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Abstract: Multi-modality image fusion applied to improve image quality has drawn great attention
from researchers in recent years. However, noise is actually generated in images captured by different
types of imaging sensors, which can seriously affect the performance of multi-modality image fusion.
As the fundamental method of noisy image fusion, source images are denoised first, and then the
denoised images are fused. However, image denoising can decrease the sharpness of source images
to affect the fusion performance. Additionally, denoising and fusion are processed in separate
processing modes, which causes an increase in computation cost. To fuse noisy multi-modality
image pairs accurately and efficiently, a multi-modality image simultaneous fusion and denoising
method is proposed. In the proposed method, noisy source images are decomposed into cartoon
and texture components. Cartoon-texture decomposition not only decomposes source images into
detail and structure components for different image fusion schemes, but also isolates image noise
from texture components. A Gaussian scale mixture (GSM) based sparse representation model is
presented for the denoising and fusion of texture components. A spatial domain fusion rule is applied
to cartoon components. The comparative experimental results confirm the proposed simultaneous
image denoising and fusion method is superior to the state-of-the-art methods in terms of visual and
quantitative evaluations.

Keywords: sparse representation; noisy image fusion; cartoon-texture decomposition; simultaneous
image denoising and fusion

1. Introduction

Since an image obtained by a single sensor cannot contain sufficient information of one
scene in most cases, additional information from other images captured in the same scene
can be used as a necessary complement to reduce the limitations of a single image and
enhance the visibility [1–3]. Multi-modality image fusion can merge the complementary
information from different sensor modalities into the originally captured image [4,5].
Recently, image fusion is widely used in remote sensing, medical imaging, and robotics
for the improvement of image quality. Traditional image fusion methods often suppose
that there is no noise in source image pairs [6–9]. However, due to the limitation of
sensor-related techniques, image noise always appears in captured images by all types of
commercial, professional, and scientific cameras [10–12], that can seriously affect image
analysis. To improve the image quality, both image denoising and fusion have drawn
increasing attention in the image processing area.

In the past decade, similar image processing techniques have been applied to image
denoising and fusion and achieved great performance. Wavelet, multi-scale transform,
and total variation-based algorithm are the three most widely used methods in both image
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fusion and denoising [13–15]. Sparse representation (SR) has proved to be effective in
image denoising and fusion [16–18].

Conventional image fusion methods have two steps to process the noise of source
images. It does image denoising first, then fuses the denoised images. Since image
denoising may decrease both sharpness and contrast of source images, the fusion of
denoised images may cause inaccuracy in image details. Additionally, both image fusion
and denoising are time-consuming. To further improve the efficiency of image fusion, a
number of simultaneous image denoising and fusion methods have been proposed in the
past few years. Most simultaneous image fusion and denoising methods are developed
based on SR framework.

However, most of existing SR-based simultaneous image fusion and denoising meth-
ods do not specialize in image restoration. Both structure and detailed information may
be degraded in the denoising process. To optimize this limitation, a novel simultaneous
multi-modality image denoising and fusion method is proposed. The proposed method
consists of three steps. First, source images are decomposed into cartoon and texture
components according to a total variation-based method. In this step, image noise is
decomposed into texture components. Second, a GSM-based SR model specialized for
image restoration is implemented in the denoising and fusion of texture components, and a
spatial domain-based method is applied to the fusion of cartoon components. GSM-based
SR model can denoise and sparse code noisy texture components simultaneously. The
sparse coded coefficients are fused by using Max-L1 fusion rule, and the fused coefficients
can be inversely transformed to a denoised and fused image. Finally, fused texture and
cartoon components are integrated into a fused image. The main contributions can be
summarized as follows:

1. This paper proposes an image denoising and fusion framework, that can fuse and
denoise multi-modality images simultaneously. In the proposed framework, image
noise is decomposed into texture components, which are fused and denoised simul-
taneously according to an SR-based method. For the cartoon components, a proper
spatial domain fusion rule is implemented. The denoised and fused image can be
obtained by integrating fused texture and cartoon components.

2. This paper proposes a cartoon-texture decomposition based method to separate im-
age noise and detailed information. In the proposed method, source images are
decomposed into cartoon and texture components, where noisy components are
decomposed into texture components. Therefore, only the texture components are
needed for denoising, this can retain the structure information of cartoon compo-
nents. Additionally, the detailed and structure information of source images is also
decomposed in this step.

3. This paper proposes a GSM-based SR model for simultaneous denoising and fusion of
texture components. According to a GSM model, SR can remove the noise of texture
components, and preserve the image texture information. During the denoising
process, sparse coefficients without noisy information can be obtained for fusion.

The rest of this paper is structured as follows: Section 2 discusses the related work;
Section 3 presents the proposed framework; Section 4 simulates the proposed solutions
and analyzes experiment results; and Section 5 concludes this paper.

2. Related Work
2.1. Sparse Representation in Image Denoising

SR technique, that represents image patches as a sparse linear combination of atoms in
an over-complete redundant dictionary, is a popular research topic of image processing in
recent years [19–22]. In the image denoising field, SR-based research focuses on two related
issues, dictionary construction and statistical modeling of sparse coefficients. For dictionary
construction, K-SVD dictionary learning proposed by Elad [23], multi-scale dictionary
learning [24], and online dictionary learning by Mairal [25] are the most popular methods.
For statistical modeling of sparse coefficients, denoising is conducted in the acquisition
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process of spare coefficients. Zoran and Wess [26] presented Gaussian mixture models
for sparse coefficients in image denoising. Variational Bayesian model and centralized
Laplacian model were proposed for image denoising by Ji [27] and Dong [28], respectively.
Advanced performance is achieved by these sparse models in image denoising.

2.2. Dictionary Construction and Image Decomposition

For image fusion, the key issue of SR-based image fusion methods can be categorized
into dictionary construction and source image decomposition [10,29]. For dictionary
construction, Yang and Li [30] applied a fixed DCT dictionary to multi-focus image fusion as
the first application of SR-based image fusion. Duan presented a dual-tree complex shearlet
dictionary for enhancing the sharpness and contrast of infrared-visible image fusion [31].
K-SVD based dictionary construction methods were implemented in image fusion by
Yin [32] and Zhu [33], that improved the performance of details in both fused multi-
focus and medical images. Both Kim and Zhu used principal component analysis (PCA)
bases of source images to construct dictionary for image fusion [34–36]. The constructed
dictionary, consisting of PCA bases, was compact and informative, which could decrease
the computation cost of image fusion and improve the performance of image fusion.
For the decomposition of source images, Kim implemented Gaussian smooth in image
decomposition, that strengthened the visual effect of a fused image [34]. Liu introduced
multi-scale transform filter to the decomposition of source images, that could improve the
performance of SR-based fusion methods in both medical and infrared-visible scenes [29].
Liu and Yin presented a morphological component analysis (MCA) based cartoon-texture
decomposition method for image decomposition [37]. They also proposed proper SR-based
fusion rules for the fusion of cartoon and texture components. According to the previous
discussion, dictionary construction, image decomposition, and models specialized for
sparse coefficients are three key issues of both image denoising and fusion.

