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Abstract: Given the ever-growing body of knowledge, healthcare improvement hinges more than
ever on efficient knowledge transfer to clinicians and patients. Promoted initially by the Institute of
Medicine, the Learning Health System (LHS) framework emerged in the early 2000s. It places focus
on learning cycles where care delivery is tightly coupled with research activities, which in turn is
closely tied to knowledge transfer, ultimately injecting solid improvements into medical practice.
Sensitive health data access across multiple organisations is therefore paramount to support LHSs.
While the LHS vision is well established, security requirements to support them are not. Health data
exchange approaches have been implemented (e.g., HL7 FHIR) or proposed (e.g., blockchain-based
methods), but none cover the entire LHS requirement spectrum. To address this, the Sensitive
Data Access Model (SDAM) is proposed. Using a representation of agents and processes of data
access systems, specific security requirements are presented and the SDAM layer architecture is
described, with an emphasis on its mix-network dynamic topology approach. A clinical application
benefiting from the model is subsequently presented and an analysis evaluates the security properties
and vulnerability mitigation strategies offered by a protocol suite following SDAM and in parallel,
by FHIR.

Keywords: healthcare; protocols; network security; communication system security; data security

1. Introduction

Despite extraordinary research successes, many patients receive sub-optimal care.
This includes cases where required action is evident, like for peripheral vascular disease
patients and cholesterol lowering drugs (example in [1]) even when there are publications
in high “impact” journals. There is, therefore, an urgent need for integrated knowledge
transfer tools, like decision support systems and audit-feedback tools, to maximally increase
care quality for patients [2]. It is to fill this gap that the Learning Health System (LHS)
framework has been developed [3]. In a LHS, the focus is not on a research protocol, but
rather on a learning cycle. The cycle workflow starts by looking at data naturally produced
during care delivery (increasing pertinence), includes the research activities, and structures
knowledge transfer actions right from the planning stage.

Obviously, learning cycles imply intense usages of sensitive health data. The core
data requirement, for care delivery, research, and knowledge transfer, is to understand, as
best as possible, an individual through their health data. Health is understood here in the
larger sense, including data produced by care organisations, as well as research datasets
(e.g., biobanks, cohorts), and quantified-self data (e.g., exercise watches, scales, and glucose
monitoring devices). All these data are not hosted in a single organisation nor a single
system when deploying a LHS at scale.

While many challenges exist regarding data access (like obtaining consent or anno-
tating datasets), communication protocols are critical and the basis on which information
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can be exchanged. Making sure that the right protocols are used, and that they fully
support LHS, is a critical step when deploying LHSs. To ensure that the correct protocols
are used, requirements pertaining to operations and communications’ security – in the
context of LHSs – need to be modelled and organised. This modelling will enable the
sound integration of security protocols. In this article, we present the Sensitive Data Access
Model (SDAM) to achieve this goal.

Access to health data across different organisations must abide by different rules
emanating from different spheres: Social [4,5], legal [6], or technological [7,8]. SDAM
needs to take these into account with a focus on protecting sensitive data. Given the high-
level goal of understanding an individual through health data that is hosted in various
organisations and the privacy regulations from those spheres, high-level requirements can
be proposed with regards to LHSs support.

First, the most efficient way to avoid communication confidentially breach for sensitive
data is not to exchange it in the first place. To minimise the quantity of data exchanged,
the protocol suite must enable operations to constrain a cohort—based on individuals’
characteristics—as precisely as possible. In addition, it must enable data extraction methods
that produce the minimal result set required to answer the question at hand. Given current
frameworks (both legal and ethical), many projects will require that extracted data be
transferred to a well identified organisation that becomes responsible for the received data.

Second, given the highly confidential nature of the data exchanged, the protocol
suite should be as resistant as possible to related security threats (e.g., man-in-the-middle
attacks). Message payloads should only be available in clear to the originating and final
receiving entities, not to intermediate nodes (end-to-end) and the integrity of the message
should be guaranteed.

Third, the protocol must be able to be executed purely with synthetic, project-specific
identifiers to support a fully deidentified execution. The payload could contain personally
identifying data (full name, insurance number, etc.) if the project requires it, but, as
mentioned above, this information should be visible only to the message’s original sender
and final receiver. This information cannot be used for routing or orchestrating activities
for example.

At the same time, it is essential that the resulting final dataset provides links across
data blocks, coming from various sources, to allow the final receiver to know what data
blocks relate to a given individual (data linkage). It should be noted that this data linkage
does not imply that the final receiver is allowed to know the identity of an individual,
nor from which source a block of data originates from, only that it relates to the same
individual. To achieve this, data sources are not allowed, in many circumstances, to know
if an individual has data in another source. More generally, different entities contributing
or receiving health data should not share an identifier set for the participants.

Fourth, given the scope of the activities covered and reluctance of organisations to
deploy ad hoc security technologies (for good reasons), existing security and privacy
standards and regulations must be leveraged as much as possible (e.g., those of the Internet
Engineering Task Force—IETF).

These high-level requirements imply an important topological requirement. The
system should be able to execute a plan without requiring the publication of a data source’s
IP address. This supports the third requirement of a fully deidentified execution while also
minimising the risks of network topology reconstruction which could subsequently enable
traffic analysis and man in the middle attacks. This restriction was indeed encountered
empirically during the TRANSFoRm project [9] where data sources (primary care electronic
medical record systems providers) were reluctant or strictly refused to share their IP address
and insisted, instead, that traffic should be routed through a trusted proxy server.

