
computers

Article

Latency Estimation Tool and Investigation of Neural Networks
Inference on Mobile GPU

Evgeny Ponomarev 1,* , Sergey Matveev 2,3 , Ivan Oseledets 1,3 and Valery Glukhov 4

����������
�������

Citation: Ponomarev, E.; Matveev, S.;

Oseledets, I.; Glukhov, V. Latency

Estimation Tool and Investigation of

Neural Networks Inference on Mobile

GPU. Computers 2021, 10, 104.

https://doi.org/10.3390/

computers10080104

Academic Editor: Paolo Bellavista

Received: 5 July 2021

Accepted: 18 August 2021

Published: 23 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; i.oseledets@skoltech.ru
2 Faculty of computational mathematics and cybernetics, Lomonosov Moscow State University,

119991 Moscow, Russia; matseralex@cs.msu.ru
3 Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia;
4 Noah’s Ark Lab., Huawei Technologies, 121614 Moscow, Russia; noahlab@huawei.com
* Correspondence: evgenii.ponomarev@skoltech.ru

Abstract: A lot of deep learning applications are desired to be run on mobile devices. Both accuracy
and inference time are meaningful for a lot of them. While the number of FLOPs is usually used
as a proxy for neural network latency, it may not be the best choice. In order to obtain a better
approximation of latency, the research community uses lookup tables of all possible layers for
the calculation of the inference on a mobile CPU. It requires only a small number of experiments.
Unfortunately, on a mobile GPU, this method is not applicable in a straightforward way and shows
low precision. In this work, we consider latency approximation on a mobile GPU as a data- and
hardware-specific problem. Our main goal is to construct a convenient Latency Estimation Tool for
Investigation (LETI) of neural network inference and building robust and accurate latency prediction
models for each specific task. To achieve this goal, we make tools that provide a convenient way to
conduct massive experiments on different target devices focusing on a mobile GPU. After evaluation
of the dataset, one can train the regression model on experimental data and use it for future latency
prediction and analysis. We experimentally demonstrate the applicability of such an approach on a
subset of the popular NAS-Benchmark 101 dataset for two different mobile GPU.

Keywords: latency; inference; mobile GPU; neural architecture search

1. Introduction

Algorithms based on convolutional neural networks can achieve high performance
in numerous computer vision tasks, such as image recognition [1,2], object detection,
segmentation [3], and many other areas [4]. A lot of applications require computer vision
problems to be solved in real-time at the end devices, such as mobile phones, embedded
devices, car computers, etc. All those devices have their architecture, hardware, and
software.

Mainly, researchers optimize neural network architecture with reference to accuracy–
FLOPs trade-off. However, the problem is that the real inference time of the utilized neural
networks can differ significantly from theoretical, especially for mobile computing devices.
For example, fast and accurate ShuffleNet [5] achieved actual speedup at Qualcomm
Snapdragon 820 processor is more than 1.5× less than theoretical in comparison with
MobileNet [6]. It is a quite widespread phenomenon; more examples can be found on
TensorFlow [7] Lite (TFLite) benchmark comparison [8]. More results of TensorFlow
Lite performance benchmarks when running well-known models on some Android and
iOS devices can be found on https://www.tensorflow.org/lite/performance/benchmarks
(accessed on 19 August 2021).

The main problem is to find simultaneously fast and accurate neural network model
for each target device and each target implementation. This problem is difficult and while
each new device has some valuable difference in inference time for the same architecture,
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the task of hand-craft architecture, which optimizes the accuracy–latency trade-off directly
for each new device, is too expensive and time consuming.

The promising automatic neural architecture search area (NAS) can be the solution. In
this area, neural network architecture is being searched by a certain optimization algorithm
maximizing combination of speed-accuracy trade-off. Already, by now, NAS methods
have outperformed manually designed architectures on several tasks, such as image
classification, object detection, or semantic segmentation [9]. It leads to design of the special
datasets for the task of effective automatic architecture search, namely NAS-Benchmark
101 [10]/NAS-Benchmark 201 [11]. These datasets contain all possible cells generated from
different number (4–7) of blocks. Each cell is represented as a directed acyclic graph. Each
edge here is associated with an operation selected from a predefined operation set. We
cover more detail about it in the section devoted to model parametrization. The NAS
datasets contain information about training log using the same setup and the performance
(on CIFAR-10/100 [12] task) for each architecture candidate, including accuracy on test set
of target image classification dataset.

