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Abstract: Deep neural networks have achieved almost human-level results in various tasks and
have become popular in the broad artificial intelligence domains. Uncertainty estimation is an
on-demand task caused by the black-box point estimation behavior of deep learning. The deep
ensemble provides increased accuracy and estimated uncertainty; however, linearly increasing the
size makes the deep ensemble unfeasible for memory-intensive tasks. To address this problem, we
used model pruning and quantization with a deep ensemble and analyzed the effect in the context of
uncertainty metrics. We empirically showed that the ensemble members’ disagreement increases
with pruning, making models sparser by zeroing irrelevant parameters. Increased disagreement
im-plies increased uncertainty, which helps in making more robust predictions. Accordingly, an
energy-efficient compressed deep ensemble is appropriate for memory-intensive and uncertainty-
aware tasks.

Keywords: deep learning; uncertainty estimation; deep ensemble; model compression

1. Introduction

In the last decade, deep neural networks have achieved state-of-the-art performance
in various machine learning tasks. As a result, deep models are widely used in today’s
computer vision, autonomous driving, and reinforcement learning subsidiaries. Further,
larger networks tend to have better accuracy; however, the deeper the model, the more
confident the prediction [1]. Deep neural networks make an overconfident, black-box
point estimation because the neural network parameters comprise scalar matrices. Even in
unseen data that come from another distribution, a neural network incorrectly predicts with
high confidence. It is an unwilling property in risk-sensitive tasks, such as autonomous
driving [2–7] and object detection [8–13] in a road scene. The deep learning model should
be well-calibrated and know what is known and what is unknown to be precise about the
prediction confidence.

In real life, a model for risk-sensitive tasks should not only care about accuracy but
also how certain the prediction is. Epistemic uncertainty [14], which comes from model
deficiency in the training data, is reduced by increasing the training data. However, increas-
ing the training data is expensive, and, thus, we suggest that estimating the uncertainty is
more convenient. In addition, aleatoric uncertainty, which comes from the intrinsic charac-
teristics of the data, is irreducible. Predictive uncertainty is the summation of the aleatoric
and epistemic uncertainties. Bayesian neural network methods [15–18] effectively measure
uncertainty by considering distributions placed over the weights instead of fixed scalar
weights. Distributions over the weights are robust to overfitting, but with challenging
inferences and additional computational costs.

In deep learning, we require a scalable and straightforward uncertainty estima-
tion method that increases stochasticity in a deep learning model. Monte Carlo (MC)
dropout [19] is a sampling-based uncertainty estimation method which uses conventional
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dropout [20] with a Bernoulli mask in inference time. They proved that a dropout applies a
neural network with random depth, and activation functions are approximately equivalent
to the probabilistic deep Gaussian processes.

Ensemble [21] is a well-known method for improving the accuracy of machine learning
tasks. The majority of the state-of-the-art performances in machine learning tasks have used
ensembles to improve accuracy. Another sample-based uncertainty measuring method is
the deep ensemble [22], which consists of randomly initialized, independently trained, and
shared-architecture neural networks. The results showed excellent uncertainty estimation
while increasing the accuracy. The deep ensemble is well generalized and well-calibrated
in both similar training data distribution (in-distribution data) and outlying distribution
(out-of-distribution data) [23]. Randomly initialized networks are close to each other
in initialization, but they move further away in the function space during training. It is
assumed that such function space diversity is the main reason for the excellent performance
of the deep ensemble [24].

The deep ensemble improves accuracy through ensembling and effectively measures
the uncertainty by maintaining diversity in the function space, thus increasing the disagree-
ment in a distributional shift of inference data. However, cost remains the main challenge
for the deep ensemble as the training, test time and ensemble size linearly increase in
parallel with the increase in ensemble members. The deep ensemble is not applicable in
memory-intensive tasks because of its increased size.

In deep learning, model compression techniques [25] dramatically reduce the model
size compared with relatively insignificant to no accuracy degradation. Model pruning
increases the model sparsity by zeroing the irrelevant parameters. Low-rank factorization
decomposes the matrix tensor by estimating the informative parameters. Knowledge
distillation learns a distilled model and trains a more compact network to reproduce a more
extensive or ensemble network. Model quantization converts the parameter floating-point
into 8 bits or less.