The article is structured as follows. First, published approaches supporting health data
access were surveyed to evaluate if one was fulfilling all high-level requirements and could
serve as a basis for the development of SDAM. We reviewed both largely implemented
approaches, like HL7 standards, as well as more recent technics, like those based on
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blockchains. In order to be able to express the specific communication requirements of
SDAM, a Data Access System Framework to support LHSs is presented, followed by the
specific communication security requirements. Second, the SDAM, based on the Open
System Interconnection model (OSI) [10], is subsequently presented: Layers are described,
examples of candidate protocols are mentioned, and a focus is placed on the functions
and properties of the proxy pool, particularly in the context of data-related activities, like
extractions and transmissions, via the clinical application of the model using Reflex-D,
an audit-feedback tool addressing diabetes care. Third, a discussion is presented. The
discussion starts with a security vulnerability analysis for SDAM. This is followed by an
evaluation of the Fast Healthcare Interoperability Resources (FHIR) security properties
and vulnerabilities. FHIR was selected given its expanding use in North America and
other jurisdictions. The security properties and vulnerabilities selected for presentation are
those identified as important and addressable by SDAM. Finally, a summary of the work
presented here is offered with future developments.

2. Related Works

Information exchange among health organisations has been studied in various con-
texts. This review starts with the description of existing approaches currently in use to
support health data exchanges in different contexts. Other more recent methods are also
presented, but they have been mostly used in contexts of proofs of concept, like blockchains
or onion routing networks.

Many data exchange systems are based on existing protocols such as FTP on SSL [11,12].
Other solutions call upon the Secure Shell protocol (SSH), which may turn into a serious
issue when used through a virtual private network. This is true in many broad-range
healthcare research and care delivery organisations [13]. This particular type of architecture
with FTP or SSH over VPN generates risks of man-in-the-middle attacks. A list of threats
and potential attacks on the Transport Layer Security (TLS) and Secure Shell protocols is
available [14]. However, while Virtual Private Networks (VPNs) usually call upon the L2TP
protocol, reference [15] this alone does not suffice to meet with the LHSs’ requirements:
There are threats like traffic fingerprinting attacks, possible unencrypted intermediate texts
(metadata added during transit of network packets), and potentially leaked client identity
keys allowing the identification of the sender for a given message [16].

Several health organisations, particularly (but not exclusively) in North America,
base their medical data exchanges on the standards developed by HL7. Health Level 7
(HL7) is named after the Application Layer 7 as used in the OSI model. The HL7v2 and
HLv3 standards are based on an architectural paradigm focused on message-oriented
functionality. These old versions of the standards were defined before the TLS standard
and a safety study was carried out. Findings of the TLS safety study found that there are
very high security risks present when holding on to these standards in production [17]. For
example, the authors showed that it was relatively simple to set up a “man-in-the-middle”
TCP attack on HL7v2 exchanges and to undermine the integrity of the data by altering them
in order to interfere with the making of clinical decisions. The HL7v2 and HLv3 versions
of the HL7 standards are deemed obsolete as stated by the authors of the study [18].

The latest, and currently recommended, version of HL7 standards is FHIR. It is this
version that will be evaluated with regards to SDAM later in the article. This new standard
is on the rise. It is implemented not only in North America, but also in Africa (as described
by the authors in [19]), and in Europe (to connect to a i2b2 database, which is an open-source
clinical data analysis platform) [20,21]. The HL7 organisation recommends putting FHIR
into production jointly with the TLS protocol to guarantee confidentiality and integrity
in data exchanges. Yet, communications security can pose risks when relying solely on
TLS. These risks can range in nature from data leaks, mainly due to insider threats, routers
or poorly configured firewalls, and web services [22]. More specific threats to TLS can be
paradoxically explained by the reduced effectiveness of firewall-borne security mechanisms
when TLS is used across them. The encryption between a client and a server makes Next-



Computers 2021, 10, 25 4 of 20

Generation Firewalls (NG-FW) and Intrusion Prevention Systems (IPS) difficult to use.
Security systems such as URL filtering, malware detection, IPS signatures, and all of the
advanced network features based upon Deep Packet Inspection (DPI) are all affected by this
decline in efficiency [23,24]. In response to this, managers tend to enable the intermediate
TLS decryption option. When this TLS option (TLS1.2 or TLS1.3) is enabled, upstream
or at the security device level [25,26], it becomes possible to recover total visibility over
traffic flows and protect organisations from threats. The problem is that, by turning on
TLS decryption, it allows for disclosure of where a connection originates [27] and for man-
in-the-middle attacks [28], which are made even easier when exchanging highly sensitive
data due to the fact that the network packets are in clear text within network equipment.
Since intermediary entities can read data in plain text, the confidentiality and integrity
requirements of exchanges is not met, which is potentially even more problematic.

It is possible to use proxies to hide data sources away from the eyes of malevolent
viewers, as presented in this article [29]. Nevertheless, this technique calls upon TLS
only, leaving the proxy server reading data in plain text, and creating an obvious risk for
data confidentiality, as described above. Therefore, despite the use of a proxy and TLS,
confidentiality and integrity requirements are not fully achieved.

In [30], the authors offer a protocol for sending data with end-to-end security. This
technique is based upon a mix-network, in other words, a network where exchanged
messages are mixed together at every relay node. These mix-networks use a protocol that
protects metadata in messages: The Sphinx protocol [31]. However, each intermediary can
decrypt the payload, which affects the overall confidentiality of the system.

Finally, blockchain developments over the last few years have inspired many health
researchers to try to improve health data sharing using techniques that have the potential to
bring integrity and audit properties into a single system. Some of the new approaches [32]
are inspired by the multi-layer cryptosystems (e.g., Bitcoin [33]), also known as onion
routing, to exchange information [34].

Other blockchains, like Ethereum, reference [35] hide the transactions that are recorded
in each block by adding a workable computational load. Nevertheless, it is still feasible to
verify and see the transactions of a block by recalculating it. Therefore, this obfuscation does
not achieve the confidentiality requirement. Moreover, these Ethereum-based blockchains
present the same underlying risks; namely, that the network topology can be known by
performing a traffic analysis and therefore network packet metadata can be intercepted
and read [36].

