nodes, as depicted in Table 2. 

The amount of water that is given in each interval is half a liter (0.5 L). The installed 
components of the proposed system are shown in Figure 4. The first sensor node (node 
1—Figure 4a) was watered based on the information captured by the associated moisture 
sensor that shows the need for water. The second node (node 2—Figure 4b) was watered 
manually once per day when needed. 

Table 2. The specifications of installed sensor in nodes 1 and 2. 

Sensor Node 1 Sensor Node 2 
Temperature, humidity, and pressure 

probe Temperature, humidity, and pressure probe 

Soil moisture 30 cm probe Soil moisture 30 cm probe 
Soil moisture 10 cm probe Solar radiation probe 

Soil/water temperature (Pt-1000) probe Soil/water temperature (Pt-1000) probe 
Leaf wetness probe 

Leaf wetness probe WS-3000 (anemometer, wind-vane, 
pluviometry) probe 
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Figure 3. The main components of the proposed architecture. 

Data relating to the plant’s environment, such as the temperature, humidity, pres-
sure, wind speed, and soil moisture, were gathered using the weather station for 51 days. 
This weather station uses the LoRa radio (XBee protocol) under the frequency of 2.4 GHz 
for communication between sensors node and system gateway (Figure 4c). A receiver 
(system gateway) is connected to the user’s computer to receive and access the required 
data. Then, these data were used to create mathematical models that can be used to accu-
rately and efficiently predict the plant’s environmental requirements for future use. The 
values that are generated from these mathematical models are then implemented in the 
independent auto-watering system. Additionally, the weather station continues sending 
the recorded data, which is used for real-time monitoring of the environmental conditions 
of the two plants. In case of any irregular situation, a proper solution needs to be taken to 
solve this issue.  

The amount of irrigated water in each required irrigation time is half a liter for both 
plant pots. The two plant pots were placed in the exact location under the same weather 
condition during the experimental process, taking 51 days of data recording (i.e., started 
on 24 April 2019, where the total sensed data were 4893 XBee frames). Figure 5 shows the 
environmental parameters (e.g., temperature “TC” and humidity “Hum”) around the in-
stalled plant pots that are located and irrigated under the same weather condition. The 
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Hum_ node 2 is the humidity values, and TC_ node 2 is the Centigrade temperature val-
ues (°C) recorded by the Sensor Node 2. Additionally, Hum_ node 1 is the humidity val-
ues, and TC_ node 1 is the Centigrade temperature values recorded by Sensor Node 1. 
Figure 5b shows the daily amount of irrigated water for each plant in the experimental 
time in the two pots. 

   

(a) (b) (c) 

Figure 4. Installed components of the proposed system. (a) Sensor Node 1; (b) Sensor Node 2; (c) 
System Gateway. 

Several statistical methods for describing statistics analysis results include minimum 
and maximum values, median, different quartile status, mean, variance, and standard de-
viation. Table 3 presents the descriptive analysis information regarding the soil moisture 
(Hz) parameters for both installed plant pots (node 1, node 2). Soil_C_ node 2 represents 
the soil moisture information of the plant under node 2, whereas Soil_C_ node 1 repre-
sents the soil moisture information of the plant under node 1. 

The first quartile (Q1) is the middle value between the minimum amount and the 
median of the dataset. The third quartile (Q3) is the central value between the median and 
the maximum number of the dataset. The results show that the minimum and maximum 
statistical values for plants under sensor nodes node 2 and node 1 are 0, 20.25, 111.11, and 
51.68, respectively. It can also be seen that the median statistical value for plants under 
sensor nodes node 2 is 87.71 and 32.87 for the plant under sensor node 1. 

 

(a) 
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(b) 

Figure 5. (a) Environment condition of the two installed plant pots; (b) amount of water and irriga-
tion time for sensor node 1 and node 2. 

Table 3. Descriptive statistics using several statistical analysis methods. 

