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Abstract: This work explores the suitability of data treatment methodologies for Raman spectra of
teeth using multivariate analysis methods. Raman spectra were measured in our laboratory and
obtained from control enamel samples and samples with a protective treatment before and after an
erosive attack. Three different approaches for data treatment were undertaken in order to evaluate
the aptitude of distinguishing between groups: A—Principal Component Analysis of the numerical
parameters derived from deconvoluted spectra; B—PCA of average Raman spectra after baseline
correction; and C—PCA of average raw Raman spectra. Additionally, Hierarchical Cluster Analysis
were applied to Raman spectra of enamel measured with different laser wavelengths (638 nm or
785 nm) to evaluate the most suitable choice of illumination. According to the different approaches,
PC1 scores obtained between control and treatment group were A—50.5%, B—97.1% and C—83.0%
before the erosive attack and A—55.2%, B—93.2% and C—87.8% after an erosive attack. The obtained
results showed that performing PCA analysis of raw or baseline corrected Raman spectra of enamel
was not as efficient in the evaluation of samples with different treatments. Moreover, acquiring
Raman spectra with a 785 nm laser increases precision in the data treatment methodologies.

Keywords: Raman spectroscopy; dental enamel; MVA; PCA; acidic challenge

1. Introduction

Raman spectroscopy, a form of vibrational spectroscopy, is presently considered
a viable optical method for biomedical applications, mainly due to its non-destructive
modality to analyse molecular composition, and is becoming progressively important in
biomedical research, especially for its high biochemical specificity, low water sensitivity
and capability to work in the near-infrared (NIR) region with fibreoptics. This technique
provides precise identification and detailed information about molecular composition,
quantification of a specific compound, characterization of structural arrangement, crystal
symmetry and orientation, crystallinity degree and molecular interactions [1,2].

The main particularity of this technique is that when light arrives to an examined
sample, a small part of it is scattered in several different directions. The larger part of the
scattered photons has the same frequency as the incident photons, elastically scattered.
However, a small fraction of light (approximately 1 in 107 photons) is scattered at optical
frequencies different, and usually lower, than the frequency of the incident photons. The
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process causing this inelastic scatter is known as the Raman effect. If the sample or
substance being investigated is illuminated by monochromatic radiation, such as a laser,
the spectrum of the scattered light consists of a strong line of the same frequency as the
incident illumination, together with weaker lines on either side. These are shifted from the
strong line by frequencies varying from approximately 100 to about 3500 cm−1 [3–7].

Raman spectroscopy has shown to be a suitable and sensitive technique for the char-
acterization of dental tissues, from caries detection to the evaluation of demineralization
caused by acidic external agents [1,2,8].

Tooth enamel is the most highly mineralized and hardest tissue in the human body
and covers and protects the anatomic crown of the tooth. It resists to chewing forces and
protects the internal layers, dentin, and pulp [6,7,9]. The information on the crystalline
state of the dental enamel can be provided by the determination of the depolarization ratio
of the v1 symmetric stretching band of phosphate (at 959 cm−1), while the determination of
the depolarization ratio of phosphate is achieved by acquiring, measuring, and comparing
two different Raman measurements of the same region, obtained with parallel and cross-
polarized configurations of the spectrometer [1,2,5,8,10].

1.1. Raman Spectroscopy Applied to Dentistry

In a research study performed by Monteiro et al. [8], the suitability of the analysis
of the depolarization ratio has been demonstrated for the examination of carious dental
tissues and mineral loss in depth by analysing tooth cross-sections. Samples of enamel and
dentine, with carious lesions in different stages of progression, were assessed by comparing
the depolarization ratio of the PO4

3− symmetric stretching band at 959 cm–1 in different
sound and carious tissues carefully chosen by an expert and the selection criteria were
represented by the presence of lesions, cavitated or not, including white spots.