Many effective NAS algorithms, such as DARTS [13] and several others [14], show
efficiency on those datasets but optimize architecture with respect to FLOPs number
or server runtime optimization. Our scope of interest it not how architecture search
algorithms actually perform, but what proxy is used as architecture complexity/inference
time. As soon as actual speed on target device is much more valuable for applications than
complexity in number of operations. In work on MnasNET [11], authors applied NAS
for architecture search and provided measurements for each proposed model on a mobile
CPU. Thus, they proposed a very efficient architecture for mobile device utilization, but
without the use of the mobile GPU. They implemented models in TensorFlow Lite and
directly measured real-world inference time by executing the model on mobile phones for
performing NAS. Of course, this approach requires making a lot of real-world experiments
on target device.

In EfficientNet-EdgeTPU [15], researchers use the other solution. They implemented
a precise simulator of the target device (mobile CPU), which can run in parallel on reg-
ular clusters, but that way is a quite complex engineering task. It is also implemented
with TFLite. Cheaper and lighter approach is used by authors of ProxylessNAS [16],
ChamNet [17], and FBNet [18]. Models in these works were deployed with Caffe2 with
highly efficient int8 implementation. Authors created a lookup table (LUT) of all blocks.
After that, latency is computed as a sum of latencies of the corresponding blocks. This
approach is quite efficient for mobile CPU latency modeling and does not require massive
experiments on target devices.

Surprisingly, while GPU or special NPU (neural processing units) are preferable for
neural network inference, there are only a few works about latency modeling for mobile
GPU for now. In work on MOGA [19], GPU-awareness was investigated for the different
search space, and authors state that the aforementioned lookup table works well even for
mobile GPU, but for cases when latency is calculated for each block of the same structure
and input shape. The models were deployed in TensorFlow Lite in that work. In contrast,
authors on BRP-NAS [20] considered a lookup table approach as inefficient for GPU latency
prediction and proposed their own method based on graph convolution network (GCN)
but did not provide any source code or open dataset. They implemented experiments
on a mobile device with not so the widespread Snapdragon Neural Processing Engine
framework (SNPE). In our setup, we obtain that LUT gives quite high error for layer-wise
prediction of neural network latency on a mobile GPU.

To the best of our knowledge, the latency modeling area is in its early stage of devel-
opment currently, and there are no common ways to find a good approximation of neural
network inference time/speed, especially on mobile GPU. This research is aimed to find
the way to fill this gap with the proposed approach and LETI pipeline. Latency is also very
dependent on the CPU or GPU architecture, a number of cores, processing units, memory
hierarchy, bandwidth between memory levels, etc. In addition, it is very important to



Computers 2021, 10, 104 3 of 15

optimize the software implementation to the target architecture (how to layout data and
perform processing of them). We hope to address these issues in our future research.

It is worth it to mention an important detail: in addition to dependence on hardware,
the inference time of neural networks also highly depends on implementation [21]. In this
work, we study inference of TensorFlow Lite models on a mobile GPU and propose an
Latency Estimation Tool (LETI) for reconstructing models from graph-based parametriza-
tion; estimation and modelling latency. Our tool is implemented as two Python packages.
Neural networks are implemented as TensorFlow 2 Keras (TF.Keras) models. The tool
provides a convenient way to convert them into the TensorFlow Lite model with a standard
TensorFlow Converter. We assume that our tool is potentially useful for NAS research
because it can create all possible models from the desired parametrization and evaluate
their TFLite versions on the target device’s CPU/GPU or NPU. To set up the desired
search space, the researcher has to define parametrization. We use it the same as in the
NAS-Benchmark-101 in our experiments.

