
computers

Article

Digital Archives Relying on Blockchain: Overcoming the
Limitations of Data Immutability
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Abstract: Archives, both analogue and digital, are primarily concerned with preserving records as
originals. Because of this, immutable data as used in a blockchain data structure seem a logical
choice when designing such systems. At the same time, archives maintain records which may need
to change over the long term. It is a requirement of archival preservation to be able to update records’
metadata in order not only to guarantee authenticity after digital preservation actions but also to
ensure that relationships to other records, which might be created after an original record has entered
the archive (and has been registered in a blockchain), can be maintained. The need to maintain an
archival bond, which represents a network of relationships between aggregation of records, i.e., the
relationship connecting previous and subsequent records belonging to the same activity, is a prime
example of this requirement. This paper explores realisation of the archival bond in the context
of blockchain-based archival system by proposing a supporting database system which enables
metadata to be changed as required but also significantly simplifies searching compared to searching
on-chain information, while keeping the immutability characteristic of blockchain.

Keywords: digital archive; blockchain; database; document; archival bond

1. Introduction

One of the key questions in modern society is to what extent digital information can
be trusted. Archival institutions have the opportunity to participate in the creation of a
new architecture of trust. However, as traditionally trusted institutions, archives need to
constantly prove that they can preserve digital records as trustworthily and as long as
paper records. This is a challenging task because of the metamorphic aspects of information
technologies—they are constantly changing and advancing. Therefore, archives need to
constantly monitor ongoing development and react when needed. The reaction should be in
the form of digital preservation action, i.e., conversion of records from an (almost) obsolete
file format to the current one, migration from an older generation of storage media to the
new one, emulation of older software solutions in the contemporary software environment,
or virtualisation of old systems in the new hardware and software environment, all the time
taking care that the records stay trustworthy, i.e., accurate, reliable, and authentic. Batista
et al. explore the taxonomy of records’ trustworthiness and explain how the concepts of
trust and provenance are closely related as well as how they can be realized in the context
of blockchain [1]. Preserving records’ integrity, or the ability to prove that the record did
not change over the preservation period, and preserving identity, or the ability to prove
that the record is what it purports to be, represent two prerogatives for confirmation of
authenticity of digital records. The concept of the archival bond, explained in detail in
Section 2, relates to records’ identity preservation.

This paper focuses on a particular type of digital record—the digitally signed and/or
sealed records. Digital preservation of those records is challenging because digital sig-
natures and seals rely on certificates usually issued for the period of two to five years,
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after which their validity expires. Moreover, during that time certificates may be revoked.
Such a situation is on the one hand favourable in terms of digital security, but on the other
hand highly unfavourable in terms of long-term (e.g., 70 years) digital preservation. One
approach to this challenge is regular (re)timestamping, or addition of archival time stamps
before the certificates expire, but this approach requires keeping track of the certificate
expiration date of many millions of individual records in a digital archive and invoking
a preservation action just before that. A more elegant approach was proposed by Bralić,
Kuleš, and Stančić in 2017 when they developed the TrustChain model—a blockchain-based
validity information preservation (VIP) model [2]. The model was upgraded by Bralić,
Stančić and Stengård in 2020 to encompass digital signature certification chain preserva-
tion [3]. This paper continues the research by proposing the TrustChain supporting system
model needed for combining an immutable blockchain-based archival system architecture
preserving digitally signed and/or sealed records with a concept of incrementally changing
the archival bond relying on metadata expansion over time.

The paper is structured into several sections. After this introduction, Section 2 elabo-
rates on the concept of the archival bond with the aim of clarifying how it impacts digital
preservation requirements. Next, Section 3 provides a brief introduction to blockchain data
structures and presents a critical part of the TrustChain system as defined in the previous
research of the authors [2,3]. The presented data structure does not allow fast searching or
metadata changes so the following sections investigate a data model which would enable
those requirements. A literature review, presented in Section 4, was used to determine the
most appropriate underlying technology for such a system, which is followed by Section
5 where the appropriate logical data model is determined by extraction of mandatory
metadata elements of several archival industry standards. Finally, Sections 6 and 7 use
the proposed logical data model to develop and present database models which can be
used for building the supporting system based on the technologies determined as the most
appropriate in Section 4. The models proposed here will enable further development of the
TrustChain system following archival standards and requirements. The paper concludes
with suggestions for future research and development of the TrustChain system.