Buchwald et al. [4,9,11,12] have recently performed several research studies to investi-
gate the effectiveness of Raman spectroscopy technique in the determination of changes in
chemical composition, structural arrangement, crystal rod orientation and/or morphology
of human tooth enamel affected by caries, both natural and artificially induced. This
has been accomplished by evaluating spectral parameters such as Raman band position,
peak intensities obtained by using different excitation laser wavelengths, the full width at
half maximum of the symmetric stretching vibrational mode assigned to the phosphate
band [4]. Additionally, they have also used the depolarization ratio (ρ959) and polarization
anisotropy (A959). Moreover, Raman spectral maps with micro-level spatial resolution,
allow the determination of local variations in enamel structure affected by caries [4]. As the
results have shown, the parameters ρ959 and A959 are not the only indicatives of enamel
caries changes. Raman band spectral parameters, such as position and line shape, can also
be employed. Likewise, it is possible to detect early caries by analysis of background in the
Raman scattering spectrum related to the Rayleigh scattering and fluorescence emission.

Pankrushina et al. [13] applied Raman spectroscopy to better understand the impact
of the structure and composition of enamel and dentine layers on their chemical resistance,
mechanical properties, protein alteration and the effects of de-/remineralization processes.
Different types of tooth diseases were also investigated: teeth affected by hypoplasia lesions
with different severity degrees, and then the authors compared these results with those
obtained from eroded and intact sound teeth.

Prikule et al. [14] presented comparative studies using scanning Raman micro-spectroscopy
with several laser sources (wavelengths of 532, 785, and 1064 nm), obtaining different
spectra of tooth enamel according to the used radiation, both in vivo and in vitro. It was
shown that the intensity of Raman scattering of enamel can vary according to the enamel
layer’ thickness.
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1.2. MVA Methods Applied to RAMAN Spectroscopy

As revealed in the conference paper, all existent multivariate classification techniques,
shown in Figure 1, can be mainly separated into unsupervised methods and supervised
learning procedures. Data compression method such as principal component analysis
(PCA) is often employed to contribute to variability in the investigated data. PCA, consid-
ered a projection method, is a pre-processing statistical procedure that transforms several
correlated variables into a lesser number of variables that are uncorrelated (called prin-
cipal components) that still contain most of the information of the primary larger set.
Consequently, analysis methods, for instance, hierarchical cluster analysis (HCA), linear
discriminant analysis (LDA) and other types, have also been frequently used to create
classification algorithms for normal healthy condition and disease differentiation [6,15].
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to spectroscopic techniques, as well as to spectral data processing and analysis [6].

Machine learning (ML) can include multivariate methods, which encompass several
multivariate classification methods (also known as pattern recognition techniques) and
multivariate regression. In unsupervised pattern recognition techniques, for example, PCA
and cluster analysis (CA), any prior knowledge about the training set samples (in this
case, represented by the acquired Raman spectra) is not required. Both referred statistical
analysis methods are frequently applied to consider differences and/or similarities between
spectra or image areas with the same features. Alternatively, supervised pattern recognition
techniques, for instance, artificial neural networks (ANNS) and LDA necessitate minimal
previous information from preceding experiences, for instance, undeniably detecting and
identifying examined samples from disease or differentiating samples from healthy normal
cases. In this manner, supervised learning methods result in a more precise and accurate
identification and classification, while unsupervised methods are considered more useful
for investigative studies and exploratory analysis of data [15].

PCA represents an analysis method that is often used to reduce the dimensionality of
very large data sets, by transforming and reducing a larger set of variables into a smaller
one, that keeps most of the essential information in the larger set, preserving this way as
much information as possible. Reducing the number of variables of a data set usually leads
to a loss in accuracy, achieving instead a significant increase in simplicity. Therefore, smaller
data sets are easier to explore, making it possible to analyse data much easier, simpler,
and faster for machine learning algorithms, without irrelevant or uncorrelated variables
to process. Generally, statistical methods applied to spectroscopic techniques, such as
PCA, are based on the analysis of an entire given spectrum (comprising characteristic
bands known as fingerprints) that is under examination. However, this approach does not
provide valuable interpretations or explanations into the origins of the detected/identified
changes. Additionally, statistical analysis methods usually presume a linear relationship
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between the spectral components belonging to a certain Raman spectrum. Therefore, an
adequate selection of quantitative information about the source of the Raman specific
spectral peak data can be often problematic due to the disorganized or, sometimes, unclear
tissue type identification/classification or interference/overlay between different classes or
varieties of spectroscopic characteristics (such as fluorescence, scattering, and absorption
effects). Consequently, there is a tremendous need for developing quantitative models and
quantifiable approaches that consider the investigated optical, structural, and biochemical
properties of the examined tissue [6,15].

