
����������
�������

Citation: Guzman, E.; Andres, B.;

Poler, R. Matheuristic Algorithm for

Job-Shop Scheduling Problem Using

a Disjunctive Mathematical Model.

Computers 2022, 11, 1. https://

doi.org/10.3390/computers11010001

Academic Editors: Pedro Pereira,

Luis Gomes and João Goes

Received: 31 October 2021

Accepted: 20 December 2021

Published: 22 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Matheuristic Algorithm for Job-Shop Scheduling Problem
Using a Disjunctive Mathematical Model

Eduardo Guzman * , Beatriz Andres and Raul Poler

Research Centre on Production Management and Engineering (CIGIP), Universitat Politècnica de València (UPV),
Calle Alarcón 1, 03801 Alcoy, Alicante, Spain; bandres@cigip.upv.es (B.A.); rpoler@cigip.upv.es (R.P.)
* Correspondence: eguzman@cigip.upv.es

Abstract: This paper focuses on the investigation of a new efficient method for solving machine
scheduling and sequencing problems. The complexity of production systems significantly affects
companies, especially small- and medium-sized enterprises (SMEs), which need to reduce costs
and, at the same time, become more competitive and increase their productivity by optimizing their
production processes to make manufacturing processes more efficient. From a mathematical point
of view, most real-world machine scheduling and sequencing problems are classified as NP-hard
problems. Different algorithms have been developed to solve scheduling and sequencing problems in
the last few decades. Thus, heuristic and metaheuristic techniques are widely used, as are commercial
solvers. In this paper, we propose a matheuristic algorithm to optimize the job-shop problem which
combines a genetic algorithm with a disjunctive mathematical model, and the Coin-OR Branch & Cut
open-source solver is employed. The matheuristic algorithm allows efficient solutions to be found,
and cuts computational times by using an open-source solver combined with a genetic algorithm.
This provides companies with an easy-to-use tool and does not incur costs associated with expensive
commercial software licenses.

Keywords: scheduling; production planning; matheuristic; genetic algorithm; disjunctive mathematical
model

1. Introduction

Nowadays, rapidly growing economic markets, competitive pressures and increas-
ingly challenging business environments are forcing increasingly more companies, espe-
cially small- and medium-sized enterprises (SMEs), to innovate their industrial manufactur-
ing systems. SMEs have had to respond and adapt to a constantly changing organizational
environment to deliver high-quality customized products. Consequently, SMEs supply
chains are not static as they must respond to continuous change by adapting their control
techniques, and coordinating and managing change in the way they operate and configure
their businesses. Companies also have to manage their evolution toward participation in
collaborative networks [1].

The market in which these companies currently operate is intensely volatile, which
makes effective supply chain (SC) management critical to improve organizational perfor-
mance as manufacturing systems become increasingly dynamic [2] due to new challenges
in manufacturing industries, such as Industry 4.0 and the Internet of Things (IoT).

Researchers are showing much interest in improving the performance of enterprises
and SC to generally cope with these dynamic environments by devising mechanisms and
techniques that provide SMEs with affordable tools in cost, easy-to-use and computational
efficiency terms. The search for solutions for company scheduling problems, such as job-
shop scheduling problems (JSP), remains a relevant research topic [3]. This is because most
of these real-world scheduling problems are too complex to be optimally solved and are
often NP-hard. This means that exact techniques and some algorithms cannot solve them

Computers 2022, 11, 1. https://doi.org/10.3390/computers11010001 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers11010001
https://doi.org/10.3390/computers11010001
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0003-0866-2095
https://orcid.org/0000-0002-7920-7711
https://orcid.org/0000-0003-4475-6371
https://doi.org/10.3390/computers11010001
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers11010001?type=check_update&version=2


Computers 2022, 11, 1 2 of 16

in effective computational times when the problem is too large. At the same time, solving
them with commercial solvers is neither economically viable nor computationally efficient.

Mathematical formulations like mixed integer linear programming (MILP) models for
JSP, have been around since the 1960s [4]. The leading formulations for this problem type
are disjunctive formulation, rank-based formulation and time-indexed formulation [5].

Ku and Beck [5] compared these mathematical formulations with different solvers
(CPLEX, GUROBI and SCIP, the first two are commercial and the last one is not), which
showed that the disjunctive model outperformed the rank-based and time-indexed models.

In this context, a new matheuristic algorithm combining a genetic algorithm and
the disjunctive model (MILP) is proposed in this study. Matheuristic algorithms are
constructed by “the interoperation of metaheuristics and mathematical programming
techniques” [6]. According to Ball [7] and Talbi [8], combinations or hybridizations of
matheuristics can be classified into three approaches: (1) decomposition approaches, where
the problem is decomposed into subproblems to be optimally solved; (2) improvement
heuristics or metaheuristics, where the mathematical programming model is used to
enhance an initial solution obtained by some heuristic or metaheuristic method; and
(3) approaches employing the mathematical programming model to provide approximate
solutions in which a relaxation of the problem toward optimality is solved.

The method presented in our study consists of a combination of a genetic algorithm
and linear programming (LP) model (GA-LP) that is included in approach 2 of this classi-
fication. The main objective of this work is to test the non-commercial COIN-OR Branch
and Cut (CBC) solver [9] for solving the JSP, combined with a genetic algorithm, in large
or real instances. The experimental results confirm the feasibility and effectiveness of the
proposed matheuristic compared to the solutions provided by the solver.

Accordingly, the document is structured as follows. Section 2 reviews work related
to the application of matheuristic algorithms to the JSP. Section 3 presents the proposed
JSP mathematical model in detail. Section 4 describes the matheuristic approach. Section 5
presents the computational experiments and discusses the results. Finally, Section 6 covers
the conclusions of the performed work and future research lines.