2. Archival Bond

Duranti states that the concept of the archival bond is at the core of archival science.
She explains that the archival bond represents “the network of relationships that each
record has with the records belonging in the same aggregation. ( . . . ) The archival bond
first arises when a record is set aside and thereby connected to another in the course of
action” [4], (pp. 215–216). Duranti and MacNeil make clear that “this implies that the entity
record is in formation during its period of activity, as the aggregations in which the record
belongs are constantly accruing and changing, according to the natural dynamism of the
records system. When the records become semi-active (i.e., they are ‘no longer needed
for the purpose of carrying out the action for which they were created, but which are
needed by the records creator for reference’ [5]) their documentary context is subject to
development and change as only some components of each class will be removed from the
records system and accumulated together to build up series. When the records become
inactive (i.e., they are ‘no longer needed to conduct current business but preserved until
they meet the end of their retention period’ [5]) the archival bond is defined and stabilized
and not subject to further changes. This means that the archival bond, which is an essential
component of the record, changes and develops until the record reaches the point of
stability, that is, until the action to which it relates is concluded” [6], (p. 61). Lemieux and
Sporny explain that “the archival bond must be made explicit and interpretable in order to
ascertain the unique identity of each document as a record of the procedurally bound facts
contained within it” [7], (p. 1438). Further, they point out that in the context of blockchain
“it is a common mistake to think that because every block of transactions (and thereby
every transaction) in a proof-of-work blockchain is transitively bonded to every previous
block, by virtue of the way proof of work functions, that the archival bond is preserved.
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However, even though the time-ordered nature of the transactional records is preserved,
the link to their procedural context, and relationship to other transactional records relating
to the same procedure, is not” [7], (p. 1439). This prevents searching records registered
on the blockchain according to their archival bond relationships as well as interlinking
the records already on-chain with the new ones belonging to the same activity. Therefore,
this paper explores realization of the archival bond in the context of blockchain, further
developing the data model presented by Lemieux and Sporny [7], and suggests a solution
based on introduction of supporting secure linkages to non-blockchain-relying systems
such as those based on SQL or NoSQL databases. Built around a central repository, or
a digital archive relying on blockchain. Such a supporting system can not only enable
metadata to be changed as required but also significantly simplify searching compared to
searching on-chain information.

Lemieux and Sporny [7] addressed the challenge of archival bond realization on
blockchain. They proposed a data model which enabled archival bond preservation in a
blockchain-based archival system. Their realization suggested using standard distributed
ledger fields, such as the Bitcoin’s transaction metadata OP_RETURN field for storing
archival bond information. Such fields are limited by size constraints and storing a struc-
tured data model (as is proposed) might require special encoding. The data model proposed
in this paper takes a different approach. It is designed for a completely new system and
the mentioned restrictions did not apply. Lemieux and Sporny [7] suggest using special
ontologies to create archival bond categories which can then be used to represent the
archival bond context. On the other hand, TrustChain stores only the bare minimum
metadata information on blockchain and uses a separate information system for indexing
records and preserving metadata. Therefore, the approach proposed here is tailored after
the database systems which can be used to realize the supporting system. This enables
records to be connected individually using one-to-one connections or to form larger groups
of archival bond records by using any implementation of one-to-many or many-to-many
relationships that is available to the supporting system, such as embedded collections in a
MongoDB-based system. Such implementation allows any already existing specialized,
formal ontology to be used in formation of the archival bond.

3. Blockchain Data Structure

This section presents a general overview of blockchain data structures and shows
their implementation by the TrustChain system. The purpose of this overview is to identify
challenges caused by using an immutable data structure in a digital archival system. The
section also serves as a brief introduction into the data structure used by the TrustChain
blockchain, as detailed in the authors’ previous papers [2,3].

While the contemporary blockchain data structures are traditionally connected with
cryptocurrencies and the financial sector, they have found application in almost every field
of human activity. There is a tendency to incorporate blockchain in every new information
system which could benefit from it—and many indeed can. Since blockchain provides
an added layer of data security, in theory, it makes a useful addition to any information
system which aims to preserve information.