This study aims to decrease the deep ensemble size using model compression tech-
niques and analyze the effect of model compression techniques on uncertainty estimation.
We propose a simple strategy for decreasing the deep ensemble size, which is the main
drawback of the deep ensemble. The proposed method decreases the size by using model
pruning and quantization. We empirically showed that the ensemble members’ disagree-
ment increases with model sparsity increases. Increased disagreement implies increased
uncertainty, which helps in making more robust predictions.

This paper is organized as follows: first, this paper reviews related works. Then, it
describes the methods, which include the problem setup and high-level summary, deep
ensemble training and compression methodologies, and the evaluation metrics. The next
section covers the presentation of the results. Finally, the discussion, concluding remarks,
and recommendations for future work are presented in the last section.

2. Related Work

There are few notable works related to decreasing cost over the deep ensemble. To the
best of our knowledge, the majority of the studies aim to increase uncertainty quantification
while decreasing the cost by leveraging knowledge distillation. Nevertheless, no studies
associated with the effect of model pruning on uncertainty estimation have been conducted
thus far.

A multi-headed distilled network could mimic the deep ensemble behavior and im-
prove the uncertainty measure [26]. The knowledge distillation technique decreases the
deep ensemble cost, and the multi-head can maintain diversity in the deep ensemble.
However, trainable parameter numbers decrease by approximately 20.0% relative to the
M = 50 ensemble, which is an insufficient measurement to trade for ensemble performance
in some tasks. Moreover, several studies suggest that five networks are sufficient for
training the deep ensemble; thus, such a large ensemble need not be trained.
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Malinin et al. [27] distilled an ensemble into the prior network [28], which models
a conditional distribution over categorical distributions by parameterizing a Dirichlet
distribution to disentangle the total uncertainty into data uncertainty and knowledge
uncertainty. They used auxiliary data from another distribution during the training process
to capture the knowledge uncertainty. Furthermore, the training process is cumbersome
because hyperparameter selection is nontrivial.

Hu et al. [29] conducted uncertainty prediction as a prediction interval (PI) problem,
which uses the upper and lower bounds to quantify the degree of uncertainty. The PI
can-not be calculated by standard stochastic gradient descent, and a modified loss function
is introduced. As an optimal subset ensemble from a pool of candidates (ensemble pruning)
is selected, the inference time decreases, but there is no information on the size. The optimal
number of models is redundant, and this could be problematic in memory-intensive tasks.

We assume that using the deep ensemble with knowledge distillation might lose the
multimodality, which is the main advantage of its successful results. Correspondingly,
because the baseline approach is a relatively simple and scalable method without any
change in the model architecture, the compression method should also be as simple and
scalable as the deep ensemble. We already know that model pruning [30–34] has a trade-off
between accuracy and size. However, this is the first study conducted on the size, accuracy,
and uncertainty measurement tradeoff in model pruning and deep ensembles.

This study analyzes the tradeoffs between the size, accuracy, and uncertainty estima-
tion using a simple strategy comprising pruning and quantization with a deep ensemble
(called a compressed deep ensemble). Nevertheless, neither improving the accuracy nor
increasing the compression ratio is beyond the scope of this study. Pruning sacrifices the
long tail part of the training dataset. It is a tricky part of the dataset to be predicted by
both humans and models because of noise-contaminated, multiple, or wrongly labeled
objects [34]. If pruning identifies such distinguishable instances, it is a favorable feature
from an uncertainty perspective. Sparse initialization helps achieve greater diversity
among initialization time units [35]. Thus, we believe that model pruning increases a non-
zero parameter weight, and such an increased weight could positively affect the function
space diversity. If the pruned and quantized deep ensemble’s accuracy and uncertainty
losses are tolerable, we can use the compressed deep ensemble in memory-intensive and
uncertainty-aware tasks. In addition, depending on the variety of sparsity ratios, pruning
and quantization effects could differ in such tradeoffs. Furthermore, we can select a safe
sparsity ratio limit using different sparsity levels.