2.3. Simultaneous Image Denoising and Fusion Method

Li and Yin [10] developed a dictionary learning method based on group-related sparse
representation. They used the intrinsic geometrical structure of sparse representation in the
form of clusters to build a dictionary. This method can ensure the group structure sparsity
of local atoms in different groups of both noise-free and noisy images. Kim and Han [34]
presented a joint patch clustering-based dictionary learning (JCPD) method for SR-based
image fusion. This method trained a few sub-dictionaries by using PCA-based method,
that can construct a denoised compact dictionary for sparse representation. Additionally,
according to the image noise rate, Kim and Han set the error tolerance for denoising in the
sparse coding process. Therefore, denoised sparse coefficients can be obtained for image
fusion. An adaptive sparse representation (ASR) model was proposed by Liu and Wang [38]
for simultaneous image denoising and fusion. Liu and Wang used the geometric similarity
of image patches to build a few compact sub-dictionaries for both image denoising and
fusion. Li [39] proposed a medical image fusion, denoising, and enhancement method
based on low-rank sparse component decomposition and dictionary learning (FDESD).
Low-rank and sparse regularization terms are first incorporated into the dictionary learning
model. Then, a weighted nuclear norm and sparse constraint are imposed on the sparse
components to remove noise and preserve texture details. Finally, the fused low-rank
and sparse components of source images are combined to construct the fused image.
Li [40] proposed an image fusion method based on three-layer decomposition and sparse
representation (FDS). The source image is first decomposed into high- and low-frequency
components, and then the sparse reconstruct error parameter is adaptively designed and
applied to denoising and the fusion of high-frequency components simultaneously. A
structure-texture decomposition model is used for low-frequency components. The fused
image is obtained by the combination of fused high- and low-frequency components.

Mei [41] first represented image features by using the fractional-order gradient in-
formation, and then used two convex variational models to achieve the fusion of noisy
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images. An alternating direction method of multiplier was applied to optimization of the
simultaneous image fusion and denoising. Under the assumption of both RGB and near
infrared (NIR) images containing the same well-calibrated spatial resolution, multi-scale
wavelet analysis was integrated into a multi-spectral fusion and denoising framework to
achieve texture transfer and noise removal [42]. A discrepancy model based on the wavelet
scale map was used to solve the discrepancy between RGB and NIR images. NIR-guided
Laplacian distributions are applied to model the prior of the fused wavelet coefficients.
So, the fusion, denoising, and detail preservation of RGB and NIR image can be achieved
simultaneously. Wang [43] integrated an energy function to a variational approach to
adjust the pixel values of an input images directly. The corresponding histogram was redis-
tributed to be uniform and the related image noise was removed. A total variational term
was used to remove image noise. Additionally, a histogram equalization term was applied
to image contrast enhancement, and both image structure and texture were retained by a
fidelity term. Yang [44] used both non-locally centralized sparse representation (NCSR)
and residual learning of deep CNN (DnCNN) to achieve internal and external denoising,
respectively. The simultaneous image denoising and fusion was converted to an adaptive
weight-based image fusion of the denoised image details obtained by NCSR and DnCNN.
The weights of both pixel intensity change and global gradient of the denoised images
are adaptively adjusted. Since image structure varies considerably across different image
patches, existing SR-based solutions always need an exceedingly redundant dictionary to
achieve the related signal reconstruction. So, visual artifacts and high computational cost
are unavoidable in most cases.

3. The Proposed Simultaneous Denoising and Fusion Framework

The proposed simultaneous denoising and fusion framework is demonstrated in
Figure 1. In the proposed fusion framework, noisy source images are decomposed into
cartoon and texture components. After the cartoon-texture decomposition, noisy and
detailed information of source images are categorized into texture components. A GSM-
based SR model is applied to the denoising and fusion of texture components. In the
texture-component fusion, denoised sparse coefficients are first fused by using Max-L1
fusion rule. Then, the fused coefficients are inversely transformed to the denoised and
fused texture components. For the cartoon components, texture information-based spatial
fusion rule is implemented in cartoon-component fusion. Finally, the fused cartoon and
texture components of source images are integrated to generate the fused image.

Figure 1. The Proposed Fusion Framework.
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3.1. Image Cartoon-Texture Decomposition

Cartoon-texture image decomposition, that can decompose noisy and detailed in-
formation of the image, is widely used in image processing. It is a fundamental step for
both image denoising and fusion processes in the proposed framework. For image fusion,
cartoon-texture decomposition can separate source images into detailed and structure
components. To preserve image information, different fusion rules are applied to detailed
and structure components respectively. In the cartoon-texture decomposition, image noise
is categorized into texture components. So, the system needs to do the denoising operation
on texture components. In the framework, a total variation model is implemented in
cartoon-texture decomposition [45]. The details of this model are shown in Equation (1).

inf
u∈BV(Ω),−→g ∈lp(Ω)2

Gp(u,−→g ) =|u|BV(Ω) + λ
∥∥ f − (u + div−→g )

∥∥2
l2(Ω)

+ µ

∥∥∥∥√g2
1 + g2

1

∥∥∥∥
lp(Ω)

, (1)

where −→g = (g1, g2) is a vector in G space to represent digital images. BV (Ω) represents
bounded variation set. λ and µ are regularization parameters. u represents the cartoon
component of input image. f represents input image.

∥∥−→g ∥∥lp
represents the lp norm of√

g2
1 + g2

1. The description of
∥∥∥√g2

1 + g2
1

∥∥∥
lp

is demonstrated in Equation (2):

∥∥−→g ∥∥Lp =

[∫
(
√

g2
1 + g2

2)
p
dxdy

] 1
p

. (2)

Cartoon component u can be obtained by solving the optimization problem in Equa-
tion (1).

When the cartoon component u is calculated, the texture and noise information v can
be simply calculated by Equation (3).

v = f − u . (3)

The decomposed cartoon and texture components of noisy images are shown in
Figure 2.

Figure 2. The Proposed Fusion Framework. (a) a noisy image, (b) cartoon components, and (c) texture
components.
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The noisy information only appears in texture components. In this case, the image
denoising problem is converted to a denoising problem of texture components.

3.2. GSM-Based SR Model for the Denoising and Sparse Representation of Texture Components

In the proposed method, GSM-based SR model is employed in the denoising and
sparse coding of texture information. GSM-based SR model is a statistical model for sparse
representation, which is proposed by Dong [46].