Such a vast scope of application necessitated development of various blockchain
architectures. At the top level one can differentiate between two archetypes of blockchain
architecture pairs: public and private, and permissioned and permissionless.

Cryptocurrencies mostly fall in the public type. This architecture allows a vast number
of (possibly anonymous, such as in the case of Bitcoin) participants with the integrity of the
data commonly being ensured by requiring proof-of-work to be provided for each block
addition into the chain.

Private blockchains are maintained by a number of trusted people or institutions,
i.e., nodes. The number of participants is usually significantly smaller than in public
blockchains. This, along with the fact that all participants are clearly identified, means that
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the blockchain does not need to rely on mathematical problem solving such as proof-of-
work to ensure data integrity.

As opposed to permissionless blockchain, where any user can record data on-chain,
in permissioned blockchain only authenticated, trusted users can record data which are
then sealed on-chain using normal methods of combining hashes of current and previous
data. Because of its intended primary user, a coalition of archival institutions, a private,
permissioned blockchain model is the preferred solution for a system such as TrustChain [2].
It should be noted that a small number of authenticated users which can enter new data
into a private blockchain structure does not exclude read-only access for a much wider
userbase, or even public access.

Without the need for any proof-of-work, the proposed blockchain structure and its use
are significantly simpler compared to the blockchain using proof-of-work, such as various
cryptocurrency blockchains. This approach merely needs to link data blocks using hashes.
Within the blocks, data are best organized into Merkle trees [8]. A Merkle tree is a full
binary tree which enables confirmation of a record’s data integrity by calculating only the
hashes between the tree leaf containing the record and the root of the tree.

The tree itself can be stored into an array which is easily translated into an actual file
stream. Each block in this structure is connected to its preceding and following block by a
linear chain of hash values. This logical architecture is shown in Figure 1.

Figure 1. TrustChain logical data structure.

In Figure 1 the “pointer to record X” field is an abstract. This field may contain fixed
length information, as suggested in the upgraded TrustChain model [3], or links to actual
off-chain files, as suggested in the initial version of the TrustChain model [2].

Such a logical structure is simple to translate into a linear stream using standard
mapping of a binary tree to an array. For example, using the upgraded TrustChain model,
a block can be written into a file stream as the structure shown in Figure 2.

Figure 2. TrustChain file structure.

The upgraded TrustChain model requires revocation and vote data to be added to
each block. This is not included in Figure 1 or in Figure 2 in order to maintain compatibility
of the solution proposed in this paper with the initial version of the TrustChain model
and to show only key elements. However, adding these fields to a block is trivial. Since
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this information is fixed length and not numerous (especially the vote fields), they are not
included in the hash tree but rather linearly appended to the end of the file.

The presented data structure can be traversed in a very efficient manner. Since the
actual digitally signed records are the only variable length data, and they are stored off-
chain—most likely as separate files, and only a fixed length pointer to each record needs to
be maintained—the blocks can have fixed size. This means that the position of each block
can be calculated using their ID (sequential number) in constant time complexity. Reading
useful data within the block itself is also conducted in constant time, while confirming the
validity of a hash within a block is conducted in logarithmic time. However, all of this
assumes the exact record ID (or sequential number) is known. If this is not the case, a linear
search of all blocks must be conducted to find the position of an individual record. While
this search can be narrowed down by using the block creation date as a filter (if the date is
known), we still consider this highly inefficient.

In order to propose a more efficient solution firstly we have comparatively reviewed
the existing body of literature discussing blockchain-based data storage systems. Secondly,
we have compared four relevant metadata standards and mapped their mandatory and op-
tional elements to make the proposed solution as intercompatible as possible. Based on that
we are proposing the TrustChain supporting system model which supports preservation of
both digitally signed and/or sealed records and the archival bond between them.