Our main contributions are:

• LETI Tool, which allows:

- To generate TF.Keras models from parametrization, with parametrization same
as in NAS-Benchmark-101.

- To evaluate TF.Keras model on CUDA devices.
- To convert to TFLite using TF converter and evaluate on Android device.
- To encapsulate latency evaluation on device as black-box for direct optimization

(e.g., with Nevergrad [22]).

• Evaluation of lookup table for several popular neural networks on a mobile CPU and
providing an tool for such estimation.

• Evaluation of latency prediction methods on generated latency dataset: RANSAC [23]
regression on FLOPs number with and without clustering based on peak memory
usage; XGBoost [24]; CatBoost [25]; LightGBM [26]; and graph convolution network
(GCN) for latency prediction on a mobile GPU.

2. Materials and Methods
2.1. Neural Network Parametrization

The parametrization of neural networks is crucial for defining architectures. In our
work, we exploit the approach from NAS-Bench-101 [10]. We represent a neural network as
a directed graph with nodes representing layers and edges representing connections (see
Figure 1). We store correspondence between the number of nodes and layers in a special
list (layers_list).

Figure 1. Parametrization of neural network implementation as a set of adjacency matrix, layers list,
and config dict.
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A graph can be represented with the adjacency matrix. For a simple graph with the
vertex set V, the adjacency matrix is a square |V| × |V|matrix A such that its element Aij
is one when there is an edge from vertex i to vertex j, and zero when there is no edge.

One needs to specify the adjacency matrix, the list of layers, and the configuration
dictionary to set up the complete implementation of the desired neural network. Our
tool can be used to generate the selected list of desired models or for the whole dataset
generation. The entire process from settings to evaluation requires several steps, which we
describe in the next subsection.

2.2. Latency Dataset Generation Pipeline

Below, we describe the pipeline of the generation of the latency dataset. The scheme
of the pipeline can be found in Figure 2 and has the following form:

1. Firstly, we generate the set of parametrized architectures as in NAS-Benchmark. We
verify uniqueness by the same hashing procedure as in Reference [10]. Thus, it is
additional proof of the same parametrization and set of models. For NAS-Benchmark
configuration at this step, we obtain 423,624 parametrized models/graphs with:
max 7 vertices, max 9 edges with 3 possible layer values (except input and output):
[‘conv3x3-bn-relu’, ‘conv1x1-bn-relu’, ‘maxpool3x3’].

2. Next, we generate TF.Keras models. The tool is able to generate both only the basic
block that is represented by the parametrization or the stacked models built from such
blocks as in the NAS-Bench-101.

3. Then, we build models for the specified input shape and convert it into TensorFlow
Lite representation.

4. After, we optionally evaluate the latency of TF.keras models on desktop/server GPU
nodes. In our work, we run the model for n ≥ 100 times with guaranteed condition
on standard deviation: std(runs_latency) ≤ 1

10 mean(runs_latency).
5. Finally, we evaluate the latency of TFLite models on the CPU, GPU, or NPU of the Android

devices. In work, we evaluate only models which are fully delegated to GPU for TFLite
Some operations are not supported for delegation by the framework, such as SLICE. See
operations descriptions at: https://www.tensorflow.org/lite/guide/ops_compatibility
(accessed on 19 August 2021). Part of the models use the addition of more than two
intermediate layers, that ADD_N operation in TFLite, that is also unsupported by GPU.
We substitute that operation with multiply ADD operation (addition of two tensors can be
delegated for mobile GPU).

[adjacency_matrix;
layers_list;
accuracy]

NAS-Bench 101

hash:      [adjacency_matrix;
layers_list;
accuracy]

Final Dataset

hash:      [adjacency_matrix;
layers_list;
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TensorFlow 2
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Figure 2. Latency dataset generation pipeline.

https://www.tensorflow.org/lite/guide/ops_compatibility
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The dataset stores the sequence of tested architectures. Each item in this sequence is
represented with its unique hash code, list of layers, their adjacency matrix, and timings of
measurements (in milliseconds) for evaluated devices. We also supported these items with
estimates of their execution cost in FLOPs and measured Peak memory consumption that
is useful for some modeling methods.