The GSM model decomposes the coefficient vector α into the point-wise product of
a Gaussian vector β and a hidden scalar multiplier θ, such as αi = θiβi, where θ is the
positive scaling variable with probability P(θ). In GSM-based SR model, sparse coefficient
α can be obtained by the specification of sparse prior P(θ). The sparse prior term P(α|θ )
can be expressed as Equation (4),

P(α|θ ) = 1
θ
√

2π
exp

(
− (α− µl)

2

2θ2

)
, (4)

where α and γ can be decomposed as α = Λβ and µ = Λγ respectively. Λ is a diagonal
matrix of θ, where Λ= diag(θ) ∈ RK×K.

For the image denoising problem, a noisy image can be represented as a degraded
version of the origin image. The degraded image can be modeled as Equation (5)

y = x + ω , (5)

where y and x are degraded and original image respectively. ω is additive white Gaussian
noise observing N(0, σ2

n).
According to the GSM statistics model shown in Equation (4) and the image de-

graded model shown in Equation (5), the denoising and reconstruction problem of texture
components of image patch l can be formulated as Equation (6).

(x, {Bl}, {θl}) = argmin
x,{Bl},{θl}

‖y− x‖2
2 +

L

∑
l=1
{
∥∥R̃l xl − DΛl Bl

∥∥2
F

+ σ2
n‖Bl − Γl‖2

F + 4σ2
n log(θl + ε)}

, (6)

where R̃l x = [Rl1x, Rl2x, ..., Rlmx] ∈ Rn×m denotes the data matrix formed by an image
patch. Rl ∈ Rn×N denotes a matrix extracting the l-th patch xl from x. D is the dictionary
consisting of the PCA bases of all input texture components of image patches. Bl and Γl
represent the first and second order statistics of GSM-based SR model for the l-th patch
from x. L is the total number of patches. ε is a small positive number for numerical stability.

To solve Equation (6), an iterative SR-based method, that is made up of two isolated
optimization problems, is implemented. For the first optimization problem, B and θ are
fixed to obtain x. When B and θ are fixed, X̂l is also fixed. Therefore, Equation (6) becomes
an L2 optimization problem as Equation (7).

x = arg min
x
‖y− x‖2

2 +
L

∑
l=1

∥∥R̃l x− DΛl Bl
∥∥2

F . (7)

This problem can be solved [46] by Equation (8).

x =

(
I +

L

∑
l=1

R̃T
l R̃l

)
−1

(
y +

L

∑
l=1

R̃T
l X̂l

)
, (8)

where I is an identity matrix.
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For the second optimization problem, x is fixed to solve B and θ. When x is fixed,
Equation (6) can be transformed to Equation (9).

({Bl}, {θl}) = argmin
{Bl},{θl}

∥∥R̃l x− DΛl Bl
∥∥2

F + σ2
n‖Bl − Γl‖2

F

+ 4σ2
n log(θl + ε)

. (9)

According to Dong’s method [46], this problem can be divided into two sub-problems
that use the fixed B and θ to solve θ and B respectively. When θ is fixed, B can be obtained
by Equation (10).

Bl = argmin
Bl

∥∥R̃l x− DΛl Bl
∥∥2

F + σ2
n‖Bl − Γl‖2

F . (10)

As both terms of Equation (10) are L2, it is a classical Wiener filtering, that can be
solved by Equation (11).

Bl =
(
(DΛ)T DΛ + σ2 I

)−1(
(DΛ)T(R̃l x

)
+ Γl

)
. (11)

When B is fixed, Equation (9) is transformed to Equation (12),

θl = argmin
θl

∥∥R̃l x− DΛl Bl
∥∥2

F + 4σ2
n log(θl + ε) . (12)

To solve the optimization problem in Equation (12), this paper supposes xl = DAl .
According to Dong’s method, θl can be calculated by Equation (13).

θl =


0 , i f 4A2

l ((Bl)
T)

2

16(‖Bl‖2
2)

2 − 4σ2

2‖Bl‖2
2
< 0

arg min
θl

{ f (0), f (θl,1), f (θl,2)} , otherwise
, (13)

where θl,1 and θl,2 are shown in Equation (14).

θi,1 = − bi
4ai

+

√
b2

i
16
− c

2ai
, θi,2 = − bi

4ai
−

√
b2

i
16
− c

2ai
. (14)

f (θl) is demonstrated in Equation (15).

f (θl) = ‖Bl‖2
2θ2

l − 2Al(Bl)
T + 4σ2

n ln(θl + ε) . (15)

Given the above steps, the noisy information of source images can be eliminated.
Simultaneously, image information is sparse coded into spare coefficients for the fusion of
coefficients.

3.3. Details of Fusion Process

Supposing there are n noisy source images x1, x2, ..., xn for multi-modality image
fusion, the fusion process is summarized as follows. In the proposed framework, texture
components of each noisy source image x1, x2, ..., xn are denoised iteratively in the sparse
coding process. In each iteration, the dictionary used in sparse coding is obtained by
calculating PCA bases of all the source images. When the iteration reaches the maximum
number, sparse coefficients can be obtained for fusion. After the coefficients are fused, the
fused image can be easily obtained by the reconstruction of the fused coefficients. The whole
denoising and fusion process of texture components is demonstrated in Algorithm A1
(shown in Appendix A).
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In this work, the outer loop number k is set to 6 and the inner loop number j is set
to 3 for the elimination of noisy information. According to the texture components of all
the fused image patches, the texture components of the fused image T f can be obtained.
The presented texture information fusion model can eliminate the noise in the texture
components of noisy images in the spare coding process for approximating noise-free
sparse coefficients of texture components. Noise in the fused result can be suppressed by
fusing the approximated coefficients of texture information. This is the major contribution
of the presented SR model.

To preserve the structure information of all source images, a weighted average fusion
method is applied to the fusion of cartoon components. The weight of each cartoon
component can be calculated by Equation (16),

cr
f=

∑K
k=1 ωkcr

k

∑K
k=1 ωk

, (16)

where cr
k represents cartoon component of r-th image patch of k-th source image. cr

f

represents the fused cartoon component of r-th image patch. ωk =
∥∥∥tr

k
∥∥∥

2
, tr

k represents the
r-th denoised patch of the texture components of the k-th source image. When the cartoon-
component patches are fused, they are combined to form a fused cartoon-component
image C f . In the proposed cartoon-component fusion rule, when the amount of the texture
components of a patch from one source image is larger than the corresponding one from
the other image, its cartoon component is given a higher percentage in the final fused
image. The fused and denoised image can be obtained by simply adding C f and T f by
Equation (17)

I f = C f + T f , (17)

4. Experiments and Analyses
4.1. Experiment Setup

In comparative experiments, 20 pairs of multi-focus images, 20 pairs of infrared-visible,
and 20 pairs of medical images are used to test the fusion performance respectively. The
multi-focus and infrared-visible image pairs have 240× 320 resolution. The resolution
of medical image pairs is 256× 256. Parts of several representative images are shown in
Figure 3. (a)&(b), and (g)&(h) are two typical multi-focus image pairs. Two medical image
pairs are shown in (c)&(d), and (i)&(j) respectively. (e)&(f), and (k)&(l) demonstrate two
infrared-visible image pairs respectively. All of image pairs used for testing are collected
by Liu [29] and can be downloaded at quxiaobo.org. Gaussian noise is injected to source
images for simultaneous fusion and denoising testing. In the following comparative
experiments, the levels of noise are set to four fixed values as σ = 0, 10, 20, 50. All the
experiments are programmed in MATLAB 2016b on a desktop with an Intel(R) Core(TM)
i9-7900X @ 3.30 GHz CPU and 16.00 GB RAM.