4. Literature Review

The purpose of the paper is to propose a suitable data support system for the
TrustChain archival blockchain model. TrustChain itself was conceived by the authors of
this paper, with contributions from other researchers, during the InterPARES Trust project
(https://interparestrust.org, accessed on 19 July 2021.) and is best described in the original
paper [2], which detailed an early concept of the model. The original model assumed that
the archival records and their digital signatures would be available to the TrustChain nodes
for signature confirmation at the phase of ingest to the digital archive. This requirement
proved challenging when dealing with confidential records. Therefore, a new, updated
model [3] was created which avoided this issue by requiring only signatures or digital
certificates to be examined.

This paper continues the research by proposing a TrustChain supporting data system
solving the conflicting requirements of blockchain (immutable), and archival bond (change-
able until records become inactive). The supporting data system is an information storage
system separate from the blockchain whose purpose is to enable TrustChain users to alter
certain metadata information (most notably add archival bond information which might be
created after the record has entered the system) and allow the blockchain to be indexed and
easily searchable. In order to achieve these goals, the system cannot rely on an immutable
data structure, so a dual storage system is needed, consisting of an immutable blockchain
core, which guarantees data integrity, and a partially mutable supporting system.

In order to determine the most suitable technology for the proposed supporting
system, a literature review was conducted comparing similar systems—both specialized
archival systems and general database systems using blockchains to ensure data integrity.
Using the literature review approach, we were able to determine which underlying tech-
nological solutions are predominantly used and estimate their appropriateness for the
proposed system.

Three digital archive models were considered, ARCHAIN [9], Cilegon E-Archive sys-
tem [10], and Lekana [11]. In addition to these archival systems, several general data storage
systems were considered including BigChainDB [12], ChainSQL [13], EthernityDB [14],
and Mystiko [15]. A brief overview of these systems is shown in Table 1.

https://interparestrust.org
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Table 1. An overview of blockchain-based data storage systems.

System Dedicated Archival System Centralised Storage Technology

ARCHAIN Yes Yes Existing state archival system

Cilegon
E-Archive Yes No Interplanetary file system (IPFS)

Lekana Yes No Apache Cassandra (noSQL distributed)

BigchainDB No No RethinkDB and MongoDB
(noSQL distributed)

ChainSQL No No Any database (SQL or noSQL)

EthernityDB No No Ethereum blockchain

Mystiko No No Apache Cassandra (noSQL distributed)

Several of the examined systems are realised as unique solutions. Thus, they were
deemed not applicable to the challenge presented in this paper. They are briefly ex-
plained next.

Galiev et al. merely state that ARCHAIN is built upon an existing archival sys-
tem [9]. While they did provide some insight into the challenges concerning integration
with the archival system, the authors did not suggest a solution usable in the context
of TrustChain. Still, the paper confirms the hypothesis behind the original TrustChain
idea—that blockchains can, and will be, used to ensure data integrity in archival systems.

Cliegon E-Archive system uses Interplanetary file system (IPFS), a distributed file
storage system [16] and presents an interesting solution which we, however, do not consider
viable for the TrustChain solution. Namely, using IPFS would require TrustChain to develop
its own database management system since simply storing files would not suffice for its
data support needs because it needs to be easily searchable. However, other researchers
have investigated the approach to use IPFS and blockchain in concert to ensure data
integrity, e.g., Naz et al. suggested a similar system [17]. The idea has merit and a possible
application in the TrustChain solution does exist—such a system could be used to store
archived records—but such applications are beyond the scope of this paper.

EthernityDB stores its data on the Ethereum blockchain itself. While such a solution
has merit and the volume of data the TrustChain solution stores might not be huge, it
will still incur costs for storing data on the Ethereum blockchain. For this reason, using
Ethereum was not considered.

The remaining four systems use distributed noSQL databases. ChainSQL is unique
in this group as it is equally capable of handling both types of database systems and
does not specify any concrete databases used in its creation and testing. This narrows
down the choice to either Apache Cassandra [18], used by Lekana and Mystiko, or Mon-
goDB [19], used by BigchainDB, both of which are industry leading distributed noSQL
database systems.

From the start, TrustChain was modelled as a distributed system and the use of
distributed database was implied, but the use of a noSQL database was not. The literature
review has shown a clear prevalence of noSQL databases in similar systems. Since the
TrustChain supporting data system does not require a complex relational data model or
transactions, a noSQL database makes a preferred choice as a basis for storing metadata,
archival bond, and blockchain record location.