Statistic Soil_C_ Node 2 Soil_C_ Node 1 Hum_ Node 2 TC_ Node 2 Hum_ Node 1 TC_ Node 1 
No. of observations 

(stored frames) 4893 4893 4893 4893 4893 4893 

Minimum 0.0000 20.25 7.00 19.20 3.91 20.01 
Maximum 111.11 51.68 99.60 45.03 100.00 47.57 

1st Quartile 64.10 28.87 29.51 28.99 28.09 29.64 
Median 87.71 32.87 42.61 31.91 40.85 32.78 

3rd Quartile 96.15 38.18 60.41 35.24 59.02 36.20 
Mean 78.59 33.69 46.18 32.17 45.22 33.03 

Variance (n-1) 590.72 34.86 424.14 20.00 474.14 21.74 
Standard deviation (n-1) 24.30 5.90 20.59 4.47 21.77 4.66 

3.3. Proposed Auto-Watering System 
The proposed auto-watering system is an independent auto-watering system con-

trolled by Arduino IDE, which is used to write the code and for all of the testing data. The 
sensed data collected from the weather station is used to predicate the mathematical mod-
els. The flowchart of the embedded Arduino IDE model that manages and monitors the 
auto-watering system is presented in Figure 6. The soil moisture content can be presented 
in the percent of volume as in Equation (1). 

soil moisture content (SMC) =
Depth m3

Volume m3 × 100 (1) 

In this experiment, the soil depth is 0.5 m3, the volume is 1 m3, and the soil amount is 
50%. Several depth readings can be obtained by using a multi-depth soil moisture probe. 
The first sensor can be at (10 cm) below the surface; additional sensors should be installed 
at (25–30 cm). The standard level of the water amount is determined significantly based 
on the soil texture and structure, as presented in Figure 7.  

The proposed auto-watering system shown in Figure 8 has a negative feedback loop 
to keep the soil moisture at acceptable levels. When the soil moisture is below a certain 
threshold, the Arduino automatically activates the valve and lets the water pour into the 
soil. Once the soil moisture reaches an acceptable level, the valve is deactivated. The sys-
tem is based on a soil moisture sensor planted inside the soil to monitor the water levels 
every 15 min. Based on the soil moisture value, a 12 V solenoid valve was used to control 
the water flow in the soil automatically. An external 12 V power supply (solar panel) is 
used to power the valve and the Arduino (using a DC-DC 5 V converter). A relay (along 
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with the external power supply) connects the Arduino and the valve. During testing, to 
ensure no irregularities in the plant’s environmental conditions, arching occurred when 
the wires were connected directly, which caused the relay’s burning. A flyback diode was 
implemented parallel to the relay and the valve, so the relay was used without any prob-
lems. Other types of equipment such as a basic breadboard and jumper wires were used 
to connect everything. The weather station will continue to operate alongside the auto-
watering system to ensure no irregularities in the plant’s environmental conditions. If 
there were, a signal could be sent to the user, alerting them of any changes to carry out 
appropriate actions to the auto-watering system and maintain its efficiency. 

 
Figure 6. The embedded Arduino code to control the auto-watering system. 

 

Figure 7. The water content percent based on the soil texture. 



Computers 2022, 11, 7 11 of 18 
 

 

Figure 8. The proposed auto-watering system based mathematical model; red line is positive termi-
nal; black line is ground; yellow line is digital data; blue is analogue data. 

4. Results and Discussion 
This section reviews the obtained results and discusses the main contribution of the 

proposed experimental architecture and mathematical models’ implementation. 

4.1. Performance Evaluation Measures 
Several standard performance evaluation metrics were proposed to evaluate the ac-

curacy of prediction results, such as the coefficient of determination (R2), mean squared 
error (MSE), root mean square error (RMSE), mean absolute percentage error (MAPE), 
and mean absolute error (MAE) [28].  