So far, the principal component analysis method represents the unsupervised mul-
tivariate statistical tool most extensively used, which is widely applied especially when
vast spectral data must be transformed into a smaller number of independent variations
known as principal components (PCs), while contributions of these components are known
as scores, which are extensively used as parameters for classification. PCA algorithms are
frequently applied directly to collected (Raman) spectra within a certain data set to reduce
the original dimensionality into a linear combination of orthogonal basis spectra known as
principal components (PCs), resulting afterwards in derived loading plots represented as
plots of first three PCs as function of the wave number. Generally, the first PC is the most
important and accounts for the spectral features with highest variation, while subsequent
secondary and tertiary PCs represent features with progressively lower variance. PCA
method is typically used to characterize and distinguish the Raman spectra of a specific
“calibration set” of samples that contain at least two distinct features/chemical components,
as determined by pathology under study. As already described, in the case of Raman
measurements, PCs represent an orthogonal set of spectral data (with varying spectral
parameters), a linear numerical combination of which can accurately provide valuable
insights on each of the existent spectra in the sample set. By correlating the mentioned
fitting coefficients “scores” of the analysed spectra in the data set with their established
classifications, an accurate diagnostic algorithm can be easily obtained. However, its main
disadvantage lies on the fact that PCs are pure mathematical concepts, without any direct
physical significance or meaning [6,15].

1.3. MVA Applied to Raman Spectral Data Obtained from Dental Samples

When Raman spectroscopy is used in combination with PCA [9,16–21] or other
MVA [9,19–22] methods, it is possible to obtain unique spectral characteristics extracted
from raw acquired spectra, which can be used for the identification of similar areas, specific
features, or certain types of samples, along with differentiation and classification of a differ-
ent sample or tissue condition, according to the case. Raman spectroscopy and PCA can be
used to distinguish control from treated enamel samples [23], as well as to discriminate
sound enamel from severe dental fluorosis samples with high levels of sensitivity and
specificity [16]. Furthermore, Raman spectroscopy and PCA can be used to differentiate
healthy from demineralized enamel, as well as identify and assess enamel remineralization
with different fluoride solutions [17]. Raman spectroscopy-PCA method was also used for
the analysis of human dental enamel surfaces from sound, affected (cavitated), and highly
affected tooth samples, revealing that exists a predisposition in individual teeth to caries
that can be directly correlated with the structural/compositional enamel changes that occur
mainly along the main c-axis of hydroxyapatite crystals [18].
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Therefore, MVA unsupervised methods, such as PCA, applied to Raman technique
can provide a baseline for methodological development designed for clinical diagnostics of
different pathologic conditions, being of a great utility for data analysis in several relevant
fields of dentistry diagnostics and research, as follows: (1) early detection and recognition of
carious lesions; (2) identification and differentiation between normal and affected samples
(by several conditions such as tooth decay, hypo-mineralization, fluorosis, Amelogenesis
Imperfecta); (3) bleaching products performance; (4) assessment of dental pharmaceutical
products; (5) demineralizing attack from acidic challenges, foods, and beverages; (6) pro-
teomic differences between different types of human teeth; (7) remineralization agents and
other related treatments.

The present paper represents an extended version of a previously published work in
conference proceedings [23] and aims at establishing the most suitable methodologies for
the treatment of Raman spectra and evaluation of the collected data. Multivariate Analysis
Methods were applied to Raman spectra, acquired in our laboratory, from enamel samples.
Therefore, the main purpose of it is to continue and develop more the exposed ideas, results,
and concepts, for a deeper understanding of the multivariate analysis methods applied to
Raman spectra.

In order to establish the most efficient method of Raman data evaluation to distinguish
between enamel sample groups, three different approaches were undertaken: A—Principal
Components Analysis of the derived numerical parameters derived from Raman spectra
deconvolution, namely, depolarization ratio, anisotropy, full width at half maximum and
Raman shift for the symmetric stretching band of phosphate.; B—PCA of the average
Raman spectra after baseline correction using polynomial function; and C—PCA of average
raw Raman spectra. These three approaches were essayed on Control and Treatment group
samples, before and after application of fluorinated varnish (treatment group) and acidic
erosive cycle. Additionally, in order to assess the most suitable laser wavelength to be
employed for the characterization of enamel samples, Hierarchical cluster and PCA were
applied to numerical parameters derived from Raman spectra of the same enamel samples,
acquired with two different lasers, 638 nm and 785 nm.