While they fall under the same database category, Cassandra Apache and MongoDB
are very different systems. Performance wise, Cassandra Apache has shown a slight
advantage as data size increases [20]. A more important design decision arises from the
different types of data organization between the two systems. Cassandra Apache uses
column-based data storage, akin to SQL systems but lacking normalization and foreign key
references. MongoDB calls itself a document-based database and stores data in JSON-like
format. MongoDB stores JSON data in a binary format—BSON [21]. Because previous
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versions of the TrustChain model used JSON to describe data stored on its blockchain, it
would make more sense to adopt a MongoDB-based solution than a Cassandra Apache-
based one. However, since TrustChain is still a model of an information system, next we
will present and compare a data model using both solutions.

5. TrustChain Supporting System Model

In order to model the supporting system, two critical choices had to be made: which
technology to use, and which metadata model to use. While indexing is mostly a technical
issue, achieved by the supporting system’s underlying technology, searchability is not.
Archival searches are conducted by exploring metadata collections, and precisely because
of this the selection of an appropriate metadata standard is vital for the supporting system.

To determine which metadata set to use, four relevant standards were comparatively
analysed, three archival metadata standards—DACS [22], ISAD(G) [23], and PREMIS [24]—
and one general digital object description standard—Dublin Core [25] (Table 2).

Table 2. Comparison of metadata standards.

Standard Archival Standard? Number of Metadata Elements Number of Mandatory Metadata Elements

DACS Yes 25 10

Dublin Core No 15 0

ISAD(G) Yes 26 6

PREMIS Yes 15 2

Since the model anticipates use of an extensible database system (MongoDB or Cas-
sandra Apache), the focus was put on modelling a minimum set of metadata elements
required which can later be expanded if needed. The model would benefit from choosing
the metadata set which maintains compatibility with as many applicable metadata stan-
dards as practical. To achieve this, the selected metadata set should include mandatory
metadata elements of all metadata standards supported by the proposed system. Therefore,
the metadata standards were comparatively analysed, and the overlapping mandatory
metadata elements determined.

Firstly, the metadata standards were examined individually to determine to which
degree they are applicable to the TrustChain supporting system.

DACS has the largest number of mandatory elements. It was concluded that many
mandatory elements do not favour the envisaged model of storing digital objects com-
plemented with a minimal set of metadata. Elements such as “Name and Location of
Repository Element” and “Languages and Scripts of the Material Element” are not vital for
the TrustChain supporting system. On the other hand, several basic metadata elements,
such as “Title” and “Name of creator”, are present in all standards. Deciding to support
DACS mandatory metadata elements would require inclusion of fields which would rarely
be used. Therefore, it was decided not to fully support it. If required, the system data
model can be expanded to support DACS.

Dublin Core has no mandatory elements and can be easily supported by mapping its
optional elements to mandatory elements of other standards.

ISAD(G) is very similar to DACS. This was expected since DACS is the United States’
implementation of ISAD(G). However, because of the smaller number of mandatory ele-
ments, ISAD(G) was found to be much easier to support.

PREMIS has been shown to be the most applicable standard for the use case pre-
sented in this paper. This is largely due to the following factors. Firstly, in general,
PREMIS has only two mandatory metadata elements. However, when used to describe
digital objects, i.e., files and bitstreams, it requires at least one additional element—
“objectCharacteristics/format”. This element is appropriate to the TrustChain supporting
system since it describes the digital format used by the object. The standard is otherwise
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very extensive and covers many metadata elements, most of which are optional. Even
when they are marked as mandatory, it often means “mandatory if applicable” (such as
in the “/format” case), or only applies if certain other fields are used [26]. This allows
for a great deal of flexibility. Secondly, PREMIS includes metadata elements which cover
digital signature information, vital information for the TrustChain system. Thirdly, PREMIS
supports archival bond information via its “relationship” elements. Lastly, PREMIS is
designed to be used in XML notation, which is similar to JSON. This simplifies creation of
a data model for the MongoDB system.