3. Results

In this section, we show the construction and analysis of the dataset we constructed
for two mobile devices and the subset of NAS-Bench 101 search space.

The goal of our work is to build a convenient way to collect data and create a hardware-
specific latency predictor. In this work, we focus on a mobile GPU. For testing our frame-
work, we chose two mobile devices based on Huawei Kirin 970 (GPU: ARM Mali-G72
MP12) and Kirin 980 (GPU: ARM Mali-G76 MP10).

3.1. Discussion about Choosing Implementation and Deploying on Mobile Devices

In this subsection, we discuss deployment on mobile devices because this work
is mostly targeted on it. Currently, there are two most popular operating systems for
smartphones: iOS and Android. Android maintains its position as the leading mobile
operating system worldwide, controlling the mobile OS market with a close to 73 percent
share. This is the reason to focus firstly on Android devices.

There are several ways to run artificial neural network on Android-based devices.
The most common way is to use special deep learning framework. Currently, most of
applications use TensorFlow Lite, Caffe2 [27], or very fresh Pytorch Mobile [28] (experi-
mental in the end of 2019, released in 2020, NNAPI added in the end of 2020). Different
implementations of the very same neural network architecture can vary in performance,
weight, and inference time even on the same hardware [29]. First of all, model can be
run on a CPU, GPU, or special NPU of a device if the implementation allows it to be
done. Furthermore, the same implementation of the neural network can significantly
differ device-to-device (see figures from Reference [29] for bright examples). In addition,
some frameworks propose quantizing operation which provides a significant speed-up of
the inference. Often, this is the reason to choose TensorFlow Lite, because this operation
was added to Pytorch Mobile only recently, a couple of years later than in TensorFlow
Lite. We choose TensorFlow lite due to its popularity and relative stability. We do not use
quantization or pruning in our experiments, but, with same pipeline, it is possible to add it
as a parameter in architecture representation. We do not focus on delegation on NPU, but
it is a result.

Our target is create a new way to search neural network in both implementation
and hardware-specific way. We do not aim to achieve top accuracy but, rather, to show
that, even using simple baseline machine learning methods, it is possible to choose neural
network more accurately than just based on number of operations (FLOPs). We create our
experiments with full delegation on a mobile GPU using TensorFlow Lite framework for
two Kirin devices. The choice of device highly depends on the application. For example,
for a standard CV application inside pre-installed Camera app on Huawei, it is natural to
use Huawei devices. For developing general-purpose application it is better to separate
it into several main architectures and choose specific implementation and architecture
for each one. Therefore, without covering too wide-spread set of devices (including Arm
Cortex CPUs/Mali GPU, Google Pixel chipsets, Samsung chipsets, MediaTek chipsets,
HiSilicon chipsets, Qualcomm chipsets, etc.; see Reference [21]), any choice may not be
sufficient for all tasks. However, creating datasets for all possible architectures seems to be
redundant for demonstration of our pipeline and methodology. We choose Huawei Kirin
devices with different CPU and GPU based on Kirin 970 and Kirin 980 SoCs. For CPU
lookup experiments, we also use device of another manufacturer, i.e., a Samsung Exynos
9810 device, that was in stock. We present information about the devices in Table 1.
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Table 1. Details about the devices which we utilized in our research.

Device Name Kirin 970 Kirin 980 Exynos9810

Serial num AEJ0117C11000167 015NTV187K000112 R39K708F15
Lithography 10 nm 7 nm 10 nm
Release date 02/09/2017 31/08/2017 01/03/2018
Architecture ARM big.LITTLE ARM big.LITTLE ARM big.LITTLE

Series Cortex-A73/-A53 Cortex-A76/-A55 Exynos M3/Cortex-A55

CPU
4x Cortex-A73 (2.4 GHz) + 2x Cortex-A76 (2.6 GHz) + 4x Exynos M3 (2.9 GHz) +
4x Cortex-A53 (1.8 GHz) 2x Cortex-A76 (1.9 GHz) + 4x Cortex-A55 (1.9 GHz)