Figure 3. Parts of Used Representative source images. (a–l) are selected source images.

Eight mainstream objective evaluation metrics are implemented in the performance
evaluation of all fused images. These metrics include Tsallis entropy (QTE) [47,48], nonlin-

quxiaobo.org


Computers 2021, 10, 129 9 of 27

ear correlation information entropy (QNCIE) [49], edge retention (QAB/F) [50], image fusion
metric based on phase congruency (QP) [51], mutual information (MI) [52,53], Yang pro-
posed fusion metric (QY) [48,54], Chen-Blum metric (QCB) [48,55], and visual information
fidelity for fusion (VIFF) [56]. These objective metrics can evaluate different characteristics
of fused images. QTE is a divergence measure, that can evaluate the degree of dependence
between two discrete signals. QNCIE is a nonlinear correlation matrix, that measures the
nonlinear correlation coefficient (NCC) of input images and the fused image. QAB/F metric
is a gradient-based quality index to measure how well the edge information of source
images is conducted to the fused image. QP is an image phase congruency based evaluation
metric to evaluate the corner and edge information of the fused image. MI is a metric
to evaluate information similarity between source images and the fused image. QY is a
structure-similarity based image fusion performance metric, that can measure the structure
similarity between source images and the fused image without a reference image. QCB is a
human perception inspired fusion metric, that can obtain a contrast-preservation value of
the fused image. VIFF is also a human perception inspired fusion metric. It quantifies the
information shared between test and fused images based on Natural Scene Statistics (NSS)
theory and Human Visual System (HVS) model. When the values of previously mentioned
objective metrics get bigger, the fused results are indicated to be better.

4.2. Comparison of Simultaneous Fusion and Denoising Methods

In this experiment, the simultaneous denoising and fusion performance of the pro-
posed framework is compared with two existing state-of-the-art methods, FDESD [39] and
FDS [40]. For all sparse-representation based methods, the size of each image patch is set
to 8× 8 and the overlap is set to 6 in all the experiments. The dictionary size of FDESD and
the proposed method is set to 256.

4.2.1. Multi-Focus Image Fusion

Due to the limitation of focus range, camera lens have difficulty in capturing an all-
on-focus image in a shutter. Multi-focus image fusion technique is proposed to solve this
issue. Moreover, the parameter settings of image sensors can cause multi-focus images to
be affected by noise. Thus, simultaneous denoising and fusion can relieve the limitations
of lens focus range. 14 image pairs are used in the multi-focus image fusion experiments.
To test the simultaneous denoising and fusion performance, these image pairs are tested as
original image pairs and noisy image pairs. The noise levels are set to σ = 10, 20 and 50
respectively.

The selected experimental results -1: The representative image pair of all multi-focus
experiments is shown in Figure 4. Row 1&2 and row 3–5 demonstrate the noised source
images and processed images respectively. The noise levels of column 1 to 4 in Figure 4 are
set to σ = 0, 10, 20 and 50 respectively.

According to Figure 4, when the noise level is set to σ = 0, all three methods show
similar fusion results. However, as the noise level increases to σ = 20 and σ = 50, the fused
image by FDESD cannot filter all the noise. To facilitate comparisons, local regions enclosed
by blue frame in Figure 4 are enlarged and presented in the lower left corner of each fused
image. From these close-up views of the labeled regions, it shows that the fusion details
produced by the proposed method contain better contrast and sharpness, when the noise
level raises to σ = 20 and σ = 50. Therefore, it confirms that the proposed method achieves
the best visual quality in multi-focus image simultaneous fusion and denoising among all
three methods.
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Figure 4. Simultaneous denoising and fusion results of noisy multi-focus image pairs -1. (a–h) are
source multi-focus images with additional noise σ = 0, 10, 20, 50 respectively; (i–t) are simultaneous
denoising and fusion results of source images with additional noise σ = 0, 10, 20, 50 by FDESD, FDS
and proposed method respectively.

To assess the fusion performance objectively, eight objective evaluation metrics, i.e.,
QTE, QNCIE, QAB/F, QP, MI, QY, QCB, and VIFF, are used in the comparison. The corre-
sponding assessment results are listed in Table 1, where the largest values are highlighted
in bold. The proposed method not only achieves the highest scores in the multi-focus
image fusion, but also in the other seven measures of all noise levels, that include QTE,
QNCIE, QP, MI, QY, QCB, and VIFF. The metric QAB/F measures the edge retention. The
fusion result of FDS obtains higher score in QAB/F than the proposed method, when the
noise level is set to σ = 0. However, as the noise level raises to σ = 10, 20 and 50, the
QAB/F scores of the proposed method surpass the corresponding scores of FDS. In this case,
it concludes that the proposed method yield the best results in the simultaneous image
denoising and fusion.
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Table 1. Objective evaluations of simultaneous multi-focus image denoising and fusion -1.

σ = 0 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.6685 0.8160 0.7287 0.7539 1.7420 0.8963 0.6444 0.6257
FDS 0.7529 0.8190 0.7479 0.8387 1.9337 0.9248 0.7228 0.6770
Proposed 0.9163 0.8251 0.7305 0.8499 2.3450 0.9657 0.7569 0.6962

σ = 10 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.6056 0.8106 0.5614 0.5689 1.5623 0.7404 0.6132 0.6009
FDS 0.6446 0.8152 0.5745 0.6821 1.6617 0.7765 0.6745 0.6346
Proposed 0.6527 0.8156 0.5857 0.6992 1.8871 0.7825 0.6804 0.6450

σ = 20 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.5563 0.8122 0.4459 0.4078 1.4352 0.6336 0.5728 0.5549
FDS 0.6053 0.8140 0.4787 0.5188 1.5570 0.6713 0.6245 0.5578
Proposed 0.6102 0.8142 0.4873 0.5538 1.5672 0.6933 0.6371 0.5777

σ = 50 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.4511 0.8100 0.2633 0.1726 1.1615 0.4413 0.4928 0.4257
FDS 0.5369 0.8119 0.2619 0.2352 1.3656 0.4568 0.4696 0.4268
Proposed 0.5472 0.8122 0.3014 0.3055 1.3852 0.5030 0.5276 0.4340

The selected experimental results -2: The representative image pair of all multi-focus
experiments is shown in Figure 5. Row 1&2 and row 3–5 demonstrate the noised source
images and processed images respectively. The noise levels of column 1 to 4 in Figure 5 are
set to σ = 0, 10, 20 and 50 respectively.