In order to avoid some network nodes from reading packets containing sensitive
data, some blockchain frameworks, like the HyperLedger Fabric, create private channels
to better support confidentiality [37]. Some healthcare projects [38,39] use this approach,
combined with a public-key infrastructure, to protect access to stored data. This approach
relies on the ability to protect the private key of the participants to maintain confidentiality.
Notwithstanding the interesting security features proposed, there are recurring security
issues like threats by traffic analysis on these systems [40]. The confidentiality of exchanges
and data sources is continually threatened due to new possible attacks on the architecture
or the cryptographic keys exchange protocol [41]. Finally, the ability to support data queries
required by a LHS to minimise data exchanged and the capacity to identify a responsible
organisation for the extracted data remain as challenges.

As illustrated above, no reviewed approach fulfils all communication and security
requirements to fully support a LHS. The next section will present a framework to ex-
press activities and agents of a data access system as part of a LHS. This will enable the
formalisation of the specific requirements and structure of SDAM.

3. Materials and Methods

A Data Access System (DAS) enables data to be accessed and processed by different
entities, in different contexts, while enforcing applicable rules (legal, ethical, or technical).
This section presents a framework to describe a DAS through its processes and entities
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within the context of a LHS. A DAS framework, when coupled with the right modelling, for
both activity workflows and communications, can enable a significant degree of automation
and offer a desirable security profile. These benefits are especially important when applied
to the support of a learning cycle as explained above.

3.1. Data Access System Activities

A DAS, when used within a LHS, can be divided in two high level activity groups; a
data source integration group and a specific project activities group. Figure 1 shows the
phases for a DAS and related activities. In this paper, we will focus data extraction and
transmission, which are arguably the most complex and risky activities. A data source
integration will occur once for a given source (with eventual updates if the source changes).
Once integrated, it can be reused multiple times across various projects without requiring
more work. The specific project activities can be represented through two phases: Project
approval and the project execution itself.

The integration of a data source includes both the mapping local data structure to a
central model, to enable distributed queries, and individual indexing. Individual indexing
involves sending demographics to a master indexer and receiving a source code for each
individual represented in the data source. This code will later be used to coordinate the
generation of project specific identifiers. While multiple methods to achieve individual
indexing have been proposed, a detailed description of them is beyond the scope of
this article.

The integration activities need to occur only once and when completed, the data
source is available to participate to projects. As a last step, the data source can be registered
to a repository to make its availability publicly known, if desired.

Assuming that required data sources are integrated and available, specific projects
can be designed. The project artefact provides all the information required to execute a
project. It includes the Project Workflow (PW), but also other parameters such as the list of
participating organisations (and means to confirm their identities).

The PW provides information about the activities, their sequencing, and the required
parameters to orchestrate progression through the workflow (input and output parameters,
conditions for transitions, etc.). The PW also references data related information, such as
queries to be executed on sources or data transformations to be applied.

In this framework we categorise information exchanged into two groups. The first
one is referred to by result sets. They are generated by executing queries on data sources.
The second group comprises Project-Specific Identifiers (PSI). These synthetic identifiers
are generated at the start of each project so that the entities can reference individuals.

After coordination with the different organisations envisioned to be participants in
a project, the project artefact (including the PW) is circulated for approval. Assuming
the project is acceptable to all participants, they each need to sign the artefact thereby,
confirming that they are intent on executing the activities assigned to them. The signature
is performed using an encryption key. This is done to ensure the integrity and non-
repudiation of the parties. Given the pragmatic problem of the ordering of signatures,
the project initiator is responsible for making sure that all the signatures are present after
which the artefact can be submitted for broadcast. At this point, all involved receive a fully
signed copy making the project official and eligible for execution.

Here is a list of entities modelled for project orchestration with brief definitions:

• Anonymiser: Entity responsible for translating a set of PSI known to one entity into a
set known to a different entity;

• Execution Engine (EE): Entity responsible for processing the PW and coordinating
activities across all participating entities;

• Data Connexion Entity (DCE): Entity with an access to a data source (e.g., database,
flat files, etc.). The DCE communicates with the EE. The DCE is responsible for
executing the data activities using its connected data source;
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• Evaluator: Entity responsible for receiving PSI sets from DCEs in order to create a
cohort of individuals fulfilling some criteria. The information required to decide if
an individual is to be included or not might come from different sources. Using PSI
sets from all involved data sources, the evaluator executes operations to combine the
source PSI sets and generate a final PSI set representing the individuals fulfilling the
cohort criteria;

• Result Connexion Entity (RCE): Entity responsible for receiving result set blocks and
PSIs from DCEs. The RCE then generates a unified final dataset linking data elements
pertaining to a given individual.

Figure 1. The different activities for a Data Access System (DAS) and their interactions. The diagram shows data sources
with the three phases, namely source integration into the ecosystem, project approval, and activity orchestration. The flow
of activities within the orchestration phase may vary depending on the project workflow.

Once the project artefact is broadcasted, the plan orchestration phase can begin. The
first step is to generate the PSI sets. Using the individual source codes, the master indexer
and the anonymisers will collaborate to generate and distribute PSI sets to each entity
requiring them, each getting a different set. To be able to communicate about an individual,
two entities will therefore need to communicate through the anonymisers in order to
“translate” their PSI into one known by the indented receiver. If, for example, a project EE
needs to instruct a DCE to extract data about a specific individual, the EE will send its PSI
for that individual to an anonymiser who will translate it in terms of the DCE PSI and send
it to the DCE.