2. Materials and Methods

Principal component analysis represents the unsupervised multivariate statistical tool
most widely used when large spectral data must be decomposed into a smaller number
of independent variations known as principal components (PCs), while contributions of
these components are known as scores, which are extensively used as parameters for
classification. PCA algorithms are frequently applied directly to collected (Raman) spectra
within a certain data set to reduce the original dimensionality into a linear combination
of orthogonal basis spectra known as principal components (PCs), resulting afterwards
in derived loading plots represented as plots of the first three PCs as a function of the
wave number. Generally, the first PC is the most important and accounts for the spectral
features with highest variation, while subsequent secondary and tertiary PCs represent
features with progressively lower variance. In other words, to describe a given spectrum,
a linear combination of PCs is used, with each PC weighed by an appropriate PC score.
Usually, the values of these PC scores are used to determine the spectral features that can
distinguish between normal and diseased tissues, contributing to diagnostic algorithms
development. PCA method is typically used to characterize the Raman spectra of a specific
“calibration set” of samples containing at least two distinct features/chemical components,
as determined by pathology under study.
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2.1. Evaluation of Different Approaches for Raman Data Analysis
2.1.1. Dental Samples

Two experimental groups of human dental enamel samples, control (C) and treatment
(T), each containing 10 tooth samples, were subjected to an acid demineralization procedure,
to test the protective effect of fluorinated varnish against erosion. Previously to the acidic
attack, the T group was cleaned with Couto toothpaste and treated with Fluoride containing
dental fluorinated varnish—VOCO Profluorid—while group C was only cleaned with
Couto toothpaste.

2.1.2. Methodology

Raman spectra were acquired using a Horiba XploRA Raman Confocal Microscope em-
ploying a NIR laser diode source operating at a wavelength of 785 nm, using a 1200 lines/mm
grating. This way, the spectral range investigated was from 300 cm−1 to 1800 cm−1, resulting
in a spectral resolution of 4 cm−1. Using an entrance slit of 200 µm, and a confocal hole
of 300 µm, the scattered light collected by the objective was dispersed onto the air-cooled
CCD array of an Andor iDus detector. A 100× objective (N.A. = 0.9) was used to focus
on the surface of enamel, as well as a 50% neutral density filter (power on the sample
7.6 ± 0.3 mW (lasercheck®, Edmund optics)). For each sample, an average of 20 measure-
ments (10 different points with parallel polarization, always followed by other 10 with
orthogonal polarization) were performed, with an exposure time for each measurement
of 20 s with 4 accumulations. The following parameters were obtained and compared in
each step of the study: depolarization ratio (ρ959), anisotropy, Raman shift wavenumber
and full width at half maximum (FWHM) of the symmetric stretching band of phosphate
(~959 cm−1), according to Pessanha et al. [24].

2.2. Evaluation of the Suitability of the Laser Wavelength for Raman Analysis
2.2.1. Dental Samples

Six human dental samples (premolars and upper molars) were selected from donors
having as exclusion criteria the presence of superficial lesions observed employing a
stereomicroscope (Meiji Techno EMZ 8RT, Japan).

2.2.2. Research Design and Methodology

Raman spectra of samples were acquired using the same microscope, employing lasers
with wavelengths of 785 nm (NIR) and 638 nm (R), with the main objective of acquiring
spectra with parallel and orthogonal polarization (Figure 1). During the spectra acquisition,
the collection parameters, such as entrance slit, pinhole and objective were maintained as
in the first study, while the laser power filtering and detection grating were optimized for
each laser, for the 785 nm laser were used the same parameters as in the fist study, while
for the 638 nm we used a 25% (power on the sample 1.8 ± 0.2 mW (lasercheck®, Edmund
optics)) intensity filter to avoid saturation of the detector. Regarding detection, the same
grating (1200 grooves/mm) was used for the 785 nm laser, while for the 638 nm was chosen
a 1800 grooves/mm grating. Raman (single point) measurements were performed on these
samples (10 points per sample, with the same number of accumulations and collection
duration). Parameters (Raman shift, FWHM, depolarization ratio, and anisotropy) were
extracted from baseline corrected Raman spectra acquired with parallel and perpendicular
polarization, and additionally, was calculated the intensity difference between spectral
peaks recorded with parallel and cross-polarized configurations, before and after baseline
correction. Examples of the obtained spectra are presented in Figure 2.
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3. Results and Discussion
3.1. Evaluation of PCA Approaches on Raman Spectroscopy Regarding the Protective Effect of
Dental Varnish