4x Cortex-A53 (1.8 GHz)
Memory LPDDR4X LPDDR4X LPDDR4X

GPU ARM Mali-G72 MP12 ARM Mali-G76 MP10 ARM Mali-G72 MP18
GPU Lith. 16 nm 7 nm 16 nm
GPU clock 746 MHz 720 MHz 572 MHz

GPU Execut. 12 units 10 units 18 units
GPU Shading 192 units 160 units 288 units

GPU Cache 1 MB 2 MB 1 MB
GPU Perf 286 GFLOPS (FP32) 230 GFLOPS (FP32) 370 GFLOPS (FP32)

Cache sizes (L1/L2/L3, if it has) for used cores are: Exynos9810-Exynos M3 (384KiB/2MiB/
4MiB), Cortex-A55 (256KiB/256KiB); Kirin 970 - Cortex-A73 (512KiB/2MiB), Cortex-A53 (256KiB/
1MiB); Kirin 980-Cortex-A76 (512KiB/2MiB), Cortex-A55 (256KiB/512KiB). For CPU exper-
iments, we run the task on a BIG core in 1 thread.

3.2. TensorFlow Lite Dataset

For evaluation on a mobile GPU, we create a dataset consisting of 11,055 samples for
fully GPU delegable 96 × 96 × 3 cells. We split it into the training dataset (1000 samples)
and the testing dataset (10,055 samples). Nine thousand eight hundred and ninety-four out
of 110,55 samples represent delegable accurate and fast models: for each of that number
operations, less than 5 × 109 FLOPs and full stacked model have accuracy more than
93.21% on CIFAR-10 based on NAS-Benchmark 101 data (see Figure 3). The rest models
are randomly subsampled architectures. We subsampled a lot of models, but a minority of
randomly sampled models were evaluated on GPU successfully, which move us to focus
on a limited subsample from the original search space.

Figure 3. Dependency between latency and accuracy on CIFAR-10 of network with same base cell |
Huawei Kirin 970.

We train and evaluate models using cross-validation with splitting train dataset (totally
only 1000 samples) into folds. After the model is selected, it trains on the whole training
dataset, and, after that, models were not changed. The final evaluation is conducted on the
test dataset (10,055 samples).
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Each experiment, if not mentioned otherwise, contains 300 runs and is restarted if the
standard deviation of the latency is more than 10% of the mean. In addition, we collect
the dataset 3 times and correlate results from different experiments (see results for Kirin
970 in Figure 4a,b). We delete all results that differ more than 10%. It is noticeable that,
in very rare cases, there is a huge difference in measurements. We do not investigate that
issues, but our guess is that they can be connected with some non-optimized benchmark
and framework implementation issues.

(a) Runs #1 and #2 (b) Runs #2 and #3
Figure 4. Estimated latency for (a) runs #1 and #2; (b) runs #2 and #3. Both are on a Huawei Kirin
970 device.

We investigated the dependency from the number of operations for both collected
datasets (see Figure 5a,b). One can see that, for Kirin 970, dependence from FLOPs is not so
linear as for Kirin 980. This non-linear behavior can be connected with different GPU cache
size (1MB for Kirin 970 (Mali-G72 MP12), 2MB for Kirin 980 (Mali-G76 MP10)). According
to Figure 6b, we can see that heavy models are generally slow, while the majority of the
light ones are fast. In addition, we suppose that, while TensorFlow Lite is not hardware-
specific, it can work more optimally on Mali-G76 than Mali-G72. We consider that such
investigation can be highly useful for developers and leave it for further research.

(a) Huawei Kirin 970 (b) Huawei Kirin 980
Figure 5. Dependency between latency and number of FLOPs for (a) Huawei Kirin 970, (b) Huawei
Kirin 980 devices.
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(a) Latency predicted vs measured (b) Latency vs peak memory usage
Figure 6. Dependency between predicted latency by two RANSAC models based on memory clusters
and measured (a) and dependency between measured latency and peak memory usage (b). Both are
for a Huawei Kirin 970 device.