2. Literature Review: Matheuristic Resolution Approaches

A wide variety of papers describes different models and algorithms to solve scheduling
problems [10]. Many of these techniques correspond to mathematical models, heuristic
and metaheuristic algorithms [11]. The application of these techniques depends on the
application area, i.e., SC planning under uncertainty [12], closed loop SC [13], SC sustainable
management [14] or green SC management [15]. These studies reviewed the models and
algorithms employed to solve optimization problems in their specific field.

In this paper, we focus on the scheduling problem to be addressed at the operational
decision-making level, and we pay particular attention to the JSP which is considered to be
NP-hard. To address this problem, heuristic (H) and metaheuristic (MH) approaches have
received much attention in the literature. Indeed, many literature surveys have been carried
out over time. Thus, deterministic and stochastic optimization models have been developed
to solve the JSP [3,16,17]. Moreover, other approaches including decomposition heuristics,
dispatching heuristics, disjunctive representations of the problem, discrete simulation or
rolling horizon approaches can be found in the literature [18].

To offer readers an overview on the studied topic, we reviewed how the literature
has applied matheuristic approaches to solve the JSP. In our research, we applied the
keywords “matheuristic” AND “job-shop scheduling problem”. Seventeen papers coincide
with our research in the Scopus database. Some tackle flow shop scheduling problems,
and others refer to reviews. After analyzing the abstracts and the whole contents of the
papers, nine papers remained of the initial seventeen (see Table 1). Our review research
is not without limitations as the search results may not fully cover all the matheuristic
proposed in the literature for being named differently from the keywords used in our
research “matheuristic”, e.g., hybrid algorithms.



Computers 2022, 11, 1 3 of 16

Table 1. Literature review of matheuristic to solve the job-shop problem.

Reference Job-Shop
Problem Type Matheuristic

Integrated Approaches
Programming

Languages/
Modeling

Language/Solver

Experiment Size
(Job ×Machine)

H+MILP MH+MILP

Al-Hinai and
Elmekkawy [18] Flexible JSP HGA MILP + GA C++ / - / - / 20 × 15

Li et al. [19] Flexible JSP TSPCB MILP + TSPCB C++ / - / - / 20 × 15

Li and Gao [20] Flexible JSP HGA
TS GA + TS C++ / GAMS /

CPLEX 15 × 10

Thiruvady et al. [21]
Resource-

constrained
JSP

MS
CMSA
ACO

Constructive
heuristic

MILP + ACO
MS

CMSA

C++ / OpenMP /
Gurobi 6 × 20

Rohaninejad et al. [22] JSP Parallel
Machines

GA_BH
GA_ATC
GA_MLS

MIP+GA CPLEX 6 × 4

Dang et al. [23] JSP Parallel
machine GA ILP + GA / - /IBM ILOG /

CPLEX 120 × 6

Cota et al. [26]
JSP with

unrelated parallel
machines

-

Multi-objective
smart pool search

matheuristic +
MILP

- /- / IBM ILOG /
CPLEX 15 × 5

Ahmadian and
Salehipour [24] Just-in-time JSP _

GT algorithm
SBH
VNS

Relaxation
neighborhoods

_ C++ /- / CPLEX 20 × 10

Son et al. [25]

Bounded-
splitting jobs
scheduling

problem on a
single machine in

available time
windows

GA
TS

AH
HSLPTR

HMAXFR
MAAS

TS + MAAS
GA + MAAS /- /-/ CPLEX 200 × 1

As a general overview, the JSP was tackled from different perspectives, namely flexible
JSP, dynamic JSP, resource constrained JSP, parallel machine JSP or just-in-time JSP. This
review revealed that the most widely used metaheuristics are led by genetic algorithms and
tabu search algorithms. The matheuristics presented to address the JSP integrates an MILP
with a metaheuristic algorithm in most cases. Others consider an MILP combined with a
constructive heuristic to increase the intelligence of the MILP and to reduce computational
resolution times in large sized experiments.

Table 1 highlights some relevant characteristics of the matheuristic proposed in the
analyzed works in terms of: (i) the type of addressed JSP; (ii) the proposed matheuris-
tic; (iii) the integrated approaches used to define the matheuristic, including a heuristic
algorithm combined with an MILP or a metaheuristics combined with an MILP; (iv) the
employed programming language and modeling language, as well as the solver used to
compute the exact method; and (v) the experiment size (job x machine). These features are
based on the solution approaches defined in the framework proposed by [10].

In order to provide a profounder analysis, Al-Hinai and Elmekkawy [18] propose
an approach to obtain a predictive schedule that minimizes machine breakdowns and
responds to a flexible JSP. To this extent, a 2-stage hybrid genetic algorithm (HGA) is
proposed: (i) the first stage optimizes the primary objective by minimizing the makespan
and considering deterministic data without machine breakdowns; (ii) the second stage
optimizes a bi-objective function (by considering robustness and stability) and integrates
machine assignments and operations sequencing with the expected machine breakdowns.



Computers 2022, 11, 1 4 of 16

Continuing with the scope of a flexible JSP, a hybrid tabu search algorithm with a fast
public critical block neighborhood structure (TSPCB) is proposed by Li et al. [19].

These authors present a mixture of four machine assignment rules and four operation
scheduling rules to improve the quality of the initial solutions and provide the hybrid algo-
rithm with good exploration capability. Then, they put forward an efficient neighborhood
structure to perform local searches in the machine allocation module, which integrates
three adaptive approaches. Finally, they present a speedup local search method with three
types of insertion and swap neighborhood structures based on the public critical block
theory. In line with this, Li and Gao [20] report an effective HGA that hybridizes the genetic
algorithm (GA) and tabu search (TS) to address the flexible JSP with a view to minimize
the makespan. The GA has a powerful global searching ability, and the TS has a valuable
local searching ability.

Thiruvady et al. [21] deal with the Resource Constrained Job Scheduling (RCJS) prob-
lem by proposing two MIP-based matheuristic approaches that rely on the solution merging
concept to learn from a population of solutions and to use an MIP to generate a “merged” so-
lution in the subspace, which is spanned by a pool of heuristic solutions. The first approach
is the Merge Search (MS) and the second is Construct, Merge, Solve and Adapt (CMSA).