The score plots obtained for Approach A are represented in Figure 3, the loading plots
for Approach B are revealed in Figure 4, while the results of all three spectra evaluation
approaches are shown in Figure 5. These score plots were used to identify, distinguish,
and categorize two small clusters: control and fluorinated varnish treated sample groups.
Regarding approach A, making use of derived numerical parameters, PC1 scores account
for the majority of variance within all analysed data sets, with proportions of 50.55% and
55.18% before and after an acidic attack, respectively.

As shown in Figure 3, before treatment, the samples are randomly dispersed, indicat-
ing that there is no significant difference between the samples’ overall condition within
and between groups initially. After acidic attack, there is a clear separation between the
two groups, with the varnish treated samples getting spatially very close to each other,
indicating that most of the varnish treated samples (8 out of 10) share almost the same
biochemical characteristics, mineral content, and structural arrangement after undergoing
the treatment and acid challenges, remaining equally affected.

The key meaning of the PC score, representing the sample distribution obtained
with Approach A, is that all analysed spectral parameters, especially band position and
depolarization ratio, are strongly influenced by the chemical environment, which has a
great impact on hydroxyapatite chemical bonds, and inter- and intramolecular forces of
outer enamel layers. These parameters will consequently influence dramatically the sample
distribution and group separation [23]. Regarding approach B, the obtained PC scores from
the average Raman spectra were significantly different from those obtained in Approach A.
The obtained proportions of the 1st PC were 97.1%, and 93.2% before and after acidic attack.
Although the control specimens tend to separate from the treated ones, after acidic attack,
we cannot observe anymore a clear separation between these two groups. The plot shows
that the treated samples are partially overlaid with controls, and the distribution ellipse for
treated group is entirely included in the distribution of control group. Therefore, approach B
yielded different results from the previous (A), without showing a clear separation between
the sample groups after the acid challenge, and indicating that before any treatment the
treated samples show, from a statistical point of view, similar biochemical characteristics,
mineral content, and/or structural arrangement from the control group, after undergoing
the treatment, while after undergoing the erosive challenge the samples tend to share very
similar, if not the same biochemical properties and mineral density. Furthermore, only
Approaches B and C provided PC derived spectral loadings, which all carry the most
relevant information extracted from average Raman spectra, as shown in Figure 4. Since
very minor numerical changes, such as slight alterations of the peak intensities or subtle
shifts, are possible to identify and quantify in the loadings derived from baseline corrected
spectra (Approach B), we considered that there is no need to represent the loadings obtained
from raw spectra (Approach C).
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mean spectral intensity values of ten distinct spectra, equally dimensioned from 400 to 1200 cm−1,
for every examined sample after each study phase. The shown spectral loadings for the main
three principal components correspond to the following study phases: (a) before and (b) after acid
challenge.
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Regarding Approach C (Figure 5), the obtained scores were 83.0%, and 87.8% before
and after an erosive attack. In this approach, no clear group separation or differentiation
between samples was found. The exposed results, obtained by applying PCA in three
different ways, reveal that the used approach, when the algorithm is applied directly
to the average Raman spectra or separately on extracted spectral parameters, influences
the capacity and ability of PCA method for distinguishing and separating two different
sample groups, according to the main three PC scores, obtained from average spectra or
spectral parameter analysis, with the 1st PC score accounting most. The main drawback
could be the analysis of spectra without taking advantage of the polarization anisotropy of
the symmetric stretching band of phosphate in hydroxyapatite as a sensitive marker for
demineralization. In approaches B and C, while comparing spectra intensities, instrumental
variations and sampling heterogeneity weights more in the evaluation of the spectra. It is
known that different teeth or even different locations on one tooth can have different Raman
scattering efficiency due to bio- heterogeneity, or layer thickness therefore, the measured
Raman intensity could vary from person to person or even from tooth to tooth. In contrast,
comparing peak ratios avoid these variations as the depolarization ratios respond solely to
the underlying structure of enamel.