According to Figure 5, when the noise level is set to σ = 0, all three methods show
similar fusion results. However, as the noise level increases to σ = 20 and σ = 50, the fused
image by FDESD cannot filter all the noise. To facilitate comparisons, local regions enclosed
by blue frame in Figure 5 are enlarged and presented in the lower left corner of each fused
image. From these close-up views of the labeled regions, it shows that the fusion details
produced by the proposed method contain better contrast and sharpness, when the noise
level raises to σ = 20 and σ = 50. Therefore, it confirms that the proposed method achieves
the best visual quality in multi-focus image simultaneous fusion and denoising among all
three methods.

To assess the fusion performance objectively, eight objective evaluation metrics, i.e.,
QTE, QNCIE, QAB/F, QP, MI, QY, QCB, and VIFF, are used in the comparison. The corre-
sponding assessment results are listed in Table 2, where the largest values are highlighted
in bold. The proposed method not only achieves the highest scores in the multi-focus
image fusion, but also in the other seven measures of all noise levels, that include QTE,
QNCIE, QP, MI, QY, QCB, and VIFF. In this case, it concludes that the proposed method
yield the best results in the simultaneous image denoising and fusion.
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Figure 5. Simultaneous denoising and fusion results of noisy multi-focus image pairs -2. (a–h) are
source multi-focus images with additional noise σ = 0, 10, 20, 50 respectively; (i–t) are simultaneous
denoising and fusion results of source images with additional noise σ = 0, 10, 20, 50 by FDESD, FDS
and proposed method respectively.

Table 2. Objective evaluations of simultaneous multi-focus image denoising and fusion -2.

σ = 0 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.6752 0.8098 0.7279 0.7692 1.7583 0.9034 0.6579 0.6372
FDS 0.7682 0.8197 0.7392 0.8393 1.9872 0.9244 0.7382 0.6804
Proposed 0.9192 0.8317 0.7408 0.8503 2.3581 0.9694 0.7593 0.6985

σ = 10 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.6193 0.8132 0.5687 0.5793 1.5736 0.7534 0.6328 0.6196
FDS 0.6487 0.8157 0.5783 0.6894 1.6689 0.7793 0.6784 0.6372
Proposed 0.6576 0.8186 0.5873 0.6998 1.8903 0.7896 0.6864 0.6497

σ = 20 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.5604 0.8146 0.4494 0.4184 1.4423 0.6406 0.5804 0.5569
FDS 0.6085 0.8195 0.4808 0.5268 1.5596 0.6792 0.6294 0.5608
Proposed 0.6181 0.8237 0.4906 0.5587 1.5693 0.6987 0.6395 0.5788

σ = 50 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.4595 0.8187 0.2693 0.1774 1.1709 0.4473 0.4989 0.4267
FDS 0.5409 0.8121 0.2746 0.2429 1.3726 0.4589 0.4785 0.4326
Proposed 0.5503 0.8173 0.3068 0.3094 1.3873 0.5096 0.5316 0.4389

The average experimental results: The average objective evaluation results of simul-
taneous multi-focus image denoising and fusion are shown in Table 3. The corresponding
results are consistent with the above demonstrated results of two groups of simultaneous
multi-focus image denoising and fusion experiments. The proposed method has the best
overall performance.
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Table 3. Average objective evaluations of simultaneous multi-focus image denoising and fusion.

σ = 0 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.6749 0.8096 0.7277 0.7689 1.7580 0.9031 0.6576 0.6369
FDS 0.7678 0.8194 0.7388 0.8392 1.9867 0.9242 0.7380 0.6801
Proposed 0.9187 0.8314 0.7404 0.8598 2.3579 0.9690 0.7590 0.6981

σ = 10 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.6189 0.8127 0.5684 0.5789 1.5732 0.7531 0.6325 0.6192
FDS 0.6482 0.8153 0.5780 0.6889 1.6685 0.7790 0.6781 0.6369
Proposed 0.6572 0.8183 0.5870 0.6994 1.8900 0.7893 0.6861 0.6493

σ = 20 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.5601 0.8142 0.4490 0.4181 1.4421 0.6402 0.5899 0.5564
FDS 0.6081 0.8192 0.4803 0.5264 1.5592 0.6788 0.6291 0.5602
Proposed 0.6177 0.8233 0.4902 0.5583 1.5689 0.6983 0.6391 0.5782

σ = 50 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.4591 0.8182 0.2690 0.1772 1.1703 0.4470 0.4986 0.4264
FDS 0.5407 0.8118 0.2742 0.2426 1.3723 0.4584 0.4781 0.4323
Proposed 0.5500 0.8171 0.3065 0.3092 1.3869 0.5094 0.5313 0.4386

4.2.2. Multi-Modality Medical Image Fusion

Medical images are usually used in medical diagnosis. However, a single-modality
medical image can only reflect one aspect of characteristics in medical diagnosis. So,
multi-modality medical image fusion can be an effective technique to enhance the accu-
racy of medical diagnosis. Additionally, medical imaging sensors have limitations and
medical images often contain noise. Therefore, simultaneous image denoising and fu-
sion have practical significance in medical image processing. To test the performance of
multi-modality medical image simultaneous denoising and fusion, the second experiment
compares the fusion results of eight multi-modality medical image pairs. The noise levels
of these multi-modality image pairs are set to σ = 0, 10, 20 and 50 respectively.

The selected experimental results -1: In Figure 6, row 1&2 and row 3–5 demonstrate
the noised source images and processed images respectively. Column 1 to 4 of Figure 6 pro-
vide the source images and fusion results with the noise level from σ = 0 to 50 respectively.

The simultaneous denoising and fusion results of representative multi-modality medi-
cal image are shown in Figure 6. FDESD can eliminate the image noise at level σ = 0 to 10.
But when the noise level raises to σ = 20 and 50, the fused images by using FDESD are still
noisy. FDS and the proposed method eliminate image noise at all noise levels. After careful
observation, there is some information residue in the magnified regions of processed image
by FDS at noise level σ = 50. In contrast, the processed results of the proposed method
exhibit the best visual quality without obvious artifacts and residue at all noise levels.