Rohaninejad et al. [22] address the JSP of parallel machines with incompatible job
families and proposes an efficient matheuristic algorithm based on the hybridization of
a GA and a local search (LS) method based on mixed integer programming (MIP). The
GA is used to optimize the subproblems related to determining the sequence of parts
and the allocation of parts to machines. The allocation of parts to batches is performed
by an effective heuristic named batching heuristic (GA_BH) by combining a GA with
a batching heuristic (BH). Moreover, the authors propose a combination of a GA and a
dispatching rule called Apparent Tardiness Cost (GA_ATC). Dang et al. [23] also deal with
the JSP of parallel machines with tool replacements to schedule a set of jobs with tool
requirements on identical parallel machines in a work center. To do so, the authors propose
a mathematical model for the problem and a matheuristic that combines a GA and an
integer linear programming (ILP) formulation to solve large datasets. The matheuristic
integrates ILP into the GA framework as a local search step to enhance GA performance.

Ahmadian and Salehipour [24] deal with the just-in-time job-shop scheduling problem
(JIT–JSP) with distinct due dates for operations with earliness and tardiness penalties. For
this purpose, the authors propose a matheuristic algorithm that decomposes the problem
into smaller subproblems to obtain optimal or near-optimal sequences to perform the oper-
ations for the subproblems, which provides a feasible schedule for the complete problem.
The algorithm forms the subproblems by applying two neighborhoods. The employed al-
gorithms are the Giffler Thompson (GT) algorithm, the Shifting Bottleneck Heuristic (SBH)
algorithm, the variable neighborhood search (VNS), and the relaxation neighborhood.

Son et al. [25] address the problem of scheduling jobs with limited splitting on a single
machine in the available time windows. These authors present an MILP formulation for
this problem and propose different heuristics related to the assignment strategy, such as:
assignment heuristic (AH); heuristic based on the shortest/longest processing time rules
(HSLPTR); heuristic based on max flow resolution (HMAXFR); and heuristic based on a
matching and assignment approach (MAAS). They also apply a combination between the
proposed heuristics and metaheuristics, such as tabu search and the GA.

These authors also introduce another approach called exact for subset-jobs matheuris-
tic, which combines mathematical programming, and a priority heuristic rule called the
single-attribute priority rule.

Cota et al. [26] propose a solution to address the JSP with unrelated parallel machines
with sequence-dependent setup times, and independent non-preemptible jobs, minimizing
the makespan and the total consumption of electricity. The authors define a multi-objective
smart pool search matheuristic for finding solutions near the Pareto front, in which differ-
ent MILP problems are generated with different weights for aggregating both objective
functions involved in the proposed formulation.



Computers 2022, 11, 1 5 of 16

From the review, we can state that very few papers apply combined or hybrid algo-
rithms, such as matheuristic algorithms. In other production fields, matheuristics have
obtained good solutions. The research of Cabrera-Guerrero et al. [27] demonstrates that
the combination of techniques, or hybridization, can be advantageous for solving com-
plex problems, which is also demonstrated in [28]. Verbiest et al. [28] used a combination
of an iterated local search algorithm (metaheuristics) with an MILP model to optimize
production lines, design installed lines and allocate products. Their study compares the
matheuristic approach with an exact method (MILP) to verify that the matheuristic offers
efficient solutions and in a shorter calculation time. According to the results of the stud-
ied works, we conclude that matheuristic techniques are suitable for solving problems in
realistic instances and allow good results to be obtained in acceptable computing times.
Nevertheless, experiments are carried out on commercial solvers, which can be a drawback
for those enterprises that cannot afford these tools. Moreover, the maximum data size used
for experiments are 120 jobs on six machines, and 20 jobs on 10 machines, which cannot be
completely representative of enterprises’ realistic data.

Although matheuristics is becoming increasingly well-known for its effectiveness and
computational efficiency when dealing with large and NP-hard problems, there is still a
long way to go in this field. The contribution of this research aims to provide a solution to
the NP-hard JSP with the proposed matheuristic approach by combining a GA and an LP
model using a non-commercial solver (CBC) and an open-source operating system (Linux)
for a large set of instances.

3. Job-Shop Scheduling Problem: Disjunctive Mathematical Formulation

The JSP is an optimization problem in which a set of jobs to manufacture products is
assigned to machines at particular times, while attempting to minimize the makespan [17].
Job-shop scheduling is still a problem that has been analyzed since 1954 [29], and is
currently tackled given its impact on production costs and efficiency. Nowadays, the JSP
remains in essence, but researchers focus on proposing resolution methods that enable
enterprises to obtain optimal or near-optimal solutions in shorter computational times to
boost the principles of agility, responsiveness and flexibility, all of which are framed within
achieving resilience.

The literature proposes different mathematical formulations to model the JSP. Pan [30]
presents a comparative analysis of these formulations, namely time-indexed formulation,
rank-based formulation and disjunctive formulation. He concluded that the disjunctive
model is more efficient because it has the fewest binary variables. More recent studies,
such as that presented by Ku and Beck [5], confirm the functionality and effectiveness of
the disjunctive model. Although other mathematical formulations exist, they are often
combinations or variations of the formulations that we reviewed.

With this background, disjunctive formulation was chosen to model the JSP. To solve
the JSP disjunctive problem, we propose combining disjunctive formulation (MILP model)
and the GA to generate a matheuristic solution method, whose main aim is to find efficient
solutions for large-sized problems and achieve shorter computational times.

The work is then validated by comparing the obtained solutions among the acquired
results to solve the JSP disjunctive MILP with a coin-OR Branch & Cut open-source solver.

In this section, we formally define the JSP disjunctive MILP (see Table 2). The dis-
junctive model is presented in Ku and Beck [5]. The JSP is given by a J finite set of n
jobs or parts, and a finite set M of m machines or work centers. For each job j∈ J, the list
(σ

j
1, . . . , σ

j
h, . . . , σ

j
m) of machines with the processing order of job j is provided. Only one job

can be processed by each machine at a time. Once started, it must finish processing on that
machine without any interruptions.