Table 3 shows mapping of mandatory and optional elements of metadata standards.
When a mandatory element is required by one standard but not by another, an appropriate
optional element was looked for to fill the gap in the standards comparison table. The table
differentiates between mandatory (M), optional (O), and non-existing (X) elements.

Table 3. Mapping of mandatory (M) and optional (O) elements of metadata standards (X—non-existing elements).

DACS Dublin Core ISAD(G) PREMIS

Reference Code
Element (M) Identifier (O) Reference code (M) objectIdentifier (M)

X Type (O) X objectCategory (M)

Title element (M) Title (O) Title (M) originalName (O)

Name of creator
element (M) Creator (O) Name of creator (M) signatureInformation/signer (O)

Date element (M) Date (O) Date of creation (M) creatingApplication/dateCreatedByApplication
(O)

X X Level of description (M) X

Extent element (M) X Extent of the unit
description (M) X

Scope and Content
Element (M) X Scope and content (O) X

Name and Location of
Repository Element (M) X Existence and location of

originals (O) storage/contentLocation (O)

Conditions Governing
Access Element (M) X Conditions governing

access (O) X

Languages and Scripts of
the Material Element (M) X Language/scripts of

material (O) X

Rights Statements for
Archival Description (M) Rights (O) X linkingRightsStatementIdentifier (O)

Following results of the comparative analysis of the mandatory and optional metadata
elements in four relevant metadata standards, it was decided to use the PREMIS metadata
standard as a basis for the metadata model used in the TrustChain supporting system
and to include fields which would enable compatibility with Dublin Core and ISAD(G)
standards. The chosen five PREMIS metadata elements to be used as mandatory in the
TrustChain supporting system are:

• objectIdentifier—a unique identifier within the TrustChain system.
• objectCategory—PREMIS uses this element to distinguish Entites, Representations,

Files, and Bistrams. TrustChain uses this element to differentiate between signed files
and digital certificates (both can be recorded independently).

• originalName—name of the record before it enters the TrustChain System.
• dateCreatedByApplication—timestamp of file or signature creation.
• format—used to differentiate specific file formats. In TrustChain this field can also be

used to store digital certificate information if the record is a digital certificate.
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The above are the mandatory PREMIS metadata elements for a file or bitstream object.
Along with those, one non-PREMIS metadata element will be used:

• TrustChainBlockID—this element uniquely identifies the TrustChain data block in
which the record is stored. This is a vital element as it enables the metadata set to be
used as a search tool for the blockchain.

The chosen 12 PREMIS metadata elements to be used as optional include all signature
information elements and relationship elements. The signature elements are:

• signer—name of an individual or an institution, or other identifier, as registered in the
digital signature.

• signatureMethod—identifies which algorithms were used for encryption and hashing
in the digital signature.

• signatureValidationRules—PREMIS defines this element as “operations to be per-
formed in order to validate the digital signature”. This refers to special steps which
need to be taken during validation because of special ingest procedures, i.e., the
archives-specific process of admitting records into the archive. In the current version
of TrustChain this is an optional element intended for possible future use.

• signatureProperties—PREMIS defines this element as “additional information about
the generation of the signature”. In the current version of TrustChain this is an optional
element intended for possible future use.

• signatureValue—the digital signature itself.
• keyInformation—public key used to validate the digital signature.
• signatureEncoding—defines encoding method for signatureValue and keyInforma-

tion elements.

Finally, PREMIS relationship elements, which are used to allow archival bond meta-
data to be recorded, are:

• relationshipType—defined by PREMIS as a “high level categorization of the nature
of the relationship”. PREMIS vocabulary suggests categories such as dependency,
derivation, reference, etc. This element is used to define the relationship recorded in
the archival bond but is optional.

• relationshipSubType—same as relationshipType but with a vocabulary composed of
narrower terms.

• relatedObjectIdentifierType—defined by PREMIS as “a designation of the domain
within which the identifier is unique,” this optional element is not needed for regular
TrustChain operations since all objects will use the same identifier scheme. However,
this element enables the system to maintain archival bond information about records
stored in other systems. In that case, this element identifies the digital archive in
which the related record is stored.

• relatedObjectIdentifierValue—a unique identifier of the related record.
• relatedObjectSequence—order number of the object relative to other objects in the re-

lationship.