4. Latency Modeling

Since our goal is to create a tool for the generation of the latency dataset, we also
evaluate some models to show how LETI can be used for creating latency proxy.

4.1. Lookup Table on Mobile CPU and GPU

In this section, we discuss the results of the application of the lookup table (LUT)
method to latency prediction. Before creating our tool, based on current best practices,
we evaluate several popular architectures in TFLite to test this approach on real mobile
devices. We use Huawei Kirin 970 (GPU Mali-G72 MP12), Huawei Kirin 980 (Mali-G76
MP10), and Samsung Exynos 9810 (Mali-G72 MP18).

We implement the lookup table method, which is used in ProxylessNAS, ChamNet,
FBNet for the prediction of latency on a mobile CPU. Firstly, we implemented an automatic
tool that decomposes the TF.Keras model into a sequence of blocks. We use a single layer
as a block. After that, we initialize inputs for each block with the correct input tensor (for
the first one, it is image shape: 224 × 224 × 3; for the second one, it is the shape of the
first block’s output). After that, we convert these blocks as standalone TFLite models and
deploy them on the device for evaluation. We evaluate each block’s inference time within
300 runs and put the value into the lookup table. After that, we fill all the required layers
and compute total latency as the sum of corresponding blocks. The speed of a single layer
is measured directly with TensorFlow-Benchmark.

From Table 2, we see that the approach based on the exploitation of the lookup table
works quite well for the prediction of the inference times for the popular models at CPUs
of different mobile devices.

Table 2. Latency, measured by direct method and as a sum of block’s latencies for mobile CPU. The
lookup table method allows for obtaining good accuracy of predictions.

Model Resnet50 Resnet50 NASNet

Device Kirin 980 Exynos 9810 Exynos 9810

Direct, ms 552 ± 7.1 1806 ± 20.2 432 ± 3.1
LUT, ms 620 ± 3.6 1714 ± 53.0 388 ± 7.3
Error, ms 68.1 92.2 43.8
Rel. err. 12.32% 5.38% 11.29%
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We use the same method and create the lookup table for GPU delegation, but it
results in extremely low precision. We suppose that, due to the huge impact of additional
operations and a possibly different approach to work with RAM, it seems impossible
to directly apply the lookup table method for satisfactory latency predictions at a GPU
or NPU.

Hence, we assume that it would be better to try more general machine learning
approaches and firstly create the tool for the generation dataset of models, their implemen-
tations, and experimentally measured latencies on different devices.

4.2. Linear Models Based on FLOPs

The baseline is just to use FLOPs as a latency proxy. There are several ways how
to fit it, for example, optimize least square error (linear regression). We choose a more
robust version based on the random samples consensus (RANSAC) method because data
contains a lot of outliers. The scatter plots of fitted model are in Figure 7a,b. Results will be
presented in Table 3 at the end of the section.

(a) Huawei Kirin 970 (b) Huawei Kirin 980
Figure 7. Dependency between latency predicted by RANSAC versus measured on test subset for
(a) Huawei Kirin 970, (b) Huawei Kirin 980 devices.

Table 3. Accuracy for tolerance threshold 10% (metric same as in BRP-NAS [20]) and R2. Results
for all discussed methods on two collected datasets (on Kirin 970 and 980) with train/test splitting
1000/10,055 samples. Bold texts indicate the best results.

Acc@10% R2

Method/Device 970 980 970 980

RANSAC 68.29 80.14 0.04 0.93
RANSAC + cluster 71.31 84.11 0.51 0.93

LightGBM 49.17 84.79 0.74 0.90
XGBoost 57.51 85.58 0.77 0.92
CatBoost 55.55 86.10 0.765 0.93

GCN 44.61 67.16 0.69 0.81

While a linear model based on FLOPs is good enough for Kirin 980 dataset, it is not
for Kirin 970. In addition, that fact illustrates that latency prediction on a mobile GPU is
a very case-specific problem. Analyzing data for Kirin 970, we found that there are two
domains and would like to fit a linear model for each one. We assumed that domains
are connected with memory consumption and measured peak memory for all models in
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the dataset (Figure 6b). We chose to separate domains based on memory thresholding.
The threshold is adjusted automatically by optimizing the sum of variances of latencies in
domains for the training subset (folds from 100 samples). We named models constructed
using that way “RANSAC + cluster”, and they are a better fit for the data (see Figure 6a
and Table 3).