Computers 2022, 11, 1 6 of 16

Table 2. The mathematical notations used in the JSP formulation.

Sets

J set of jobs, J ∈ { 1, . . . , n}.
M set of machines M ∈ {1, . . . , m}

Parameters

pij represents the processing time of job j on machine i.
σ

j
h

denotes the h-th operation of job j

σ
j
m means the final operation of job j

V sum of the processing times of all the operations
V = ∑j∈J ∑i∈M pij

Variables

xij start time of job j on machine i.
zijk 1 if job j is before job k on machine i; 0 otherwise

minCmax (1)

s.t. xij ≥ 0,∀j ∈ J, i ∈ M (2)

x
σ

j
h ,j
≥ x

σ
j
h−1,j

+ p
σ

j
h−1,j

,∀j ∈ J, h = 2, . . . , m (3)

xij ≥ xik + pik −V · zijk,∀j, k ∈ J, j < k, i ∈ M (4)

xik ≥ xij + pij −V · (1− zijk),∀j, k ∈ J, j < k, i ∈ M (5)

Cmax ≥ x
σ

j
m ,j

+ p
σ

j
m ,j

,∀j ∈ J (6)

zijk ∈ {0, 1} ∀j, k ∈ J, i ∈ M (7)

xij ∈ Z ∀j, k ∈ J (8)

The purpose is to obtain a scheduling of jobs on machines to minimize the makespan
(Cmax). Constraint (2) guarantees that each job’s start time equals or exceeds 0. Constraint (3)
assures that each operation of a job is carried out in the required order. Disjunctive Con-
straints (4) and (5) establish that there cannot be two jobs scheduled on one machine at the
same time. It is necessary to assign V a large enough value to guarantee the correctness of
(4) and (5). The completion time of any operation must not exceed the sum of the processing
times of all the operations. Constraint (6) guarantees that the makespan is the longest
completion time of the last operation of all the jobs as a minimum [5].

4. Materials and Methods
4.1. Proposed Matheuristic Approach

The aim of this section is to provide a matheuristic approach to solve the JSP quickly
and efficiently, particularly for large-sized problems. To do so, we design a matheuristic
approach by applying the metaheuristic procedure (GA) in an LP model (GA-LP). The
flowchart of the matheuristic approach is shown in Figure 1. All the elements of the
proposed matheuristic are separately detailed in the following subsections. The general
procedure of the proposed approach is as follows:



Computers 2022, 11, 1 7 of 16

Figure 1. Flow chart of the matheuristic algorithm.



Computers 2022, 11, 1 8 of 16

Step 1: set the input parameters of the matheuristic (GA-LP);
Step 2: generate the initial population: generate individuals using dispatching heuris-

tic rules and generate individuals randomly;
Step 3: evaluate whether the individuals forming the initial population are feasible;
Step 4: eliminate nonviable individuals and insert the feasible ones into the population;
Step 5: convert the integer chromosome generated by the GA into a binary chromosome;
Step 6: evaluate binary individuals using the LP model;
Step 7: normalize individuals’ fitness;
Step 8: select two individuals from the population (parents) and use genetic operators

(crossover and mutation);
Step 9 evaluate the chromosomes of the offspring and check if chromosomes are

feasible. Then, go to step 3.
Step 10: Are the termination criteria met?
If the termination criteria are met, the solution is obtained; otherwise, go to step 8.
To properly define the proposed matheuristic, we pose a simple JSP example shown

in Table 3. The data presented in Table 3 indicate that there are n = 4 jobs (J1, J2, J3, J4).
The processing order of the jobs on the machines (σmo) are seen in the second column; for
example, J1 has σ11, in which the first index represents the machine and the second denotes
the processing order; i.e., job 1 has to be processed first on machine 1, followed by machines
m2, m3, and m4, respectively. The processing time of job j on machine i (pij) is shown in the
third column of this table.

Table 3. The job-shop scheduling problem data.

Job Processing Order of Jobs Processing Times

1 σ11, σ22, σ33, σ44 p11 = 1; p21 = 4; p31 = 2; p41 = 1
2 σ14, σ23, σ32, σ41 p12 = 2; p22 = 3; p32 = 6; p42 = 2
3 σ11, σ23, σ32, σ44 p13 = 3; p23 = 7; p33 = 2; p43 = 3
4 σ14, σ22, σ33, σ41 p14 = 4; p24 = 1; p34 = 5; p44 = 8

4.2. Initial Population

Genetic algorithms consist of a set of individuals. Each individual has a chromosome
structure composed of genes where the value of each gene represents the jobs performed by
each machine. The whole chromosome represents the solution to the problem (see Figure 2).

Figure 2. Individual’s structure.

The GA starts by randomly generating a set of individuals, which is called the initial
population. The chromosome of the randomly created individuals can cause the fitness
function value to be deficient and can also generate infeasible solutions. Therefore, in the
proposed methodology, we use heuristic priority rules to obtain better fitness values by,
thus, employing genetic operators so that better solutions can be obtained. In our approach,
80% of the initial population is randomly generated and the rest is generated with the
following heuristic priority rules:

� First In First Out—FIFO: the first job to arrive is the first to be served;
� Last In First Out—LIFO: the last job to arrive is the first to be served;
� Shortest Operation Time—SOT: the job that has the shortest processing time is selected.

It achieves high flow rate and utilization rates;
� Longest Operation Time—LOT: the job with the longest processing time is selected.