Once all identifiers are in place, the PW execution itself can begin. For projects
involving health data usage, three high-level activities type are commonly and can be
described as follows:

1. Cohort generation. Using a set of criteria used to create a cohort of individuals. This
results in a list of PSI that represent all individuals fulfilling this set of criteria. It can
subsequently be used as a parameter to guide PW activities. Since criteria might need
to be evaluated across multiple sources (for example, a cohort requiring a certain
genomic trait based on data in a biobank and exposure to a certain medication based
on electronic medical record data), the evaluator is responsible for combining logically
the received sets of PSI to generate the final list of PSI representing that cohort. Since
the evaluator does not share its PSI set with any of the DCE, communications with
DCEs need to go through an anonymiser for translations;

2. Data extraction. When a DCE receives the command to proceed to a data extraction
for a given cohort, it: (a) Connects to its data source, (b) uses the query indicated in
the plan to extract data, and (c) uses the cohort provided as a parameter to restrict the
result set to the individuals part of the cohort. The result set is now local to the DCE
and can be used for further processing (like pre-loading a web form locally) or can
be transmitted;
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3. Data transmission. Data transmission is not automatically triggered by a data extrac-
tion. The result set could be used exclusively by the DCE internally. In addition, the
transmission could be conditional to some other action as formalised in the PW. The
transmission of a result set by a DCE to a RCE implies two communication streams.
First, the result set needs to be sent. Second, the PSI list also needs to be sent to enable
the RCE to relate various data blocks pertaining to the same individual.

It should be noted that any of these activities can be referenced multiple times in a PW.
As part of data transmission, a result set is sent from the DCE to the RCE, but since

the RCE and the DCE do not share the same PSI set, the PSI need to take a different path.
The PSI will be sent from the DCE to anonymisers for translation into the final data set to
be received by the RCE. This translation enables the latter to piece data together.

At this point we can identify three broad categories of messages, or communications:
(a) Commands/statuses (e.g., from the EE to DCE to instruct it to perform a data trans-
mission, or from a DCE to the EE confirming that the transmission has been successfully
completed), (b) result set transmissions (from DCE to RCE), and (c) PSI set transmissions.

3.2. Detailed Communications Sequences for Data Related Activities in a DAS

In a DAS, different activities will require different messaging sequences. The execu-
tion engine is the entity controlling the flow of activities and as a result, the sequences
illustrated in this section start with an instruction from the EE. Figure 2 offers a step-by-step
depiction of the extraction and transmission activities (including all three types of messages:
Commands, extracted result sets, and PSI). The sequences are designed to minimise data
exchanges, including communications failure (e.g., do not send a list of PSI for a cohort
before you have confirmation that the DCE is available and ready to execute the data
extraction). Some simplifications are used here. For example, many health organisations
will not allow direct contacts as mentioned previously. A DCE would therefore “ping” the
EE through its proxy to request instructions, rather than the EE directly communicate with
the DCE. In addition, sub steps like handshakes or activity completion acknowledgements
are not represented.

Figure 2. Model of Data Access System. (Green) messages used during an extraction activity. (Red)
messages used during a transmission activity.

Of note, there are two anonymisers meant to segment PSI data. In order to en-
sure a maximum amount of redacted information available, while curbing the risk of
re-identification, the framework is segmented into zones. Zone 1 is the internal area. It
groups the DCE together with the project entities not handling result sets (e.g., execution
engine, etc). Zone 2 is the so-called external area, including entities allowed to receive result
sets, i.e. , the RCE. The risks and allowed operations differ in each zone, hence the use of in-
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ternal and external anonymisers to channel PSI in different zones. The internal anonymiser
is required for communications involving an entity in zone 1 and the external anonymiser
is required for communications involving entities in zone 2. Therefore, a communication
between zone 1 and 2 (e.g., data transmission) will require both anonymisers.

An extraction activity requires the following messaging steps: (A) The EE sends a
command with a reference to an extraction activity in the plan to a DCE. (B) The EE sends
a command to the evaluator instructing it to send the list of PSI for a given cohort to the
internal anonymiser. (C) The evaluator sends the PSI set for the cohort to the internal
anonymiser. (D) The internal anonymiser sends the translated PSI set (using the DCE set)
to the targeted DCE.

A result set can be transmitted to an RCE for downstream usage by the following
steps: (1) The EE sends a command with a reference to a transmission activity in the plan
to a DCE. (2) The DCE will send messages to the RCE, mentioned in the plan, to transmit
the result set (as a set of data blocks). (3) The DCE will send the PSI list associated with
this result set to the internal anonymiser. (4) The internal anonymiser sends the translated
PSI list (using the external anonymiser PSI set) to the external anonymiser. (5) The external
anonymiser sends the translated PSI list (using the RCE PSI set) to the targeted RCE. This
communication flow ensures that the result set itself and the associated PSI list are not
transmitted through the same path. The method of keeping the data blocks linked with
the PSI in this transmission lie within a specific protocol in the suite, which is outside the
scope of this article. Suffice to say the information required to piece everything together at
the RCE is part of the messages exchanged.

3.3. Functional Security Requirements

As mentioned previously, existing approaches do not comprehensively fulfil all the
high-level requirements mandated by LHSs. More specific security requirements, to be
handled by a LHS communication protocol suite, can now be formalised in SDAM using
the DAS framework:

• Multilevel encryption: Encryption is essential for the confidentiality, authenticity,
and integrity of messages exchanged. Each layer must use unique dedicated keys.
Different cryptosystems can be used in order to adapt to each layer when needed.
When encryption is on, message contents become readable to source and destination
entities at the presentation and application layers. The Encrypt-then-MAC method is
used for integrity purposes;

• Data confinement: The application layer must be the only layer that can insert and
handle content between two entities. Intermediate entities are not able to access the
message payload in clear;

• Registration and authentication: Organisations participating in the project and are
responsible for entities like DCE or RCE, need to be formally identifiable in the
project artefact (for example, by a certificate authority). The project artefact needs
to be signed by all involved. Communication protocols should only make use of
validated information;