4.3. Gradient Boosting Methods

Obviously, one can use not only FLOPs as input data for predictions. We concatenate
FLOPs, peak memory, flatten adjustment matrix, and layers list as input vector size 2 +
72 + 7 = 58. Latency is used as the target. Such a dataset allows easily testing of a lot
of regression models. Here, we provide a regression model based on different gradient
boosting methods: XGBoost, CatBoost, and LightGBM.

A gradient boosting procedure [30] builds iteratively a sequence of approximation
functions Ft : Rm → R, t = 0, 1, . . . in a greedy fashion. Namely, Ft is obtained from the
previous approximation Ft−1 in an additive manner: Ft = Ft−1 + αht, where α is a step
size, and function ht : Rm → R (a base predictor) is chosen from a family of functions H, in
order to minimize the expected loss L(ytrue, ypred):

ht = argmin
h∈H

L(Ft−1 + h) = argmin
h∈H

EL(y, Ft−1(x) + h(x)). (1)

More detailed discription of methods are in original papers: XGBoost [24]; Cat-
Boost [25]; LightGBM [26]. In Figures 8a,b and 9a, the scatter plots of predicted inference
time to measured one are presented. There are minor difference in the results, as shown in
Table 3.

(a) XGBoost (b) CatBoost
Figure 8. Dependency between latency predicted by (a) XGBoost or (b) CatBoost and measured on
test subset on a Huawei Kirin 970 device.
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(a) LightGBM (b) GCN
Figure 9. Dependency between latency predicted by (a) LightGBM or (b) GCN and measured on test
subset on a Huawei Kirin 970 device.

4.4. Graph Convolutional Network (GCN) for Latency Prediction

In a paper on BRP-NAS [20], authors use GCNs for latency prediction on desktop
CPU/GPU and embedded (Jetson Nano) GPU and achieve good results for networks from
NAS-Bench 201 dataset.

GCN latency predictor consists of a graph convolutional network which learns models
for graph-structured data [31]. Given a graph g = (V, E), where V is a set of N nodes with
D features, and E is a set of edges, a GCN takes as input a feature description X ∈ RN×D

and a description of the graph structure as an adjacency matrix A ∈ RN×N . For an L-layer
GCN, the layer-wise propagation rule is the following:

Hl+1 = f (Hl , A) = σ
(

AHlW l
)

,

where Hl and W l are the feature map and weight matrix at the l-th layer, respectively, and
σ(•) is a non-linear activation function, such as ReLU. H0 = X and HL is the output with
node-level representations. See the illustration in Figure 9b.

We use 4 layers of GCNs, with 600 hidden units in each layer. After that, we use a
fully connected (dense) layer with ReLU activation that generates one scalar prediction—
inference time. The input of GCN is encoded by an adjacency matrix A and a feature matrix
X (one-hot encoding of layer/block type). The scatter plot of predicted latency to measured
is presented in Figure 10.

Figure 10. Graph Convolutional Network (GCN) for latency prediction.

4.5. Numerical Results for Proposed Methods

Using the LETI tool, we collect two datasets and show how different methods can
be applied for each one. We tried six methods and measured them. For the numerical
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results, we use two metrics: the percentage of models with predicted latency within the
corresponding error bound relative to the measured latency (Acc@10% for ±10% bound)
and coefficient of determination R2.

If dataset has n values marked y1, . . . , yn, each is associated with a predicted value
f1, . . . , fn. If ȳ is the mean of the observed data: ȳ = 1

n ∑n
i=1 yi, then the variability of the

dataset can be measured with two sums of squares formulas: The total sum of squares
(proportional to the variance of the data):

SStot = ∑
i
(yi − ȳ)2.