The longest operations are considered to be the most important and should be pro-
cessed first;

� Shortest Remaining Operation Time—SROT: the priority job is the job with the lowest
sum of the processing times for all the remaining operations to be performed;



Computers 2022, 11, 1 9 of 16

� Longest Remaining Operation Time—LRPT: the priority job is the job with the largest
sum of the processing times for all the remaining operations to be performed;

� Less Remaining Operations—LRO: the priority job is that with the fewest remaining
operations to be performed;

� Most Remaining Operations—MRO: the priority job is that with the most remaining
operations to be performed;

� Work In Next Queue—WINQ: the highest priority is given to the job that would be
moved to the machine with the least work to do;

� Due Date—DD: the job with the closest delivery date is selected;
� Static Slack -SS: the job with the shortest time remaining until the delivery date

is selected;
� Dynamic Slack—DS: time remaining until the delivery date minus the sum of all the

remaining operation times. That with the shortest DS is selected;
� SS/Remaining Operation Time—SS/TPR: Static Slack divided by the sum of the

remaining operation times of the remaining operations. The smallest one is selected;
� DS/Remaining Operation Time—DS/TPR: Dynamic Slack divided by the sum of the

remaining operation times of the remaining operations. The smallest one is selected;
� SS/Remaining Operations—SS/RO: Static Slack divided by the number of remaining

operations. The smallest one is selected;
� DS/Remaining Operations—DS/RO: Dynamic Slack divided by the number of re-

maining operations. The smallest one is selected.

4.3. Feasibility Tester

Randomly generated individuals in the initial population or individuals generated
by the crossover and mutation operators may generate infeasible solutions. To avoid the
LP having to evaluate infeasible solutions, which makes the matheuristic processing time
longer, we present an approach to check the feasibility of individuals. To exemplify the
feasibility checker, Table 4 shows the one feasible sequence and one infeasible sequence
that should be corrected.

Table 4. Sequence of jobs on machines.

Machines Feasible Sequence Infeasible Sequence Corrected Sequence

1 J3 J1 J2 J4 J3 J1 J2 J4 J3 J1 J2 J4
2 J1 J2 J4 J3 J1 J2 J4 J3 J1 J2 J4 J3
3 J2 J3 J1 J4 J2 J1 J3 J4 J3 J2 J1 J4
4 J2 J4 J1 J3 J1 J2 J4 J3 J2 J1 J4 J3

Infeasibility occurs when jobs do not satisfy the processing order on machines. Table 3
shows the processing order of the jobs on machines where, for example, J1 has the process-
ing order: σ11, σ22, σ33, σ44, i.e., J1 should be processed first on M1 and then on machines
M2, M3, M4 respectively. Figure 3 illustrates the feasible solution for all the jobs to fulfill
the processing constraints.

Figure 3. Feasible solution representation and its Gantt chart.



Computers 2022, 11, 1 10 of 16

To exemplify the feasibility tester, we present an unviable solution (see Table 4). In
Figure 4, we represent the solution, but, as observed, the sequence of J1 does not comply
with the processing order. In the same way, J2 cannot be located as the processing order
of J2 is σ14, σ23, σ32, σ41. This means that it must first be processed on M4 and then on M3,
M2, M1. However, J1 on machine 4 leads to the processing order not being fulfilled because
predecessor J1 on machine 3 is processed after the job of its successor J1 on machine 4.
This is what causes the infeasibility in the chromosome of the individuals. Therefore, the
chromosome must be repaired.

Figure 4. Infeasible solution representation and its Gantt chart.

After verifying infeasibility, the feasibility tester changes the location of J1 and J2 on
machine 4 and, in the same way, the positions of J1, J2, J3 on machine 3 (see Table 4). After
using the feasibility checker in Figure 5, the representation of the solution that meets all the
precedence constraints is shown.

Figure 5. Repaired solution representation and its Gantt chart.

4.4. Fitness Function

The individuals in the population are evaluated with the fitness function, which
measures the quality of solutions. The evaluation of individuals is performed using the
disjunctive relaxed MILP model, i.e., an LP model. Thus, binary variable zijk represents
whether job j is prior to job k on machine i, and is calculated by the GA. Hence, this variable
is fixed to the LP. The binary variable is calculated sequentially with the GA, i.e., while the
GA generates individuals, the LP evaluates that the chromosome meets the constraints of
the disjunctive model described in Section 3.

As individuals have an integer chromosome and variable zijk is binary in nature, we
convert the chromosome. For this purpose, we use the position of each gene as shown
in Figure 6. Machine 1 has sequences J3, J1, J2, J4. We start by looking for the location of
the first predecessor job, that is job 1, and this gene is in position 2. Then, we look for the
successor job, which is job 2 that meets the condition of the position of the predecessor
job being inferior to the successor job. Thus, we assign 1. This same condition is met by
predecessor job J1 and successor job J4, but this condition is not met by J3, which is in
position 1. Table 5 shows the result obtained with this process.



Computers 2022, 11, 1 11 of 16

Figure 6. Position of genes on integer chromosomes.

Table 5. Precedence of jobs with binary array zij.

i j k z

1 1 2 1
1 1 4 1
1 2 4 1
1 3 1 1
1 3 2 1
1 3 4 1
2 1 2 1
2 1 3 1
2 1 4 1
2 2 3 1
2 2 4 1
2 4 3 1
3 1 4 1
3 2 1 1
3 2 4 1
3 3 1 1
3 3 2 1
3 3 4 1
4 1 3 1
4 1 4 1
4 2 1 1
4 2 3 1
4 2 4 1
4 4 3 1

4.5. Selection

Before applying the selection operator, the normalized fitness of the individuals in
the population is calculated with the difference between the highest fitness value and the
fitness value of each individual.

The selection operator is in charge of deciding which individuals in the population
will have the opportunity to reproduce. As a selection operator, we employ a roulette wheel
approach [31]. This approach consists of the best individuals, according to their fitness,
having the best opportunity to be selected with a uniform selection probability within the
range [0 . . . 1].

4.6. Crossover Operator

The crossover operator used by the GA is the Partially Mapped Crossover Operator.
Given the fact that the chromosome of the individuals has an ordered set of permutations,
this operator allows for the creation of non-repeated permutation, which it does by choosing
two crossover points at random that delimit the area to be inherited. The offspring takes
any value of this area from one parent and the rest from the other, which can produce
duplicates. To remove duplicates, this method uses a map, on which it checks the relation
between the copied sections, and verifies if there is a duplicate gene or a missing gene in
the chromosome.