• Resilient anonymous routing: SDAM must use its own routing system between
entities, thus reinforcing the datalink layer routing map. The bridge between the
routing system of SDAM and the IETF protocols must be established only at the
network layer. In addition, SDAM cannot require public disclosure of the source and
destination entities IP addresses. As a result, an entity shall never connect to another
one in a direct manner. They are instead required to go through a pool of proxies (of
size three to n). Consequently, there is nothing deterministic about the paths between
the two entities in cases where the pool is strictly larger than 6. For this to work a
proxy must offer a public IP address;

• Self-adaptive protocols: Different types of communications will require different
performance profiles. For example, a result set transmission between a DCE and
an RCE requires a higher throughput, while sending commands demands lower
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latency. SDAM must therefore be flexible enough to fine-tune the speed and latency
for different message types, volume, or frequencies;

• Logging and traceability: All the actions performed at each layer are logged. This
ensures non-repudiation for external audits. The messages exchanged and the connec-
tions between the entities are logged. These log entries should be sent to an external
audit log to maximise security benefits;

• Signature and certificate authorities: Entities, messages, and packets, as well as log
entries are signed and certified. This achieves the requirement of authentication. It
also provides two additional benefits pertinent to security in a broader sense: Auditing
and non-repudiation;

• Validation procedure: A communication protocol suite must offer a system to validate
and verify layer functioning. For example, requested activities must go through
checking so as to ensure they are part of the project workflow;

• Standardised layer interfaces: Layer interface specifications are standardised. Stan-
dardisation leads to improved interoperability and, in the event of changes in exchange
model, or the introduction of new protocols, maintainability of the system. In addition,
this standardisation provides additional design security [42].

3.4. Sensitive Data Access Model for Healthcare

This section presents the Sensitive Data Access Model (SDAM) for LHSs, starting with
the assumptions used to develop it and the key points of the new architecture. Followed by
a description of the model layer, highlighting important features. Ending with a discussion
of the principle of anonymisation of the IP addresses using proxies between the entities
during the extraction and transmission activities.

3.4.1. Preliminaries

The assumptions upon which SDAM is based can be summarised as follows:

• Assumption 1 is about the overall infrastructure, assuming that communication lines
are not secure and can be tapped;

• Assumption 2 holds that a message can be intercepted and modified by anyone at any
time as early as it is sent out by a source entity up until it reaches the destination entity;

• Assumption 3 takes into account that entities can be compromised. A SDAM com-
patible protocol suite should be designed in such a way that a maximum number of
entities (other than DCE and RCE) would need to get compromised before a significant
risk of associating pieces of data to an individual outside permissible contexts would
occur. This underpins the principle of defense-in-depth;

• Assumption 4 holds that entities will perform cryptographic operations such as hash
functions and some other forms of encryption when required.

3.4.2. Key Architectural Principles

Figure 3 shows data flow between two entities and associated proxies through various
layers. SDAM allows for exchanges between entities on the application, presentations,
sessions, and transport layers. As for the network layer, these are node-to-node exchanges.
The source entity connects to an entry proxy; from that, the message goes on through a
pool of proxies (thus helping to keep the actual path hidden) and then the message ends up
reaching an exit proxy linked to the target destination entity. Proxies are blind to message
contents given the encryption applied. Since the routes and types of message (encrypted)
transiting by the proxies change regularly, even a compromised proxy poses a minimal
threat in terms of traffic analysis to enable message payload recovery.
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Figure 3. Sensitive Data Access Model (SDAM) exemplar data flow. SDAM layers are represented
on the left and their corresponding representation in the IETF stack can be found on the right. The
middle part illustrates an exemplar data flow with candidate protocols for the different layers.

3.4.3. SDAM Layer Descriptions

SDAM has specific features for each of the different layers included in the model.
These features are described in the following sections. The PARS3 [43] data access system,
in deployment in Canada [44], is currently using SDAM to structure its communications.
Candidate protocols from the project, and other standards like FHIR, are mentioned in the
different layers (a full presentation and discussion of these protocols is out of scope for
this article).

IETF Layers Implemented in the SDAM Data Link Layer

The IETF reference model is used in SDAM in order to structure the low-level com-
munications. As mentioned in the high-level requirements, this reference model is used
because it is widely implemented, which makes interoperability easier across multiple
organisations in different context. The SDAM data link layer is concretely implementing
the IETF Data Link, Network, Transport, and part of the application (for HTTPS) layers. It
uses existing protocols, which can be high-level like HTTP or HTTPS or low-level like TCP
or UDP.

While SDAM’s use of IETF is very beneficial in terms of interoperability, the IETF
reference model by itself does not meet the security requirements outlined in this article.
SDAM answers this challenge by structuring additional OSI based layers on top of the
SDAM data link layer, enabling flexible implementations of defense in depth principles.
These SDAM layers will now be presented starting with the application layer.

Application Layer

The application layer is in charge of supporting the application services, which manage
the messages and their processing. This layer uses high-level, entity-based routing to define
the recipient of messages. As per a project workflow, the application layer must ensure
that the entities comply with what has been defined and validated by all the project
stakeholders. It is through the application layer, for example, that the PSI translation
service of an anonymiser would receive and send the PSI sets.

The application layer is heavily involved during data extractions and transmissions.
These exchanges of PSI and result sets require a protocol that will maintain the integrity and
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the full semantic of the data transmitted. HL7 FHIR could be leveraged in this layer as could
the Ontology-Based Knowledge Transfer Protocol (OBKTP) used in the PARS3 system.

In order for the PW to be executed as planned, entities must be able to exchange
messages containing commands (and statuses confirming availability and executions). The
Operation Command Relay Protocol could be used for these exchanges. Communications
from the application are passed to, or received from, the presentation layer.