A logical data model, presented in Chen notation, is shown in Figure 3. This model
helps better understand the relations between the metadata elements and will assist in the
next steps of the TrustChain supporting system data model development.



Computers 2021, 10, 91 10 of 16

Figure 3. TrustChain supporting system logical data model.

Using the logical model shown in Figure 3, a data model suitable for use in the
MongoDB and Cassandra Apache-based systems is formulated next.

6. MongoDB-Based Data Model

MongoDB organizes information in collections and documents which loosely correlate
to tables and rows in a relational database management system. MongoDB terminology
uses “documents” which should not be mixed with “(archival) records” used throughout
the rest of this paper. The MongoDB model presented here uses a single collection with
embedded documents to enable relationships. The only relationship which is needed is the
archival bond, which is implemented as many one-to-one embedded document relations
using PREMIS fields. Figure 4 presents a MongoDB suitable data model.

This data model allows storage of relevant metadata for all the types of records
TrustChain is designed to handle, digitally signed files and digital signatures included.
By embedding the “digitalSignature” and “arcBond” documents it is possible to store
information on multiple digital signatures and the archival bond for each record. An
example of such a record is shown in Figure 5. The figure shows a mock-up MongoDB
record relating a document whose signature is stored on the TrustChain blockchain with
another document by archival bond. The “key” element in the “digitalSignature” document
has been shortened to a single line since there is no need to state the full length of non-
human readable RSA key.

The TrustChain implementation will include additional elements, i.e., metadata relat-
ing to TrustChain specific processes. Information such as date of ingest and the identifier of
node responsible for ingesting will be included. However, they are omitted here since defi-
nition of the system architecture and its processes represent the next step in the TrustChain
development. This paper, and the example shown in Figure 5, focus on the metadata
needed to search the blockchain and maintain archival bond information.
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Figure 4. MongoDB-based data model.

Figure 5. MongoDB-based data model record example.

In addition to the single collection shown in Figure 4, which is expected to fulfil the
needs of most use cases and is expandable at a later date, we propose a second collection
which will enable easier searching when the archival bond is the search starting point.
The MongoDB-based data model allows the use of many one-to-one connections between
records to support the archival bond. The biggest downside to such an approach is the lack
of an archival bond object which could be used to easily search for all records connected by
archival bond, i.e., participating in the same activity. The presented model of archival bond
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relationship data enables creation of multiple archival bond types. One such type can point
to an identifier of a different collection, an archival bond object. This would enable the
creation of an archival bond catalogue and would allow easy searching of records which
contain an identifier corresponding to an archival bond. Such a collection is presented in
Figure 6.

Figure 6. MongoDB-based data model of an archival bond object.

Having both embedded archival bond information and a dedicated collection grants
greater flexibility when deciding which type to use. Indeed, since there is no limit to
the number of embedded records both methods of storing archival bond information can
be used for the same object. Using the two collections presented in Figures 4 and 6 we
can achieve easy searchability of the blockchain, no matter the starting point—record or
archival bond.

If the example record shown in Figure 5 required an archival bond to multiple objects,
which were possibly created after the example record was created, a separate collection for
the archival bond in question can be created. An example of such a collection is presented
in Figure 7.

Figure 7. MongoDB-based archival bond object example.

In addition to this, a document can be added to the “arcBond” embedded collection
shown in Figure 5 which will reference this new collection. Such an addition would enable
an efficient search for all participating records regardless of the search starting point (an
individual record or the archival bond object).

7. Apache Cassandra-Based Data Model

The Apache Cassandra-based system uses tables. However, unlike relational database
management system (RDBMS) solutions, there are no relationships between tables and each
table corresponds to a query. Because of this, modelling such a system without concrete use
case requirements is difficult. One use case may require queries encompassing only digital
signature information, while the next one may require only general metadata and archival
bond information. However, several query tables may be modelled which are guaranteed
to be used. Three such tables are proposed (Figure 8), which roughly correspond to the
logical model entities with a few additions—most importantly, the addition of “name” (of
record) and “signer” to all three query tables.
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Figure 8. Apache Cassandra-based data model (PK = Primary Key, FK = Foreign Key).