Computers 2022, 11, 1 12 of 16

4.7. Mutation Operator

In this paper, we use swap mutation. This procedure is as shown in Figure 7, where we
randomly select two positions from each machine, and then swap the genes at the selected
positions to generate a mutated offspring. Our GA employs a mutation probability (pm = 1).
As the mutated offspring can give a worse fitness value than the normal offspring [32], we
insert the normal and the mutated one into the population if they do not exist after passing
the feasibility tester.

Figure 7. An example of a swap mutation operator.

5. Computational Experiments

The purpose of this study is to evaluate the performance of the non-commercial CBC
solver with both the mathematical model and the matheuristic one on large or similar
instances to those used by SMEs. To evaluate the performance of the proposed matheuristic,
we test the performance of the disjunctive MILP model by using a CBC solver. For this
purpose, we generate experiments that consist of a set of different sized problems (20 × 15,
20 × 20, 30 × 20). To do so, we use the large-scale instances of Taillard [33], specifically the
instances labeled Ta11-Ta13, Ta26-Ta28 and Ta41-Ta43. The dataset can be found in [34].
The JSP is NP-hard for n ≥ 3 and m ≥ 2 [5].

The software followed in this research is a non-commercial optimization solver from
the Computational Infrastructure for Operation Research (COIN-OR) community called
the COIN-OR Branch and Cut Solver [9]. This open-source solver is generally employed for
MILP problems. The MILP model and the matheuristic were implemented in Python with
the Pyomo package [35]. Experiments were run by an Intel Core i7 2.80 GHz processor (8
GB RAM) in the Ubuntu 20.04.1 LTS operating system.

The GA-LP was run 10 times with the same problem instances. The stopping criterion
of the mathematical model and matheuristic is 3600 s. The parameters used in the GA-LP
are shown in Table 6. The average solutions (Cmax) of the GA-LP and the time in which the
methods reached the best solutions are shown in Table 7.

Table 6. GA-LP parameters.

Population size 100
Crossover operator Partially Mapped Crossover
Selection operator Roulette wheel
Mutation operator Swap

Mutation ratio 1

The results show that the CBC solver cannot obtain good results for the Ta12, Ta27,
Ta42 and Ta43 instances because of its computational difficulty. It is noteworthy that the
matheuristic algorithm obtained good solutions in relatively shorter computational times
than the CBC solver.



Computers 2022, 11, 1 13 of 16

Table 7. Comparison of how the proposed approaches perform.

Problem n × m

Methods

CBC Matheuristic (GA-LP)

Cmax CPU (sec) D 1 (%) Cmax CPU (sec) D (%)

Ta11 20 × 15 2219 3567.57 35.55% 1637 198.67 0%
Ta12 20 × 15 - - 1627 196.09 0%
Ta13 20 × 15 1902 3565.46 15.06% 1653 64.16 0%
Ta26 20 × 20 2483 2673.88 29.32% 1920 152.79 0%
Ta27 20 × 20 - - 1982 234.88 0%
Ta28 20 × 20 1978 2948.2 3.55% 1910.2 267.64 0%
Ta41 30 × 20 3282 3227.24 32.82% 2471 366.47 0%
Ta42 30 × 20 - 2415 361.36 0%
Ta43 30 × 20 - 2350 373.08 0%

1 Deviation = [(Obtained Value—Best Value)/Best Value].

Figure 8 offers the results obtained with instances Ta11 (20 × 15), Ta25 (20 × 20) and
Ta41 (30 × 20). The computational results of CBC for instances Ta12, Ta27, Ta42 and Ta43,
are relatively bad, and do not converge to good solutions. For these instances, we changed
the stopping criterion to check if the CBC solver can obtain better results, with a computing
time of 4 h. We confirm that the result is still the same. The deviation value of these
instances is not shown in Figure 8 as it cannot be compared with the matheuristic.

Figure 8. Experimental results.

From Figure 8, it is deduced that the matheuristic produces better results and allows
good solutions in short computational times. Table 7 shows the results of deviations, where



Computers 2022, 11, 1 14 of 16

the GA-LP approach provides the best solution for each problem size. GA-LP provides
better solutions than CBC, especially with rising computational difficulty. All these results
indicate that, by using 20% of the individuals in the initial population with heuristic priority
rules, we can improve the efficiency of the proposed method for large instances.

The Figure 9 shows the box plots of the two proposed methods for instances Ta11, Ta26
and Ta41. The distribution of the results can be observed in the box plot. The stability of
the matheuristic algorithm results is more stable than the CBC. According to the results. we
conclude that GA-LP provides better solutions for all the instances in quality and solution
time terms.

Figure 9. Box plot of all the methods.

6. Conclusions and Further Work

The new production paradigms offer plenty of opportunities and challenges as they
support the transformation of technology and market conditions for companies. The
adaptation of companies to Industry 4.0 means that companies must look for technological
tools that help to optimize their manufacturing processes. The adaptation to this technology
is determined by adapting different technological tools to the companies. In many cases,
SMEs cannot cope with all the technological changes given their cost. Thus, the use of
open-source software can act as a valuable tool for companies.

In order to contribute to the literature, this paper presents a matheuristic that combines
a GA with a relaxed MILP, solved using a non-commercial solver. We apply different
priority heuristic rules to provide faster and more efficient solutions for large problems.
The proposed matheuristic achieves good results for large instances. In short computational
times, the CBC solver does not offer good results for large instances, but the CBC solver-GA
combination provides better solutions in shorter computational times. In the literature, no
experiments appear with a non-commercial solver for this instance size. This means that
matheuristic can be a useful tool for those SMEs that do not wish to pay for commercial
solvers as matheuristic is a useful tool that is easily implemented.