Presentation Layer

The presentation layer offers several features related to the restructuring of data
received in the application layer, and vice versa. The presentation layer deals with encoding
data in a particular format and encrypting the content, similarly with decryption. A
protocol on this layer can be used to provide a symmetric encryption service for message
content that is enforced using a Symmetric Data Encryption Key (SDEK). It is important to
note that this protocol can also take care of slicing and splitting both result sets and PSI
sets into small chunks, a requirement of the DAS framework. Then, it can encrypt all of
the content of a given type that will be sent to the destination entity. Only the recipient’s
presentation (responsible for the decryption) and application layers are able to read this
content. A protocol here must manage encryption keys, which can be entrusted to local
hardware, such as, Trusted Platform Modules (TPMs), or remote hardware or software
security modules, such as Hardware Security Modules (HSMs). Candidate models include
the Data Mixing and Encryption Protocol (DMEP).

Session Layer

The session layer is meant to synchronise communications between two entities.
It is also used to restore previous exchanges in the event of errors. A protocol on this
layer is in charge of creating a session and keeping connections open among entities. In
addition, it must guarantee non-repudiation between the identities of the sender and the
recipient, as well as the integrity of the data when sent. The presentation layer sends
and receives the messages from the session layer. A protocol of this layer must offer
certain services, such as the recovery of the public keys of the entities with which they
communicate and perform asymmetric encryption operations. When a session is created,
the source entity will generate a session token and, during the initial exchange, Symmetric
Key Agreement Keys (SKAK) are exchanged between the entities to share the SDEK key.
These different exchanges make it possible to have encrypted and authenticated messages
within the framework of a session. The Secured Session Over Cryptographic Key Exchange
(SSPOCKE) protocol was conceived as part of the PARS3 development to cover this layer.

Transport Layer

Data flow control and reliability of communications between entities are managed by
the transport layer to ensure that the destination entity receives exactly what was sent from
the source entity, in the same order. Optimising transport with numbering and reorganising
segments, as well as adding extra mitigation methods against some attacks are done here as
well. The transport layer’s objective is to ensure that the data to be sent to the network layer
will be of an appropriate size, or else fragmented into several packets. The transportation
layer also provides a means of implementing systems of detection against advanced DDoS
attacks. It is with this in mind that the Message Traffic Control Protocol (MTCP) has been
designed in PARS3.

Network Layer

The network layer deals with routing, relaying, and logging. This layer bridges the
IETF standards implemented in the SDAM data link layer (presented above). Routing
means finding a path among multiple entities and meeting the project workflow require-
ments. This is achieved by relaying messages via intermediate nodes (proxies). The
network layer manages the proxy pool and the dynamic topology, which is core to SDAM.
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The network layer features the integration of proxies to protect the anonymity of entities,
the use of a dynamic logical topology, end-to-end encryption, and a method of batch
processing of the messages. These security requirements and mitigation methods will
help protect this layer from a wide variety of traffic analysis threats. Network layer data-
grams are made of metadata and content (payload). The metadata are session ID, log code,
and path.

The network layer also logs incoming and outgoing messages. Each intermediate
node sends exit and entry notifications to the log and then delivers the message or response
to the next node. The target destination entity will transmit the content to the upper layer
and then transmit a notification in response to the source entity. The PARS3 Anonymous
Network Routing Protocol (ANRP) is a candidate for this role.

3.4.4. Application to Data Activities

One of the basic pillars of SDAM is to guarantee that entities remain anonymous,
in terms of network addresses, to each other and that there is no direct communication
between them. For this purpose, a pool of proxies and anonymisers have been integrated
into the architecture as part of the network layer.

Proxies are meant to transfer messages between two entities while not requiring a
public record of the source or target network IP address. In addition, the proxies constitute
a line of defence. They help dodge traffic analysis attacks on multiple sources. These
benefits require that an entity chooses one or many trusted relay proxy when participating
in a project. All the proxies of a proxy pool attributed to a project are registered in the
project artefact and so, are verified and can be validated by any participant. It is important
to note that, a proxy cannot receive both PSI and result sets simultaneously. This is to
avoid the concurrent existence of result set and PSI messages on the same proxy (which
could increase the re-identification risk). The SDAM proxy pool is characterised as an
enhanced mix-network with dynamic topology. Its applications to the extraction and
transmission activities are detailed below. A discussion of the parameters and functions
used to dynamically change the proxy topology would be part of a protocol implemented
for the network layer, and, as such, are beyond the scope of this paper.

A snapshot of extraction exchanges is described in Figure 4, given the dynamic
nature of the topology. The emphasis here is on the added degree of details in message
paths (compared to the high-level view presented previously) by including the proxies.
Data extraction communications require command and PSI messages. During the period
illustrated by the figure, a given proxy will only handle one type of message or the other. It
should be noted that, the number of proxy-to-proxy exchanges and the exact path taken
will change for each communication. The internal anonymiser must be called upon to
translate the PSI set representing the cohort to be used, since it involves a transmission
exclusively in Zone 1.

Once the extraction activity comes to an end, and it is instructed by the EE to do so, the
DCE can launch a transmission activity. Figure 5 shows the required messages to transfer
the result set from the DCE to the RCE with the required PSI. These exchanges make use of
the internal and external anonymisers (given the need to cross both zones) and the proxy
pool. The execution engine will also trigger the activity with a command message, but it is
omitted here for readability. The proxy pool principles are the same, with the emphasis on
PSI and result set types of messages. In the end, the RCE received, through different paths,
both the result set data and the related PSI enabling it to regenerate the unified result set
ready to be used.
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Figure 4. Exchanges in an extraction activity with proxy usage. Circle proxies handle communications
data whereas triangle proxies process attribute data at a given moment in time.

Figure 5. Exchanges in a transmission activity with proxy usage. Both result sets and project specific
identifiers are being isolated and segmented. Square proxies handle result sets whereas triangle
proxies process project specific identifiers.