The sum of squares of residuals, also called the residual sum of squares, is:

SSres = ∑
i
(yi − fi)

2.

The most general definition of the coefficient of determination is:

R2 = 1− SSres

SStot
.

5. Discussion

In this section, we discuss ways how the obtained methodology can be perceived
in perspective of previous studies. Currently, there are only a few ways to approximate
inference time on mobile devices. All of them have their own pro and contra. Mainly,
they are:

• FLOPs
Advantages: Easy to calculate. Gives information about number of computational
operations, and it is obviously connected with latency.
Disadvantages: Different operations can require different times to perform. In ad-
dition, that is both implementation and hardware-specific. Several devices, such as
GPU, have very nonlinear dependency of inference time from number of operations.
Data movement operations is not taken into account at all because, formally, it is not a
computational operation, but it takes some time, and, sometimes, it may be significant.

• Lookup Table
Advantages: Requires only small number of experiments as large as number of all
possible blocks.
Disadvantages: It does not count data movement between blocks, model loading on
device, which can take a lot of inference.

• Build Simulator of target device
Advantages: Allows getting precise estimation of inference time without real exper-
iments. More robust, than experiments on a mobile device. Can be run in parallel
on clusters.
Disadvantages: Requires complex engineering work to construct simulator of each
target hardware. Seems to be hard to use for not-CPU devices.

• Direct measurements on device for each model
Advantages: Allows getting real estimation of inference time, the direct method. It
has the best match to real user experience.
Disadvantages: Inference time can highly vary from run to run and needs a series of
experiments to get robust estimation. A huge number of experiments is required and
leads to either long experiments or requires a huge cluster of same devices to conduct
parallel experiments.

• Direct measurements for small subset of models and construction of prediction model
Advantages: Requires tracktable in time number of real-world experiments for
even one test device. Gets real experimental values for latency corresponding to
user experience.
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Disadvantages: Model can be not as precise as direct measurements. Training subset
of neural network search space can be not representative enough to cover the whole
search space.

In our work, we provide the pipeline for the last approach. We can find the only
example of usage of such methodology in BRP-NAS [20], where researchers succeeded
in training graph convolutional network to predict latency of neural network. In our
project, we do not succeed with the same approach, probably due not proper architecture
or training. However, the other baselines work with reasonable precision, especially if one
takes into account that even direct measurements of provided models often require more
than 300 runs to get a standard deviation of inference time less than 10% from the mean
value. So, even the “approximate” values of latency is useful.

6. Conclusions

This work presents a novel tool and discusses its exploitation for the generation and
investigation of neural networks with user-defined parametrization.

Latency prediction on a mobile GPU that currently a barely researched area, but it is a
very important one. We hope that the deep learning community will give more attention
to that because real applications tend to be run on mobile devices, and hardware-specific
solutions are highly needed. From our perspective, the LETI approach has a high potential
for that task.

We show an example of applying the developed toolbox to automatic latency pre-
diction problems for generation latency datasets for desktop and Android devices. The
collected dataset allows us to demonstrate non-trivial relations from peak memory size,
floating operations, and neural networks’ inference times for a mobile GPU, which are
also barely investigated, despite having a huge impact on real-life applications based on
neural networks.

While focusing on a mobile GPU, we test several latency prediction baselines. We
consider that a lookup table works well for the CPU-based devices approach for prediction
of latency of neural networks but is not accurate on GPU. More general machine learning
regression models or GCN can be good solutions in particular cases and can be easily
constructed after collecting a small subset from the generated dataset. We hope that this
study can be highly useful for developers who want to run real-time computer vision
applications on mobile devices and accelerate research in latency modeling.
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Abbreviations
The following abbreviations are used in this manuscript:

LETI Latency estimation tool and investigation of neural networks inference
FLOP Floating point operations
GPU Graphics processing unit
CPU Central processing unit
NPU Neural processing unit
RFBR Russian Foundation for Basic Research
NAS Neural architecture search
LUT Lookup table
TFLite TensorFlow Lite
TF.Keras TensorFlow Keras
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