Computers 2022, 11, 1 15 of 16

The comparison of the mathematical model, and the matheuristic approach shows
that the GA-LP with heuristic priority rules provides good results compared to the CBC
results. CBC for the instances of 30 jobs and 20 machines provides the best results in almost
1 h, while the matheuristic approach achieves the best results for these instances in under
400 s. After analyzing the two approaches presented to solve the JSP, we see that the GA-LP
is a robust method, is able to achieve good results on instances with different complexities
and has a faster convergence rate compared to CBC.

Therefore, future research lines include: improving the GA as the applied genetic
operators are standard ones and the operators designed for the concrete problem would per-
form better; attempting other hybridizations can be performed using: other metaheuristics,
such as GRASP, Memetic Algorithm, Particle Swarm Optimization, Tabu Search, Variable
Neighborhood Search, and others identified in [10]; testing instances with different job and
machine sizes and varying processing times. Other non-commercial solvers can be tested,
such as SCIP (Solving Constraint Integer Programs) with commercial solvers like Gurobi
and CPLEX.

Author Contributions: Conceptualization, E.G., B.A. and R.P.; methodology, E.G., B.A. and R.P.;
software, E.G., B.A. and R.P.; validation, E.G., B.A. and R.P.; writing—review and editing, E.G., B.A.
and R.P.; supervision, B.A. and R.P. All authors have read and agreed to the published version of
the manuscript.

Funding: The research leading to these results received funding from the European Union H2020
Program with grant agreements No. 825631 “Zero-Defect Manufacturing Platform (ZDMP)” and No.
958205 “Industrial Data Services for Quality Control in Smart Manufacturing (i4Q)”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the data are presented in the main text.

Acknowledgments: This work was supported by the Conselleria de Educación, Investigación, Cultura
y Deporte—Generalitat Valenciana for hiring predoctoral research staff with Grant (ACIF/2018/170) and
the European Social Fund with the Grant Operational Programme of FSE 2014–2020, the Valencian
Community (Spain).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. MacCarthy, B.L.; Blome, C.; Olhager, J.; Srai, J.S.; Zhao, X. Supply chain evolution—Theory, concepts and science. Int. J. Oper.

Prod. Manag. 2016, 36, 1696–1718. [CrossRef]
2. Dolgui, A.; Ivanov, D.; Sethi, S.P.; Sokolov, B. Scheduling in production, supply chain and Industry 4.0 systems by optimal control:

Fundamentals, state-of-the-art and applications. Int. J. Prod. Res. 2019, 57, 411–432. [CrossRef]
3. Ahmadian, M.M.; Khatami, M.; Salehipour, A.; Cheng, T.C.E. Four decades of research on the open-shop scheduling problem to

minimize the makespan. Eur. J. Oper. Res. 2021, 295, 399–426. [CrossRef]
4. Stastny, J.; Skorpil, V.; Balogh, Z.; Klein, R. Job shop scheduling problem optimization by means of graph-based algorithm. Appl.

Sci. 2021, 11, 1921. [CrossRef]
5. Ku, W.Y.; Beck, J.C. Mixed integer programming models for job shop scheduling: A computational analysis. Comput. Oper. Res.

2016, 73, 165–173. [CrossRef]
6. Boschetti, M.A.; Maniezzo, V.; Roffilli, M.; Röhler, A.B. Matheuristics: Optimization, simulation and control. Lect. Notes Comput.

Sci. (Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform.) 2009, 5818, 171–177. [CrossRef]
7. Ball, M.O. Heuristics based on mathematical programming. Surv. Oper. Res. Manag. Sci. 2011, 16, 21–38. [CrossRef]
8. Talbi, E.-G. A unified taxonomy of hybrid metaheuristics with mathematical programming, constraint programming and machine

learning. In Hybrid Metaheuristics; Talbi, E.-G., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3–76.
9. Forrest, J.; Ralphs, T.; Vigerske, S.; Hafer, L.; Kristjansson, B.; Jpfasano; Straver, E.; Lubin, M.; Santos, H.G.; Rlougee; et al.

Coin-or/Cbc: Version 2.9.9. Available online: https://zenodo.org/record/1317566 (accessed on 27 May 2021).
10. Guzman, E.; Andres, B.; Poler, R. Models and algorithms for production planning, scheduling and sequencing problems: A

holistic framework and a systematic review. J. Ind. Inf. Integr. 2021, 100287. [CrossRef]
11. Mula, J.; Peidro, D.; Díaz-Madroñero, M.; Vicens, E. Mathematical programming models for supply chain production and

transport planning. Eur. J. Oper. Res. 2010, 204, 377–390. [CrossRef]

http://doi.org/10.1108/IJOPM-02-2016-0080
http://doi.org/10.1080/00207543.2018.1442948
http://doi.org/10.1016/j.ejor.2021.03.026
http://doi.org/10.3390/app11041921
http://doi.org/10.1016/j.cor.2016.04.006
http://doi.org/10.1007/978-3-642-04918-7_13
http://doi.org/10.1016/j.sorms.2010.07.001
https://zenodo.org/record/1317566
http://doi.org/10.1016/j.jii.2021.100287
http://doi.org/10.1016/j.ejor.2009.09.008


Computers 2022, 11, 1 16 of 16

12. Peidro, D.; Mula, J.; Poler, R.; Lario, F.C. Quantitative models for supply chain planning under uncertainty. Int. J. Adv. Manuf.
Technol. 2009, 43, 400–420. [CrossRef]

13. Stindt, D.; Sahamie, R. Review of research on closed loop supply chain management in the process industry. Flex. Serv. Manuf. J.
2014, 26, 268–293. [CrossRef]

14. Brandenburg, M.; Govindan, K.; Sarkis, J.; Seuring, S. Quantitative models for sustainable supply chain management: Develop-
ments and directions. Eur. J. Oper. Res. 2014, 233, 299–312. [CrossRef]

15. Malviya, R.K.; Kant, R. Green supply chain management (GSCM): A structured literature review and research implications.
Benchmarking Int. J. 2015, 22, 1360–1394. [CrossRef]