4. Results and Discussion

This section will present an exemplar application, leveraging SDAM: Reflex-D access-
ing data through PARS3 which follows SDAM. It is used to provide clinicians with insights
into how their patients with diabetes are cared for (types of treatments, aggressiveness for
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reaching targets, follow-up frequencies, interactions with other drugs, etc.). What follows
is a security properties and vulnerability analysis of the SDAM design. This analysis is
presented in comparison with FHIR (with and without TLS).

4.1. Reflective Pratice for Patients with Diabetes

The SDAM was followed to enable data access by an audit and feedback tool made
to improve care of patients with diabetes by providing insights to their primary care
physician. The tool, named Reflex D, is an application for auditing and analysis. It is a
tool for reflection and analysis available to healthcare teams to engage in a patient-centred
approach [45]. These teams can use the tool to learn from the trajectories of their patients,
highlighting important facts and evaluating their capacity to follow best practices.

Figure 6 shows the evolution over time of laboratory test results along with medication
history for HbA1c and creatinine.

Figure 6. A sample profile of a patient showing medical history and records of HbA1c and creati-
nine developments.

Similarly, relevant practice guidelines from national institutes or professional organ-
isations are contextualised to enable optimal care. Figure 7 shows that the latest test
results can be used to determine if any of a patient’s active drugs are contraindicated and,
subsequently treatments can be adjusted.

To achieve the results mentioned, the tool named ReflexD needs to be able to extract
the right data for diabetic patients for each clinician. While the tool could use data coming
from any setting, where the required information is available, Reflex-D has been devel-
oped specifically with primary care clinicians in mind. Having access to a primary care
Electronic Medical Record (EMR) is challenging in many ways, as these tend to be smaller
organisations with lower information technology resources [46]. Trust needs to be built.
Security is of the upmost importance, since the EMR often contains longitudinal data over
decades. This includes, not only data about care happening at the clinic, but, often times,
summaries of care episodes that have occurred in hospitals for example. Being able to use
SDAM to guide the implementation of a sound communication protocol suite is therefore
extremely useful in such a setting. Once connected, the same communication approach
can also be used to participate in clinical research project as well. The use across various
medical platforms, provides a higher return on the initial investment of source integration
in a broad LHS context, instead of in silos for each tool (see Figure 1).
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Figure 7. Automated analysis of current renal function for a patient and visual indications to help
choose a safe diabetes drug.

4.2. Security Properties Description

In view of the LHS’s security requirements, presented previously, a description of
security properties provided by adhering to SDAM follows. Moreover, given the prepon-
derant role FHIR currently plays in structuring health data exchanges, we will also evaluate
if similar properties are present when using FHIR with or without the concurrent use of
the TLS protocol.

Confidentiality is a cornerstone when handling sensitive data. SDAM provides distinct
authentication mechanism properties. The protocol in its presentation layer is responsible
for encrypting data from entity to entity. It does not enable intermediate nodes to have
access to the payload in clear. The use of FHIR over TLS adds encryption between commu-
nication relays, but still allows for the possibility of a node decrypting the payload. The
result is that the confidentiality criteria are not fulfilled.

In SDAM, the integrity of messages is ensured by authenticated signatures. FHIR
users can be certified using a single-level authentication server [47]. Refresh tokens could
be compromised when in transit. Conversely, SDAMs checks and validates users’ IDs at
the plan (which has been signed) and node levels.

In order to provide trust to participants, traceability and logging are essential. Trace-
ability is meant to identify the origin and route of commands, as well as the different types
of data that pass between entities. These traces must be recordable by an external audit
entity and kept accessible in a location controlled by a trusted party. Logging refers to
the means by which to register this information. SDAM requires that protocols should
have the possibility of logging on all entities, even those close to data sources such as the
DCE or outside the system such as applications connected to the RCEs. In addition, each
action, on each layer, should be recorded by the network layer on the local system and
simultaneously be sent to an external log manager. It should be noted that these logs can
be encrypted too.

FHIR uses two resources, known as “Provenance” and “AuditEvent”, in order to keep
up with the filling of the log. Nevertheless, FHIR is not designed to inherently support an
outsourced log management provider. The connections to external logs would need to be
specified, developed, and implemented by a party wanting to achieve this, which affects
interoperability and potentially, the overall event tracking profile.
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The purpose of calling on external logs is to have an audit tool with input actions.
However, it is also meant to provide another independent communication channel so that
entities can factually report any malicious activity in the event of attacks. SDAM relies
on validated third-party certificates, a robust encryption key infrastructure, and signed
project artefacts to ensure non-repudiation. To input new events, FHIR relies on a resource
called “Provenance.signature”, which is a digital signature. Using a single digital signature
is problematic because it does not achieve non-repudiation. This is because there is no
evidence that the signature does belong to an entity.

SDAM includes cryptographic handshakes, specifically handled by SDAM. It also
leverages IETF standards, when possible, like HTTPS. In both cases, a third-party authority
is responsible for distributing proper certificates and ensuring that the organisations are
fully authenticated. FHIR does not provide point-to-point authentication. Communication
security must be ensured by the TLS protocol.

Table 1 summarises the analysed security properties as found in the LHS security
requirements and FHIR.

Table 1. SDAM security properties and evaluated in context of Fast Healthcare Interoperability
Resources (FHIR) with and without TLS use.

Security Property FHIR w/o TLS FHIR w/TLS

Confidentiality × ×
Integrity × ◦

Authentication ◦ ◦
Traceability ◦ ◦

Logging ◦ ◦
Non-repudiation ◦ ◦

Authenticated point-to-point link × X
X Supported ◦ Partially supported × Not supported.