3. Proposed Method
3.1. Problem Setup and High-Level Summary

We assume that the training dataset is comprised of N data points {x, y}, where x ∈ Rd

represents d-dimensional features. For regression problems, the label y∈ R is a real-valued
number. For classification problems, the label y ∈ {1, . . . , K} is assumed to be one of the
K classes. We used a neural network to assign the prediction probability pθ (y| x) over
the labels, where θ denotes the neural network’s parameters. In this study, we created an
ensemble that comprises M number of independent neural networks.

3.2. Deep Ensemble

The deep ensemble consists of three simple recipes to measure the uncertainty. Select-
ing a proper score rule as a training criterion is the first recipe. The second recipe is training
independent networks. They introduced adversarial training to smooth the predictive
distributions, but it was not as effective as the abovementioned two recipes. A proper
scoring rule is one where S (pθ, q) ≤ S (q, q) only if a predictive distribution is equal to the
true distribution, where pθ denotes a predictive distribution, and q denotes the true distri-
bution. Thus, networks can be trained by minimizing the loss L (θ) = -S (pθ, q). Popular loss
functions meet the condition for the proper scoring rule; negative log-likelihood (NLL) for
both regression and classification, root mean square error (RMSE) for regression, and Brier
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score for classification are all examples of proper scoring rules. Independent and randomly
initialized shared architecture deep neural networks are key concepts in deep ensembles.
Therefore, independently initialized ensemble members can simultaneously train. Since a
base learner trained on a bootstrap sample sees only 63% unique data points, instead of
using the bootstrap, the entire dataset is favorable [36], even though the deep ensemble
was theoretically motivated by the bootstrap. Ovadia et al. [23] demonstrated that a deep
ensemble consistently provides more reliable predictions in both shifted versions of the
in-distribution data and out-of-distribution data in image classification tasks. Furthermore,
the deep ensemble is applied on real-world tasks [37–40], including street-scene semantic
segmentation, steering angle prediction, and natural language processing, and keeps better
results. In the deep ensemble, all members are treated as a uniformly weighted mixture
model, and the final prediction is the average of the predictions with Equation (1).

p(y|x) = M−1
M

∑
m=1

p(y|x, θm) (1)

3.3. Model Pruning and Quantization

Model pruning decreases the model size by increasing the sparsity of the parameters
as removing irrelevant parameters. In conventional pruning, the trained model is itera-
tively pruned until it attains the desired sparsity, and after pruning, the model with pruned
parameters is retrained. The neural network model has a function f (x; W), then pruned
model has a function f (x; W �M), where M ∈ {0, 1} is a pruning mask to remove the pa-
rameter. Practically, the pruned parameters of W are set to zero or entirely removed. Using
zero weights, element-wise multiplication is redundant. As a result, the computational
footprint also decreases. Blalock et al. [32] empirically showed that a large, sparse model
performs better than a small dense model. Model quantization is a model compression
technique that converts the parameter representation from floating-point 32 bits to 8 bits or
fewer. Quantization is complementary to pruning techniques and is harmless for accuracy.
Thus, we pruned and quantized the deep ensemble to decrease the linearly increasing size.

3.4. Strategy for Training from the Beginning

We propose a simple strategy suitable for training from the beginning. We randomly
initialize the M shared architecture neural networks and independently train each model
using the whole training set until achievable accuracy is attained. Thereafter, we prune
neural networks until each model reached the required sparsity by using magnitude-based
weight pruning, and a few epochs retrain the pruned networks. Finally, we quantize
each model’s weights from and 32-bit floating point representation to an 8-bit representa-
tion. We assumed that we could obtain a lightweight ensemble by applying pruning and
quantization, which is robust to unknown instances during the inference time.

3.5. Evaluation Metrics

We evaluated the standard deep ensemble as a baseline model and estimated accuracy,
NLL, Brier score (2), zipped model size as a memory footprint, and compression ratio (3)
in the in-distribution data. Brier score is computed as the squared error of the one-hot
encoded true value and the predicted probability.