The coefficient of determination (R2) is considered one of the important measures for 
verifying the performance of predicting models, which has an approximate value from 0 
to 1. The closest (R2) value to 1 is indicated as the best performance result, and it can be 
defined as in Equation (2): 

𝑅𝑅2 = 1 −
∑ ( 𝑦𝑦𝑖𝑖 − 𝑓𝑓𝑖𝑖)2𝑛𝑛
𝑖𝑖

∑ ( 𝑦𝑦𝑖𝑖 − ӯ𝑖𝑖)2𝑛𝑛
𝑖𝑖

 (2) 

where yi is the experimental data and ӯi is the mean of the experimental data. fi is the 
predicted data of yi and n is the sample size. In some cases, the coefficient of determination 
is misleading when its value is negative, confusing with a squared letter with negative 
values. Therefore, the adjusted R-squared is used for examining the performance of pre-
dicting data, in which its value is increased if extra variables are involved in the model. 
The adjusted R-squared is computed as in Equation (3): 
where n is the sample size and k is number of variables in the model. 
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The mean squared error (MSE) is the average cost (i.e., squared difference) between 
real value and the obtained values, which is calculated as in Equation (4):  

𝑅𝑅2𝑎𝑎𝑎𝑎𝑎𝑎 = 1 − �
(1 − 𝑅𝑅2)(𝑛𝑛 − 1)

(𝑛𝑛 − 𝑘𝑘 − 1)
� (3) 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ ∑ �𝑑𝑑𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖�

2𝑛𝑛
𝑖𝑖−0

𝑝𝑝
𝑗𝑗−0

𝑛𝑛𝑛𝑛
 (4) 

where p is the number of processing elements, n is the sample size, yij is processing output 
exemplar (i) at processing element (j) and dij is the experimental output for exemplar (i) at 
processing element (j). 

Another related metric that has been used in our experiments to evaluate the ob-
tained results is the root mean square error (RMSE), as defined in Equation (5): 

RMSE= �1
𝑁𝑁

+ ∑ (𝑦𝑦𝑖𝑖 − 𝑓𝑓𝑖𝑖)2𝑁𝑁
𝑖𝑖=1  (5) 

4.2. Proposed Mathematical Models 
Both plants were in good condition during the experimental time between 24 April 

2019 and 13 June 2019. The total amount of water consumed under sensor node 1 (water-
ing on demand) was 7.5 L, whereas the plant under sensor node 2 (watering manually) 
consumed 14.5 L of water. This indicates that half of the irrigated water was wasted at the 
plant irrigated daily (node 2). Therefore, the experiment proves that wasting water can be 
reduced by improving the efficiency of collecting important sensed information in a 
proper automatic monitoring system. Moreover, the moisture level of node 2 reaches a 
high percentage of 85–90%, which could negatively affect the plant’s growth, while the 
level of moisture of node 1 is about 25–35%, as shown in Figure 9. The good conditions of 
the two plants indicate that the adequate soil moisture level is between 25% and 35%. 

The classification and regression trees methods are used to determine the conditions 
of both, which devised two clusters according to the following two rules: 

R1: If S_ node 1 in [0, 0.25) then node 1 = 0  

R2: If S_ node 1 in [0.25, 0.5] then node 1 = 0.5  

R1 indicates that if the soil moisture has a value less than 0.25, then watering is re-
quired. 

R2 indicates that if the soil moisture has a value between 0.25 and 0.5, then watering 
is not required. 

These two rules are used to control the auto-watering system, which is embedded in 
Arduino IDE. The regression technique is used to analyze the relationships between a set 
of independent and dependent variables. The regression equation contains several coeffi-
cients that explain the relationship between each independent variable and the dependent 
variable, which enables the prediction of future values. Several types of regression are 
introduced, mainly distributed into linear and nonlinear techniques. Most of them con-
struct linear regression estimates between X and Y as Y = XB + B0, X is the rank of the 
matrix, and the algorithm will yield the least-squares regression estimates for B and B0. 
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(a) 

 

(b) 

Figure 9. Comparison of experimental results and proposed mathematical models (Model 1, Model 
2). (a) Simulation output; (b) predicting output. 

Figure 10a presents the soil humidity level based on the two irrigation methods (node 
1 and node 2). Figure 10b shows the proposed mathematical model results for controlling 
the irrigate amount compared to the previous two methods (node 1 and node 2). It indi-
cates that the watering amount is reduced to a quarter of a liter, which reduces the amount 
of water needed. 