In comparison with other methods, FDS method can generate edge pleasant fusion
results, when the noise level is set to σ = 20. However, the proposed method outperforms
the other two methods in terms of almost all the metrics as shown in Table 4.
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Figure 6. Simultaneous denoising and fusion results of FDESD, FDS and the proposed method
for noisy multi-modality medical image pairs -1. (a–h) are source multi-modality medical images
with additional noise σ = 0, 10, 20, 50 respectively; (i–t) are simultaneous denoising and fusion
results of source images with additional noise σ = 0, 10, 20, 50 by FDESD, FDS and proposed method
respectively.

Table 4. Objective evaluations of simultaneous multi-modality medical image denoising and fusion -1.

σ = 0 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.5571 0.8071 0.4010 0.4271 0.9989 0.4717 0.4252 0.3337
FDS 0.5677 0.8072 0.4837 0.5333 1.0068 0.5626 0.4686 0.3601
Proposed 0.6537 0.8099 0.6583 0.5371 1.2223 0.7150 0.4698 0.4362

σ = 10 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.4870 0.8064 0.3067 0.2584 0.9256 0.3998 0.3338 0.3075
FDS 0.5367 0.8069 0.3355 0.3852 0.9758 0.4635 0.3461 0.3167
Proposed 0.5600 0.8077 0.4082 0.3938 1.0551 0.5408 0.3778 0.3729

σ = 20 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.4331 0.8057 0.2661 0.1702 0.8386 0.3546 0.3349 0.2880
FDS 0.5099 0.8066 0.2815 0.2908 0.9459 0.3891 0.3245 0.2908
Proposed 0.4871 0.8067 0.3221 0.2989 0.9477 0.4269 0.3594 0.3904

σ = 50 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.2975 0.8041 0.1517 0.0663 0.5883 0.2200 0.2901 0.2360
FDS 0.4542 0.8058 0.1852 0.1548 0.8593 0.2744 0.2338 0.2402
Proposed 0.4875 0.8064 0.2554 0.1903 0.9326 0.3472 0.2994 0.3013
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The selected experimental results -2: In Figure 7, row 1&2 and row 3–5 demonstrate
the noised source images and processed images respectively. Column 1 to 4 of Figure 7 pro-
vide the source images and fusion results with the noise level from σ = 0 to 50 respectively.

The simultaneous denoising and fusion results of representative multi-modality med-
ical image are shown in Figure 7. FDESD can only eliminate the image noise at level
σ = 0 to 10. The images fused by FDESD contain noise when the noise level raises to
σ = 20 and 50. FDS and the proposed method eliminate image noise at all noise levels.
After careful observation, there is some information residue in the magnified regions of
processed image by FDS at noise level σ = 50. Table 5 shows the results of eight objective
evaluation indicators. In contrast, the processed results of the proposed method exhibit the
best visual quality without obvious artifacts and residue at all noise levels.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 7. Simultaneous denoising and fusion results of FDESD, FDS and the proposed method
for noisy multi-modality medical image pairs -2. (a–h) are source multi-modality medical images
with additional noise σ = 0, 10, 20, 50 respectively; (i–t) are simultaneous denoising and fusion
results of source images with additional noise σ = 0, 10, 20, 50 by FDESD, FDS and proposed method
respectively.
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Table 5. Objective evaluations of simultaneous multi-modality medical image denoising and fusion -2.

σ = 0 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.5582 0.8077 0.4047 0.4306 0.9997 0.4773 0.4302 0.3371
FDS 0.5691 0.8085 0.4869 0.5361 1.0103 0.5689 0.4690 0.3634
Proposed 0.6575 0.8112 0.6599 0.5389 1.2286 0.7183 0.4708 0.4397

σ = 10 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.4887 0.8077 0.3093 0.2604 0.9296 0.4063 0.3359 0.3096
FDS 0.5384 0.8098 0.3392 0.3887 0.9791 0.4663 0.3486 0.3191
Proposed 0.5641 0.8103 0.4094 0.3974 1.0588 0.5437 0.3792 0.3764

σ = 20 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.4362 0.8079 0.2686 0.1747 0.8406 0.3583 0.3385 0.2901
FDS 0.5102 0.8081 0.2855 0.2934 0.9481 0.3906 0.3273 0.2975
Proposed 0.5132 0.8091 0.3234 0.2996 0.9497 0.4284 0.3606 0.3937

σ = 50 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.2994 0.8080 0.1542 0.0676 0.5897 0.2221 0.2932 0.2393
FDS 0.4576 0.8087 0.1891 0.1586 0.8612 0.2786 0.2367 0.2435
Proposed 0.4902 0.8093 0.2577 0.1938 0.9361 0.3496 0.3008 0.3037

The average experimental results: The average objective evaluation results of simul-
taneous multi-modality medical image denoising and fusion are shown in Table 6. The
corresponding results are consistent with the above demonstrated results of two groups
of simultaneous multi-modality medical image denoising and fusion experiments. The
proposed method has better overall performance than FDESD and FDS.

Table 6. Average objective evaluations of simultaneous multi-modality medical image denoising and
fusion.

σ = 0 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.5580 0.8075 0.4043 0.4302 0.9994 0.4771 0.4300 0.3369
FDS 0.5688 0.8082 0.4866 0.5357 1.0101 0.5685 0.4686 0.3631
Proposed 0.6572 0.8108 0.6595 0.5386 1.2282 0.7180 0.4702 0.4393

σ = 10 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.4883 0.8074 0.3090 0.2601 0.9293 0.4059 0.3355 0.3092
FDS 0.5381 0.8095 0.3388 0.3882 0.9787 0.4660 0.3482 0.3187
Proposed 0.5635 0.8100 0.4091 0.3971 1.0585 0.5433 0.3786 0.3761

σ = 20 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.4359 0.8076 0.2684 0.1744 0.8404 0.3581 0.3382 0.2987
FDS 0.5198 0.8077 0.2851 0.2932 0.9476 0.3902 0.3270 0.2971
Proposed 0.5129 0.8087 0.3231 0.2992 0.9493 0.4281 0.3602 0.3933

σ = 50 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.2991 0.8078 0.1538 0.0672 0.5893 0.2217 0.2928 0.2390
FDS 0.4572 0.8083 0.1887 0.1582 0.8607 0.2782 0.2362 0.2431
Proposed 0.4897 0.8090 0.2572 0.1934 0.9358 0.3492 0.3005 0.3033

4.2.3. Infrared-Visible Image Fusion

Infrared-visible image fusion is often used in low-light environment for object de-
tection [57]. Due to the sensitivity of camera sensors, photos taken by visible sensors are
noisy in low-light environment. Infrared sensors also produce noisy images when the
temperature of the infrared sensor rises in the imaging process. Therefore, simultaneous
image denoising and fusion have practical significance in infrared-visible image processing.
In consequence, simultaneous denoising and fusion technique is necessary for integrating
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the information of infrared and visible images. Eight infrared-visible image pairs are used
in the comparisons of infrared-visible image simultaneous denoising and fusion. The noise
levels of infrared-visible image pairs are set to σ = 0, 10, 20 and 50 respectively.