Brier score =
1
n

1
K

n

∑
i=1

K

∑
k=1

(1[y∗i = k]− p(y = k|xi))
2 (2)

Compression ratio = (uncompressed size)/(compressed size) (3)

There is no ground truth in the out-of-distribution data; thus, we cannot measure the
accuracy in these data. Furthermore, there was no standard uncertainty metric. Hence,
we evaluated entropy, ensemble disagreement (4), and the confidence curve proposed
in [23] as uncertainty metrics. Additionally, we used ensemble ambiguity (5), which also
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measures the disagreement among the ensemble members, to measure the uncertainty.
As proposed in [41], if the ensemble is strongly biased, the ensemble ambiguity will be
small because the networks implement very similar functions and agree on even out-of-
distribution data. As proposed in [22], ensemble disagreement counts the Kullback–Leibler
divergence between the member network prediction and the mean prediction. Ensemble
ambiguity is originally the variance of the weighted predictions of the ensemble around the
weighted mean prediction. However, we treat the deep ensemble as uniformly weighted;
the ensemble ambiguity in our study does not count the ensemble members’ weight. Such
measures should be increased in the inference data that comes from another distribution
from the training data distribution.

Ensemble disagreement =
M

∑
m=1

KL(pθm(y|x)||pE(y|x)) (4)

where pE(y|x) = M−1
M
∑

m=1
pθm(y|x)

Ensemble ambiguity =
M

∑
m=1

(pθm(y|x)− pE(y|x))2 (5)

4. Experimental Setup

We first randomly initialized shared architecture member networks of deep ensem-
ble and trained each network using the whole training set. After 20 epochs, each net-
work achieved accuracy around 98.92 (±0.005). We trained the deep ensemble using the
MNIST [42] handwritten digits dataset and used the Python 3, Tensorflow 2.3 [43] in the
Ubuntu 18.04 operating system for implementation. The deep ensemble consists of five neu-
ral networks with two convolution layers and a fully connected layer. The hyperparameters
and model summary are listed in Table 1. Subsequently, we applied a magnitude-based
iterative pruning and 8-bit quantization for each member of deep ensembles using various
sparsity levels: 25%, 50%, 75%, and 95% using the TensorFlow Model Optimization Toolkit.
We used 10,000 test samples from the MNIST dataset as in-distribution data to evaluate
the accuracy and loss, and another 18,724 test samples from the NotMNIST [44] alphabet
dataset as out-of-distribution data to evaluate the uncertainty.

Table 1. Model summary and hyperparameters.

Convolution layer 1 parameters 280 (26, 26, 28)

Convolution layer 2 parameters 22,432 (9, 9, 32)

Fully connected layer parameters 5130 (512)

Training, re-training epochs 20, 5

Batch size 100

Optimizer Adam

Validation split 0.1

5. Experimental Results

The results of the evaluation of the MNIST dataset are presented in Table 2. Accuracy
was in-creased by 0.04%, and the entire ensemble size decreased by 4 times by pruning with
25% sparsity and quantization. However, pruning with 50–75% sparsity and quantization
slightly reduces the accuracy by 0.01% and 0.05%, while decreasing the ensemble size
by 5 times and 8 times. Pruning with 95% sparsity implies that only 5% of the trainable
parameters are non-zero, and pruning with 95% sparsity degrades accuracy by ~1%.
Overall, pruning with 25% sparsity and quantization showed a good result, but if we
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should reduce the size further, pruning with 50–75% sparsity is still applicable in the
in-distribution data from the accuracy perspective.

Table 2. Evaluation results of the MNIST dataset.

Models Accuracy ↑ NLL ↓ Brier Score ↓ Non-Zero
Weights

Memory Footprint
↓ (KBs)

Compression
Ratio ↑

Deep ensemble 99.3 0.027975 0.011383 138,929 518.06 1

Compressed
deep ensemble

25% pruned 99.34 0.026542 0.010392 104,490 127.48 4

50% pruned 99.29 0.023002 0.010677 69,775 103.27 5

75% pruned 99.25 0.021455 0.011344 35,060 68.89 8

95% pruned 98.03 0.068589 0.032339 7290 29.08 18

The confidence curves of the in-distribution and out-of-distribution data are displayed
in Figure 1. The blue dots represent the results of the standard deep ensemble, and the
solid lines represent the results of the pruned and quantized ensemble depending on the
sparsity level. Confidence in the MNIST (Figure 1a) is higher than that of NotMNIST
(Figure 1b), and if the confidence threshold τ = 90%, the ensemble classifies more than 90%
of the MNIST samples, but only 16–32% of the NotMNIST samples. An increase in sparsity
was associated with a decrease in confidence in both test datasets.