16. Abdullah, S.; Abdolrazzagh-Nezhad, M. Fuzzy job-shop scheduling problems: A review. Inf. Sci. (N. Y.) 2014, 278, 380–407.
[CrossRef]

17. Zhang, J.; Ding, G.; Zou, Y.; Qin, S.; Fu, J. Review of job shop scheduling research and its new perspectives under Industry 4.0. J.
Intell. Manuf. 2019, 30, 1809–1830. [CrossRef]

18. Al-Hinai, N.; Elmekkawy, T.Y. Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid
genetic algorithm. Int. J. Prod. Econ. 2011, 132, 279–291. [CrossRef]

19. Li, J.Q.; Pan, Q.K.; Suganthan, P.N.; Chua, T.J. A hybrid tabu search algorithm with an efficient neighborhood structure for the
flexible job shop scheduling problem. Int. J. Adv. Manuf. Technol. 2011, 52, 683–697. [CrossRef]

20. Li, X.; Gao, L. An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem. Int. J. Prod. Econ.
2016, 174, 93–110. [CrossRef]

21. Thiruvady, D.; Blum, C.; Ernst, A.T. Solution merging in matheuristics for resource constrained job scheduling. Algorithms 2020,
13, 256. [CrossRef]

22. Rohaninejad, M.; Hanzálek, Z.; Tavakkoli-Moghaddam, R. Scheduling of parallel 3D-printing machines with incompatible job
families: A matheuristic algorithm. IFIP Adv. Inf. Commun. Technol. 2021, 630, 51–61. [CrossRef]

23. Dang, Q.V.; van Diessen, T.; Martagan, T.; Adan, I. A matheuristic for parallel machine scheduling with tool replacements. Eur. J.
Oper. Res. 2021, 291, 640–660. [CrossRef]

24. Ahmadian, M.M.; Salehipour, A. The just-in-time job-shop scheduling problem with distinct due-dates for operations. J. Heuristics
2021, 27, 175–204. [CrossRef]

25. Son, T.H.; van Lang, T.; Huynh-Tuong, N.; Soukhal, A. Resolution for bounded-splitting jobs scheduling problem on a single
machine in available time-windows. J. Ambient Intell. Humaniz. Comput. 2021, 12, 1179–1196. [CrossRef]

26. Cota, L.P.; Coelho, V.N.; Guimarães, F.G.; Souza, M.J.F. Bi-criteria formulation for green scheduling with unrelated parallel
machines with sequence-dependent setup times. Int. Trans. Oper. Res. 2021, 28, 996–1017. [CrossRef]

27. Cabrera-Guerrero, G.; Lagos, C.; Castañeda, C.; Johnson, F.; Paredes, F.; Cabrera, E. Parameter tuning for local-search-based
matheuristic methods. Complexity 2017, 2017. [CrossRef]

28. Verbiest, F.; Cornelissens, T.; Springael, J. A matheuristic approach for the design of multiproduct batch plants with parallel
production lines. Eur. J. Oper. Res. 2018, 273, 933–947. [CrossRef]

29. Johnson, S.M. Optimal two- and three-stage production schedules with setup times included. Nav. Res. Logist. Q. 1954, 1, 61–68.
[CrossRef]

30. PAN, C.-H. A study of integer programming formulations for scheduling problems. Int. J. Syst. Sci. 1997, 28, 33–41. [CrossRef]
31. Zhong, J.; Hu, X.; Zhang, J.; Gu, M. Comparison of performance between different selection strategies on simple genetic algorithms.

In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and
International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria,
28–30 November 2005; Volume 2, pp. 1115–1120. [CrossRef]

32. Valero-Gomez, A.; Valero-Gomez, J.; Castro-Gonzalez, A.; Moreno, L. Use of genetic algorithms for target distribution and
sequencing in multiple robot operations. In Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics,
Karon Beach, Thailand, 7–11 December 2011; pp. 2718–2724. [CrossRef]

33. Taillard, E. Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 1993, 64, 278–285. [CrossRef]
34. Job Shop Instances and Solutions. Available online: http://jobshop.jjvh.nl/index.php (accessed on 1 December 2021).
35. Hart, W.E.; Laird, C.; Watson, J.-P.; Woodruff, D.L. Pyomo-Optimization Modeling in Python, 1st ed.; Springer Publishing Company,

Incorporated: New York, NY, USA, 2012.

http://doi.org/10.1007/s00170-008-1715-y
http://doi.org/10.1007/s10696-012-9137-4
http://doi.org/10.1016/j.ejor.2013.09.032
http://doi.org/10.1108/BIJ-01-2014-0001
http://doi.org/10.1016/j.ins.2014.03.060
http://doi.org/10.1007/s10845-017-1350-2
http://doi.org/10.1016/j.ijpe.2011.04.020
http://doi.org/10.1007/s00170-010-2743-y
http://doi.org/10.1016/j.ijpe.2016.01.016
http://doi.org/10.3390/a13100256
http://doi.org/10.1007/978-3-030-85874-2_6
http://doi.org/10.1016/j.ejor.2020.09.050
http://doi.org/10.1007/s10732-020-09458-6
http://doi.org/10.1007/s12652-020-02162-0
http://doi.org/10.1111/itor.12566
http://doi.org/10.1155/2017/1702506
http://doi.org/10.1016/j.ejor.2018.09.012
http://doi.org/10.1002/nav.3800010110
http://doi.org/10.1080/00207729708929360
http://doi.org/10.1109/cimca.2005.1631619
http://doi.org/10.1109/ROBIO.2011.6181716
http://doi.org/10.1016/0377-2217(93)90182-M
http://jobshop.jjvh.nl/index.php

	Introduction 
	Literature Review: Matheuristic Resolution Approaches 
	Job-Shop Scheduling Problem: Disjunctive Mathematical Formulation 
	Materials and Methods 
	Proposed Matheuristic Approach 
	Initial Population 
	Feasibility Tester 
	Fitness Function 
	Selection 
	Crossover Operator 
	Mutation Operator 

	Computational Experiments 
	Conclusions and Further Work 
	References