4.3. Security Vulnerability Analysis

The second analysis consists of an evaluation of the suggested means of defences of
SDAM against the most common threats on communications and data access protocols, as
outlined in the LHS security requirements. A comparison will be provided for the same
threats when using FHIR.

SDAM offers mitigation responses to masquerade attacks by adding verification and
integrity seals sequentially as the transmission progresses. Attacks of this kind can be
detected by exploring logs and validating identities. FHIR could provide some mitigation
by imprinting the messages with an embedded certificate. The use of FHIR with TLS does
offer a fair degree of protection at that level.

Replay attacks could have significant consequences in a context of decision support,
for example. One of the ways SDAM mitigates this type of attack is by providing a session
number and encrypting the message content at the presentation layer, keeping the message
undisclosed to a third party while in transit. This aspect has not been addressed by the
security mechanisms proposed by FHIR.

Traffic analysis, which is an instance of side channel attack, is a difficult security issue
to tackle. This is why SDAM goes to great lengths in limiting its attack surface as much as
possible. SDAM prescribes the use of a proxy pool using a dynamic topology. This avoids
leaking information about the volume and communication frequency. FHIR does not offer
a defence in its design to defend itself against these attacks.

Table 2 summarises the vulnerabilities addressed by the SDAM and the protection
mechanisms offered by FHIR.
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Table 2. Vulnerabilities addressed by SDAM and an analysis in context of FHIR with and without
TLS use.

Vulnerability FHIR w/o TLS FHIR w/TLS

Masquerade attacks × X
Message Replay × ×
Trafic analysis × ×

X Secure ◦ Partially secure × Not secure.

As can be seen, SDAM delivers a favourable security profile, based on its design,
and addresses the most critical types of attacks in context of a LHS. The Denial of Service
(DoS) attack has not been evaluated, as it is linked significantly to the lower parts of the
communication infrastructure and will depend on specific implementations. Nevertheless,
we can mention that not requiring the publication of entities IP addresses and the possibility
of using multiple trusted proxies within a large pool will provide some protection.

It is important to note that FHIR has been included given its use in multiple contem-
porary projects. Nevertheless, it does not advertise, nor claim, an extensive security profile
covering multiple layers (coherent with the name of its parent organisation, HL7). It is still
important to convey the message to the LHS community that using HL7, even with TLS,
does not address all the requirements identified.

5. Conclusions

Learning health systems have been widely regarded as the way forward to bridge the
gap between scientific discoveries and impacts on individuals’ health. It should be noted
that, while LHS have been developing for more than 15 years, an evaluation to provide
a comprehensive security requirement model was missing. This article provides such a
model, SDAM. High-level requirements, including addressing confidentiality, deidenti-
fication, data linkages, and mitigation against common threats, as well as leveraging, as
much as possible, widely-used standards, like the ones from IETF, are critical to the support
of secure, acceptable, and regulation-compliant LHSs at scale. Currently implemented
approaches, like those proposed by HL7 (including FHIR), as well as newer, more exper-
imental ones, like projects based on blockchain technologies, do not cover all necessary
requirements but can certainly contribute to the solution. For example, the approaches
using blockchain technology are primarily turned toward audit purposes. To this end, it
would be interesting to use blockchains as a general ledger to store the information logged
from the different components and protocols used by LHS. This could ensure the integrity
and non-repudiation of the various activities on a platform between several stakeholders
from multiple organisations.

When designing SDAM, specific security requirements were taken into account. OSI
was used as a basis for the layers and IETF standards were leveraged as much as possible.
Traffic analysis is a significant threat and is difficult to protect from. Given the requirements
to maintain network address anonymity for the entities, particularly the data sources,
great care has been put in designing the proxy pool requirement as an enhanced mix-
network with a dynamic topology. To illustrate the applicability to concrete LHS activities,
an exemplar use-case was illustrated and SDAM advantages discussed. We ended our
discussion with a comparison of the security properties offered by SDAM compliant
implementations and, an evaluation of their presence or absence within FHIR. A similar
exercise was proposed with regards to security threats and mitigation strategies offered.
While it would be false to state that FHIR advertises, or claims, that it covers the broad
spectrum of requirements covered by a model based on the full OSI stack, it is important to
make explicit to the LHS community that relying solely on FHIR (with or without TLS as
suggested by HL7) would pose significant security risks. While SDAM can prove useful
for evaluating the suitability of communication protocol suites to support LHSs, work
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remains to be done in order to produce and publish a suite of protocols that would be fully
compliant with the proposed model.

From the definition of a learning cycle to its execution, including the transit of data
through infrastructure layers, this work has opened avenues regarding the feasibility of im-
proving data access between multiple organisations, while ensuring data security. Previous
work demonstrated that significant gaps remain when security evaluations are envisioned
on a per component basis rather than assessing security properties holistically at the system
level. The new SDAM model inherently unifies data exchange formalisation during a
learning cycle with the need for formal verifications of security criteria, which must be
guaranteed on all stages of data-related activities. While SDAM provides a clear roadmap
for desirable properties, ensuring its continued fulfilment remains a significant challenge:
As systems change and topologies evolve, automated or semi-automated methods would
help in ensuring traceability of security properties.

PARS3 is a data access system being developed to support multiple LHS deployments
(mandated by the Quebec Health Ministry to support primary care data exchange in Que-
bec, the Ensemble network—a France-Québec rare disease network, etc.). As part of its
development, protocols have been structured according to SDAM and have been mentioned
earlier in the article. Their positive formal evaluation, in light of SDAM, could provide a first
all-encompassing suite of protocols deployable in the field. However, trust is not dependant
only on technological approaches. Transparency and consent management are essential in
building an ecosystem of mutual trust among patients, clinicians, and the various stakeholders
in LHSs. This implies that work will be needed to design protocol specifications allowing
communications with new entities, like citizen portals, to allow them to express consent,
preferences, or to provide them with transparency related information.
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