Figure 1. Confidence curve of (a) the in-distribution data, and (b) out-of-distribution data.

The evaluation results of the out-of-distribution data are presented in Figure 2. All
uncertainty metrics, including entropy, disagreement, and ensemble ambiguity, increased
as sparsity increased; thus, pruning and quantization made the deep ensemble more
robust in unseen data, especially in test data that comes from another distribution. The
predictive distribution moves to a uniform distribution as uncertainty increases, meaning
that the model randomly guesses. Figure 3 shows high disagreement samples from the
MNIST dataset, and we can observe that majority of the highly disagreed samples are
even indistinguishable by humans. Figure 4 shows the histograms of ensemble ambiguity,
which significantly increases in out-of-distribution data rather than in-distribution data.



Computers 2021, 10, 54 7 of 11

Figure 2. Uncertainty measurements of NotMNIST, which shows the robustness of ensemble in
out-of-distribution data.

Figure 3. High disagreement samples of MNIST: (a) standard deep ensemble, (b) 25% sparse ensemble, (c) 50% sparse
ensemble, (d) 75% sparse ensemble, and (e) 95% sparse ensemble.

Figure 4. Ensemble ambiguity of (a) the in-distribution data, and (b) out-of-distribution data.

Furthermore, the ensemble ambiguity increases as sparsity increases by pruning in
both test datasets. Figure 5 shows histograms of entropy, and it shows a similar trend to
that shown in Figure 4.
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Figure 5. Entropy of (a) the in-distribution data, (b) and out-of-distribution data.

Baseline evaluation metrics did not change significantly with respect to the deep
ensemble for pruning and quantization. The size of the deep ensemble decreased by a
magnitude, and 50% of the parameters in the pruned and quantized deep ensemble were
almost the same size as a single model. However, the ensemble’s generalization error is
lower than that of a single neural network, and it generalizes well in unseen data. In the
in-distribution data, most disagreed instances were noisy, wrongly labeled, or multi-object
instances that even humans could not distinguish immediately.

Moreover, for out-of-distribution data, increased disagreement helps distinguish data
from a different distribution. Overall, pruning helps make more robust predictions in the
inference time. Additionally, other uncertainty metrics, including entropy and ambiguity,
increased. This makes pruned and quantized deep ensembles more robust compared to
the standard deep ensemble baseline.

6. Discussion

We empirically showed that applying pruning and quantization into the deep ensem-
ble decreased the ensemble size and increased the uncertainty metrics while showing a
slight accuracy loss depending on the sparsity level. Pruning with 25–75% sparsity and
quantization successfully addresses the problem associated with the linear increase in the
size of the deep ensemble and shows solid performance. However, pruning with 95%
sparsity noticeably degrades the accuracy.

There is a tradeoff between insignificant accuracy degradation, uncertainty, and
memory footprint metric improvements. The pruned and quantized deep ensemble makes
a less confident prediction and generalizes well by increasing the uncertainty metrics. Thus,
pruning and quantization require a deep ensemble applicable to memory-intensive tasks
in Internet-of-Things or mobile devices, while increased uncertainty metrics make the deep
ensemble more robust in distribution shift.

However, there is one drawback to such a simple pruning and quantization strategy:
the training time increases as pruning, re-training, and quantization occur. Typically, re-
training epochs are relatively fewer than training epochs from initialization. However,
pruning after initialization should be studied further by applying the proposed strategy
to real-world tasks because pruning after initialization could save retraining time. Given
the successful performance of deep learning in various domains, many pre-trained models
have become available, making transfer learning an interesting research topic. Moreover,
creating a diverse deep ensemble by applying pruning with a pre-trained single model
could be another possible research direction.

The sparse matrix decreases the multiplication numbers, thus saving energy by ig-
noring the multiplication in zero weights. Furthermore, decreasing the size and saving
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energy is the main problem in mobile devices because of the slowly increasing battery
capacity to compare the processor or memory capacity. Therefore, the compressed deep
ensemble is deployable to memory-intensive and uncertainty-aware tasks, and decreased
multiplication helps in energy conservation.
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