Additionally, a linear regression method (Lin-M0) is proposed to determine the 
amount of soil humidity obtained by Equation (6). 

Prop (soil-node 1) = 0.51724*soil-node 2 (6) 

Sensitivity analysis helps to analyze the effect of different values of a set of independ-
ent variables on a particular dependent variable under specific settings. The results of the 
sensitivity analysis proved that the temperature (TC) and humidity (Hum) are the varia-
bles with the highest impact on the level of soil moisture (soil_C). Table 4 presents the 
correlation relationship between the dependent variables (temperature (TC_ node1), hu-
midity (Hum_ node1), and an independent variable (soil moisture (soil _C_ node1)) using 
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automatic irrigation (sensor node 1). It indicates that the soil moisture is affected more by 
the temperature based on the positive relationship of (0.805). At the same time, the hu-
midity parameter has adverse effects on soil moisture results based on the negative corre-
lation relationship of (−0.5039). 

 
(a) 

 
(b) 

Figure 10 (a). Soil humidity level of the two irrigation methods (node 1 and node 2); (b) water 
amount model (node 1)—Equation (6). 

For a real-time monitoring system, we should follow and check the sensed data from 
the weather station (temperature, humidity) to determine any irregulating environmental 
conditions. So, it will send an alert message in case of irregulating conditions. Addition-
ally, for the sake of a real-time monitoring system, two models were proposed to predicate 
the level of humidity level in node 1, which will be used to compare with online sensed 
data from the weather station to alert when irregulated data is obtained from the weather 
station (low or high humidity). 
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Table 4. Correlation relationship between the model variables. 

Variables TC_ Node 1 Hum_ Node 1 soil_C_ Node 1 
TC_ node 1 1.0000 −0.5039 0.8053 

Hum_ node 1 −0.5039 1.0000 −0.1547 
Soil_C_ node 1 0.8053 −0.1547 1.0000 

4.3. Mathematical Regression Models 
Three mathematical regression models (linear and nonlinear) were developed to an-

alyze and monitor the current values’ behavior and predict future conditions. The tem-
perature (TC_ SA01) and humidity (Hum_ SA01) were used as input variables for predict-
ing the future requirements of the soil moisture (soil_C_ SA01). Model 1 used two input 
variables—temperature (TC_ SA01) and humidity (Hum_ SA01)—whilst Model 2 used 
only one input variable—the temperature (TC_ SA01). Model 3 is a nonlinear regression 
model that uses temperature (TC_ SA01) as an input variable, as shown in Figure 10a. The 
following are the three models as defined in Equations (7)–(9): 

Model 1: linear regression. 

(Lin_soil_C_ SA01) = − 6.52 + 1.11446* temperature +0.09873* humidity (7) 

Model 2: linear regression. 

(Lin_soil_C_ SA01) = 3.34 + 0.92065* temperature (8) 

Model 3: nonlinear regression. 

(NoN_Lin_soil_C_ SA01) = 63.63 − 6.72748* temperature + 0.31339* tempera-
ture ^2 − 0.00434* temperature ^3 + 6.25652E − 6* temperature ^4 

(9) 

The goodness of fit statistics of the proposed models are presented in Table 5. The 
coefficient of determination (R2) values of the three models is (0.73, 0.64, and 0.67), respec-
tively, which means the predicted values are a 70% close fit to the experimental datasets. 

Table 5. Goodness of fit statistics of the proposed models. 

 Model 1 Model 2 Model 3 
R2 0.73 0.64 0.65 

R2_adj 0.73 0.64 0.65 
MSE 5.97 7.85 0.132 

RMSE 2.44 2.80 0.363 

The value of the adjusted R-squared is precisely equal to the coefficient of determi-
nation (R2), which means that the predicted values are in the correct direction of experi-
mental data. The mean squared errors are less in Model 1 (5.97) than in Models 2 and 3 
(7.85 and 7.24), respectively. Figure 10b shows the graph of experimental datasets and the 
predicting datasets of proposed models (Model 1 and Model 2). 