3.2. Evaluation of the Suitability of Laser Wavelength for Enamel Characterization

Figure 6 shows the dendrogram obtained from Hierarchical clustering unsupervised
analysis applied to the parameters derived from Raman spectra and evaluations of the sym-
metric stretching band of phosphate (~959 cm−1), namely, depolarization ratio, anisotropy,
FWHM and Raman shift.
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The results clearly show the sample identification and the data clusters differentiation
according to the Hierarchical clustering method. As can be seen, the shown degree of
similarity between the samples is higher when illuminated with a 638 nm laser. This fact
indicates that Raman spectroscopic measurements of surface enamel are more precise,
with improved quality when using the NIR laser. This allows for a better classification
of the acquired results, revealing a greater parametric distance and decreased similarity
degree between the examined samples within the same group, thus enhancing their overall
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characterization at a biomolecular level. This emphasises slightly more the discrepancy
between the overall condition of the specimens, encompassing the structural arrangement
and orientation of outer layers (sharper and well-defined peaks, not substantially shifted
from 959 cm−1), as well as hydroxyapatite quantity from thinner or thicker enamel layers
(higher peak intensity) and mineral density, as mentioned in [14].

The increase in precision is further highlighted by the determination of the depolariza-
tion ratio (ρ959), revealing lower uncertainties when using the 785 nm laser (Table 1). The
depolarization ratio is indicative of the soundness of teeth [12], presenting increased values
for demineralized enamel [23,24]. Although the results obtained with both lasers are in
agreement, samples S2 and S6 present higher depolarization ratio, while samples 3, 4 and 5
are more difficult to differentiate; the higher uncertainties rendered by measurements with
the red laser would not allow to distinguish between sound and demineralized enamel
with the main purpose of performing such an analysis.

Table 1. Mean values of ρ959 ± standard deviation for samples S1–6, obtained with 638 nm and
785 nm lasers.

Enamel Sample ρ959 for 638 nm Laser Source ρ959 for 785 nm Laser Source

S1 0.07 ± 0.04 0.03 ± 0.01

S2 0.08 ± 0.03 0.05 ± 0.02

S3 0.04 ± 0.01 0.02 ± 0.01

S4 0.04 ± 0.01 0.02 ± 0.01

S5 0.04 ± 0.01 0.03 ± 0.01

S6 0.09 ± 0.08 0.04 ± 0.02

4. Conclusions and Future Work

Raman spectroscopy has confirmed to be a highly specific and sensitive analytical
technique in the biomedical field, providing precise results and accurate specific spectral
parameters that characterize the overall condition of the tooth (mineralization degree, caries
and/or lesions presence, crystalline orientation and structural arrangement of both surface
and inner morphologic layers).

Regarding the data evaluation approach, Approach C has revealed to be unsuitable
for this kind of study, rendering sample distributions and group separations that cannot
be discriminated or classified. Approach A showed a clear group separation at the end
of the acidic challenge, while Approach B showed a clear group separation and sample
differentiation after the treatment stage, distinguishing the control group from the varnish
treated.

The obtained results must be considered preliminary, confirming, that the Raman-PCA
technique has a strong capability to be a non-invasive real-time tool for (early) detection and
monitoring evolution of dental caries and demineralization/remineralization processes.
Therefore, PCA can be certainly used to recognize similar features within the analysed
enamel samples, as well as to compare and differentiate between different spectral parame-
ters for a precise distinction and classification of the sample groups under examination.

This study proves that the Raman spectroscopy technique combined with the PCA
method has a strong potential to discriminate healthy teeth with sound enamel from dem-
ineralized ones, control from treated samples, as well as spectral measurements performed
with different laser wavelengths, with good sensitivity and specificity levels. The Raman-
PCA technique can certainly be employed to monitor the evolution of dental samples
during different dental product applications and acid challenges, since it requires no or
minimal sample preparation and can provide objective, accurate, real-time, specific, and
fast results, reducing subjectivity to human error. There is a high probability that in the next
few years, Raman spectroscopy could be routinely used in hospitals, applied particularly to
in vivo examinations for diagnosing and surveying several diseases, producing each time
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quicker and more accurate results, decreasing waiting times and, subsequently, improving
investigation efficiency, accuracy, and confidence, along with the efficacy of treatments.
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