The selected experimental results -1: The fusion results of representative infrared-
visible image pairs are shown in Figure 8. The first two rows of Figure 8 are the source
infrared-visible image pairs, and the remaining three rows are the processed images. Row
3–5 are the processed images by using FDESD, FDS and the proposed method respectively.
From column 1–4, the original and processed image with noise levels of σ = 0, 10, 20 and
50 are presented respectively.

When the noise level is set to σ = 0, the background is clear in the fusion results of
FDESD and FDS. However, when the noise level rises to σ = 10, 20 and 50, the backgrounds
of FDESD and FDS become unsharp. Besides that, the contrast of the enlarged object
’walking man’ is low in all the integrated images of FDESD and FDS. The noise is eliminated
in all fused images by the proposed method. Moreover, the object ’walking man’ is clear
and sharp in the fused images of the proposed method. Hence, the proposed method
achieves the best simultaneous denoising and fusion effect among the three methods.

Table 7 presents the average quantitative comparisons of infrared-visible image simul-
taneous denoising and fusion results. It is obvious that the proposed method shows the
best performance in all objective evaluation metrics.

Figure 8. Simultaneous denoising and fusion results of FDESD, FDS and the proposed method for
noisy infrared-visible image pairs. (a–h) are source infrared-visible images with additional noise
σ = 0, 10, 20, 50 respectively; (i–t) are simultaneous denoising and fusion results of source images
with additional noise σ = 0, 10, 20, 50 by FDESD, FDS and proposed method respectively.
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Table 7. Objective evaluations of simultaneous infrared-visible image denoising and fusion -1.

σ = 0 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.2891 0.8040 0.5818 0.3201 0.6301 0.6924 0.4884 0.2814
FDS 0.2989 0.8043 0.6229 0.4378 0.6638 0.7774 0.5425 0.3122
Proposed 0.3582 0.8059 0.6543 0.5000 0.8173 0.8785 0.5434 0.3975

σ = 10 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.2949 0.8041 0.3473 0.1734 0.6460 0.4862 0.4878 0.2870
FDS 0.2948 0.8041 0.4259 0.2773 0.6531 0.5748 0.5085 0.3011
Proposed 0.3185 0.8048 0.4514 0.3049 0.7232 0.6580 0.5111 0.3727

σ = 20 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.2808 0.8031 0.3204 0.1188 0.6253 0.4873 0.4561 0.2835
FDS 0.2928 0.8031 0.3314 0.2081 0.6455 0.4660 0.4624 0.2706
Proposed 0.3217 0.8050 0.3862 0.2355 0.7309 0.5704 0.4641 0.3429

σ = 50 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.2114 0.8031 0.2259 0.0534 0.4697 0.3914 0.4380 0.2038
FDS 0.2606 0.8035 0.1894 0.1079 0.5614 0.3176 0.3946 0.2065
Proposed 0.2933 0.8041 0.2378 0.1324 0.6522 0.3856 0.3771 0.2356

The selected experimental results -2: The fusion results of representative infrared-
visible image pairs are shown in Figure 9. The first two rows of Figure 9 are the source
infrared-visible image pairs, and the remaining three rows are the processed images. Row
3–5 are the processed images by using FDESD, FDS and the proposed method respectively.
From column 1–4, the original and processed image with noise levels of σ = 0, 10, 20 and
50 are presented respectively.

When the noise level is set to σ = 0, the background is clear in the fusion results of
FDESD and FDS. However, when the noise level rises to σ = 10, 20 and 50, the backgrounds
of FDESD and FDS become unsharp. Besides that, the contrast of the enlarged object is
low in all the integrated images of FDESD and FDS. The proposed method successfully
eliminate noise in all fused images. Moreover, the enlarged object is clear and sharp in the
image fused by the proposed method. According to the results of eight objective evaluation
indicators shown in Table 8, the proposed method achieves the best simultaneous denoising
and fusion effect among the three methods.

Table 8. Objective evaluations of simultaneous infrared-visible image denoising and fusion -2.

σ = 0 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.2906 0.8043 0.5843 0.3236 0.6341 0.6952 0.4897 0.2846
FDS 0.3006 0.8049 0.6251 0.4398 0.6658 0.7793 0.5449 0.3141
Proposed 0.3593 0.8063 0.6561 0.5011 0.8189 0.8793 0.5452 0.3996

σ = 10 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.2961 0.8051 0.3488 0.1749 0.6473 0.4881 0.4890 0.2887
FDS 0.2964 0.8059 0.4268 0.2782 0.6562 0.5767 0.5097 0.3038
Proposed 0.3194 0.8062 0.4539 0.3077 0.7261 0.6595 0.5133 0.3752

σ = 20 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.2821 0.8052 0.3228 0.1201 0.6275 0.4888 0.4579 0.2851
FDS 0.2942 0.8050 0.3336 0.2101 0.6473 0.4687 0.4653 0.2728
Proposed 0.3234 0.8068 0.3879 0.2371 0.7327 0.5721 0.4663 0.3447

σ = 50 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.2135 0.8049 0.2280 0.0553 0.4707 0.3946 0.4399 0.2060
FDS 0.2631 0.8051 0.1910 0.1097 0.5633 0.3196 0.3971 0.2082
Proposed 0.2946 0.8056 0.2391 0.1340 0.6537 0.3872 0.3787 0.2369
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Figure 9. Simultaneous denoising and fusion results of FDESD, FDS and the proposed method for
noisy infrared-visible image pairs -2. (a–h) are source infrared-visible images with additional noise
σ = 0, 10, 20, 50 respectively; (i–t) are simultaneous denoising and fusion results of source images
with additional noise σ = 0, 10, 20, 50 by FDESD, FDS and proposed method respectively.

The average experimental results: The average objective evaluation results of simulta-
neous infrared-visible image denoising and fusion are shown in Table 9. The corresponding
results are consistent with the above demonstrated results of two groups of simultaneous
infrared-visible image denoising and fusion experiments. The proposed method has the
best overall performance.

Table 9. Average objective evaluations of simultaneous infrared-visible image denoising and fusion.