The predicting datasets fit the experimental datasets smoothly, which means that we 
could examine the behavior of the independent variable soil moisture (Soil_C_ SA01) 
quickly and at a low cost. This will help farmers and decision-makers evaluate the re-
quired water rate for a specific time (monthly, annually, every 5 years, etc.). Comparing 
the results with other researchers is one of the important ways to verify the effectiveness 
of the extracted results compared to other studies. The results should be compared under 
the same conditions to give credibility to the results extracted. However, one of the most 
significant obstacles that we face when carrying out the comparative study is the disparity 
of the work environment and the conditions of input and outputs. Therefore, we often try 
to find some common parameters and compare them based on them. 
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Table 6 presents the results of the proposed methods compared to some studies, 
which show that most of the proposed methods and these studies have achieved high 
accuracy. They significantly reduce the percentage of water and energy consumption, 
which indicates the success of the current experiments. The proposed models reduced the 
water consumption by about 50–65% compared to 30–60% in [14] and 12.5% in [23]. In 
addition, another study [24] reduced the energy consumption by up to 69% compared 
with the proposed models that reduce the energy by using a solar panel to charge the 
battery. 

Table 6. The comparison results of the proposed methods with other studies. 
 Model 1 Model 2 Model 3 [23] [14] [24] 

R2 0.73 0.64 0.65 0.98 - - 
R2_adj 0.73 0.64 0.65 - - - 
MSE 5.97 7.85 0.132 0.06 - 0.22 

RMSE 2.44 2.80 0.363 0.77 - 0.47 
Saving Water 50–75% 50–75% 50–75% 12.5% 30–60% - 
Saving Energy Yes Yes Yes - - 69% 

5. Conclusions 
This paper proposed an autonomous sensor-enabled architecture using different self-

powered wireless sensors that support real-time monitoring of agricultural parameters 
over various heterogeneous sensing data streams. The proposed architecture allows the 
farmers to measure and monitor their farms remotely without a need to access third-party 
platforms. The architecture is tested and evaluated using real scenarios encompassing the 
various aspects of the precision agriculture process. The empirical results show that the 
proposed architecture can be used in a variety of agricultural activities, including the con-
trol of irrigation water and the monitoring of agrarian conditions. Sensing and monitoring 
soil moisture play a significant role in the agriculture domain for assisting farmers in con-
trolling and managing their irrigation methods more efficiently. 

The empirical experiments proved that the proposed architecture could efficiently 
control and monitor the agricultural conditions, minimize water waste, and maximize the 
growth rates of the plants. Therefore, developing an automatic-sensor-enabled architec-
ture system provides a potential solution for managing the farm accurately. The proposed 
approach helps maintain the irrigation effectively, uses suitable amounts of water, and 
enhances productivity. In addition, three mathematical regression models were devel-
oped to predict the agricultural activities’ future behavior under specific conditions and 
scenarios. 

The main contributions of this work are: 
• A critical survey and empirical study conducted to analyze the impact of 

implementing an autonomous sensor-enabled architecture in Oman to reduce 
consumed water consumption in irrigation and enhance plants productivity. 

• The proposed method helps to manage and monitor plant needs in an efficient 
manner. The use of sensors helps to control more than one field at a time. 

• Most of the existing systems used in managing and controlling plants require a 
connection to the Internet and external data storage. The proposed method helps 
manage and control the plants’ needs automatically without the need for the Internet. 

• The proposed method uses an internal wireless network covering several adjacent 
fields, which reduces the expenses needed to manage the farms. 

• The proposed method works without an energy source, as it generates the energy 
needed for self-operation by solar panels. It can also work in distant areas where 
there is no power source. It proposed three mathematical models that simulate 
irrigation time and plant needs. Moreover, they can predict the amount of water 
needed for irrigation at any time. 



Computers 2022, 11, 7 17 of 18 
 

The validity and effectiveness of the proposed methods have been tested mathemat-
ically, as well as their conformity with the actual data. However, certain restrictions on 
the work presented in this paper need to be addressed to improve the proposed architec-
ture’s effectiveness. The proposed architecture needs to be implemented in a large-scale 
field, which will allow the analysis of the impacts of the different weather conditions on 
the irrigation process in Oman. 
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