The primary key (PK) and foreign key (FK) values shown in Figure 8 do not represent
actual primary and foreign keys, in the meaning of the terms in the context of RDBMS,
since Apache Cassandra does not enforce referential integrity. However, they do mark the
primary ID of a record (PK) and, in the case of archival bond information, a borrowed ID
(FK)—either an ID of a different record or an ID of an archival bond. The query tables shown
in Figure 8 directly correspond to the MongoDB record information collection shown in
Figure 4. Although an archival bond information query table is shown without additional
information, it corresponds to the one-to-one relations as described in the model shown
in Figure 3. Therefore, an additional table is designed to store archival bond information
which can be used as a starting point in searches. The Apache Cassandra table shown in
Figure 9 corresponds to the earlier MongoDB collection shown in Figure 6.

Figure 9. Apache Cassandra-based data model’s archival bond query table.

8. Conclusions

Digital archives preserving digitally signed and/or sealed records are facing chal-
lenges related to validity expiration of signing certificates used in digital signatures. This
threatens the ability of digital archives to confirm trustworthiness of digital records, i.e.,
their accuracy, reliability, and authenticity. We have, with other co-authors, already ad-
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dressed the identified digital preservation challenge, firstly in 2017 when we developed the
TrustChain model registering digital signatures’ validity in the blockchain and enabling
its validation even after expiration of signing certificates [2], and again in 2020 when
we upgraded the model with the aspect of certification chain preservation functionality
enabling digital signature validation even if the record being ingested in the digital archive
has already expired certificates [3]. Until this paper, the challenge of digital certificates’
validity information preservation using the immutable and append-only blockchain and
distributed ledger technology (DLT) structure was missing the possibility to engage in
management and preservation of the archival bond. Here, the concept of the archival bond
is explained as a record’s relationship network connecting it with other records in the same
aggregation. It was pointed out that records’ documentary context is changing when the
records are active or semi-active, thus resulting with changes in the archival bond which
becomes defined and stabilized when records become inactive. This results in the need to
manage archival bond information of the records already registered in the blockchain’s
immutable structure. To that end, in this paper we propose the TrustChain supporting
system model.

Firstly, following the results of comparative analysis of metadata standards, we have
based the supporting system’s metadata model on the PREMIS metadata standard. The
metadata model we are proposing uses additional metadata fields to make it compatible
with Dublin Core and ISAD(G) standards. Secondly, comparative analysis of blockchain-
based data storage systems identified the two most suitable, although very different,
systems that might be used. Therefore, the data model was developed as suitable for
use in both MongoDB and Apache Cassandra-based systems, demonstrating how the
archival bond could be realised and managed in parallel with the records registered in the
blockchain. Although it might be argued that the solution we are proposing is similar to
various blockchain explorers, it is developed as part of the TrustChain system, and by using
it there is no need to explore blockchain data since searchable metadata is entered into
the supporting database at the time of block creation. Finally, the proposed system com-
bines the immutable blockchain structure, used for registering digital signatures’ validity
information, with the realization of the archival bond in the TrustChain supporting system.

To conclude, we consider the proposed approach in digital archive development
and realisation of long-term digital preservation as an important step towards embracing
the potential of new technologies, such as blockchain and DLT, while still honouring the
foundational archival science concepts such as the archival bond.

The TrustChain VIP (validity information preservation) solution, incorporating the
aspects of initial and upgraded models as well as the supporting system presented in this
paper, is under development. The project is currently in an early stage of development—the
system is still being designed. The next step in the TrustChain development will start after
the prototype system is finished. An early prototype will allow easy evaluation of the
system functionality by archival institutions. This also presents an opportunity for these
archival institutions to embrace the idea and participate in the establishing of a network
of trusted institutions, becoming trusted nodes of the TrustChain solution. Evaluating
performance and scalability is more complicated but the two, at least in the case of the
supporting system discussed here, are far from a complete unknown. Both MongoDB and
Apache Cassandra are industry standard solutions for large-scale distributed database sys-
tems. Nevertheless, performance and scalability will be rigorously tested when TrustChain
solution reaches that stage of development.
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