σ = 0 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.2903 0.8041 0.5840 0.3234 0.6340 0.6959 0.4892 0.2842
FDS 0.3003 0.8045 0.6247 0.4395 0.6654 0.7790 0.5445 0.3137
Proposed 0.3590 0.8059 0.6558 0.5008 0.8185 0.8790 0.5448 0.3991

σ = 10 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.2957 0.8048 0.3483 0.1745 0.6471 0.4877 0.4886 0.2884
FDS 0.2961 0.8054 0.4266 0.2777 0.6557 0.5763 0.5092 0.3034
Proposed 0.3191 0.8057 0.4535 0.3074 0.7256 0.6591 0.5130 0.3748

σ = 20 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.2818 0.8047 0.3223 0.1197 0.6272 0.4885 0.4577 0.2848
FDS 0.2940 0.8046 0.3332 0.2096 0.6470 0.4681 0.4650 0.2722
Proposed 0.3231 0.8062 0.3877 0.2366 0.7323 0.5717 0.4659 0.3444

σ = 50 QTE QNCIE QAB/F QP MI QY QCB VIFF

FDESD 0.2131 0.8043 0.2275 0.0548 0.4702 0.3943 0.4395 0.2057
FDS 0.2627 0.8047 0.1905 0.1093 0.5630 0.3192 0.3966 0.2078
Proposed 0.2942 0.8053 0.2386 0.1335 0.6533 0.3868 0.3785 0.235
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4.2.4. Comparison of Computational Efficiency

The average processing time is used to compare the computational efficiency of all
three simultaneous denoising and fusion methods. All the tests are implemented in the
same platform as described in the experiment setup. In the comparative experiments, the
source codes of FDESD [39] and FDS [40] are provided by the original authors. The average
processing times of different methods are presented in Table 10.

Table 10. The Average Computational Efficiency Comparison of Noisy Image Fusion.

Resolution 256 × 256 240 × 320

FDESD 36.82 s 46.53 s
FDS 20.71 s 24.56 s
Proposed 21.55 s 26.71 s

These results confirm that FDS method is the most efficient method, and the proposed
method is much more efficient than FDESD. Although FDS is more efficient than the
proposed method, the average processing time of the proposed method is still compara-
ble. FDS uses the original sparse-representation model to eliminate image noise which
improves the efficiency of FDS. However, the denoising performance of the original sparse-
representation model is not good. Considering the SR model in processing effect and
computation efficiency, the proposed method gets the best performance in noisy image
fusion among all three methods.

4.3. The Proposed Method Compares with Conventional Image Fusion and Denoising Method

In further testing, the proposed method is compared with the conventional image
fusion and denoising method in noisy image fusion. The separated denoising and fusion
method (SDF) consisted of a state-of-the-art SR-based image denoising method [58] and
one of the best SR-based fusion frameworks [29] are implemented in twenty comparative
experiments of each image type. The patch size is set to 8× 8, and the overlap is set to 6 in
all the experiments.

4.3.1. Comparison of Processing Results

In comparative experiments, multi-focus, multi-modality medical and infrared-visible
image pairs are employed. Noise is added to all source images for testing the processing
performance. Noise levels of added noise are 0, 10, 20, and 50 respectively. The source
images with noise level 0 are directly fused by conventional image fusion method in the
comparative experiment. Representative fusion results are shown in Figure 10. Row 1 to
4 are the fused images with noise level from 0 to 50 respectively. The processing results
of SDF is presented in image (a) to (l). Image (a)–(d), (e)–(h) and (i)–(l) are the processed
results of multi-focus, multi-modality medical and infrared-visible image pairs respectively.
(m)–(x) are the processed images by the proposed simultaneous image denoising and fusion
method. Image (m) to (p), (q) to (t) and (u) to (x) are the processed results of multi-focus,
multi-modality medical, and infrared-visible image pairs respectively.

According to the processed results shown in Figure 10, the proposed simultaneous
image denoising and fusion method shows the best performance in brightness and contrast
of the processed image. Parts of the processed images by SDF show the best performance
in detailed information. However, since the denoising process affects the completeness of
detailed information of source images, some detailed information of processed images is
incomplete and unclear.
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Figure 10. Comparison of separate and simultaneous image denoising and fusion results. (a–d) and
(m–p) are denoising and fusion results of multi-focus image with additional noise σ = 0, 10, 20, 50
by SDF and proposed method respectively. (e–h) and (q–t) are denoising and fusion results of
malti-modality medical image with additional noise σ = 0, 10, 20, 50 by SDF and proposed method
respectively. (i–l) and (u–x) are denoising and fusion results of infrared-visible image with additional
noise σ = 0, 10, 20, 50 by SDF and proposed method respectively.

To evaluate the separate and simultaneous denoising and fusion performance, ob-
jective metrics are conducted. The results of multi-focus, multi-modality medical, and
infrared-visible image denoising and fusion are shown in Tables 11–13 respectively. As
shown in Table 11, the proposed method obtains better noisy multi-focus image denoising
and fusion results in most of metrics. Table 12 also demonstrates the proposed method
obtains a better score than the comparison method in most objective metrics. In noisy
infrared-visible image denoising and fusion, SDF and fusion method obtain similar scores,
when the noise level is low. Some metrics of separate processing results are even higher
than the proposed method. However, as the noise level rises to 20 or higher, the pro-
posed simultaneous processing method achieves obviously better performance in most of
objective metrics.
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Table 11. Objective evaluations of separate and simultaneous noisy-multi-focus image denoising and fusion.

σ = 0 QTE QNCIE QAB/F QP MI QY QCB VIFF

SDF 0.7158 0.8189 0.6975 0.8337 1.9508 0.8560 0.7154 0.6665
proposed 0.9163 0.8251 0.7305 0.8499 2.3450 0.9657 0.7569 0.6962

σ = 10 QTE QNCIE QAB/F QP MI QY QCB VIFF

SDF 0.6650 0.8171 0.4871 0.6259 1.7849 0.7047 0.6647 0.6326
proposed 0.6527 0.8156 0.5857 0.6992 1.8871 0.7825 0.6804 0.6450

σ = 20 QTE QNCIE QAB/F QP MI QY QCB VIFF

SDF 0.6045 0.8134 0.3771 0.5575 1.6920 0.6060 0.6361 0.5696
proposed 0.6102 0.8142 0.4873 0.5538 1.5672 0.6933 0.6371 0.5777

σ = 50 QTE QNCIE QAB/F QP MI QY QCB VIFF

SDF 0.5183 0.8150 0.2662 0.3792 1.2276 0.4690 0.4570 0.4154
proposed 0.5472 0.8122 0.3014 0.3055 1.3852 0.5030 0.5276 0.4340

Table 12. Objective evaluations of separate and simultaneous noisy-multi-modality medical image
denoising and fusion.

σ = 0 QTE QNCIE QAB/F QP MI QY QCB VIFF

SDF 0.6438 0.8092 0.4780 0.4423 1.2116 0.7236 0.5301 0.4440
proposed 0.6537 0.8099 0.6583 0.5371 1.2223 0.7150 0.4698 0.4362

σ = 10 QTE QNCIE QAB/F QP MI QY QCB VIFF

SDF 0.4505 0.8055 0.2155 0.2314 0.7749 0.3289 0.4240 0.2797
proposed 0.5600 0.8077 0.4082 0.3938 1.0551 0.5408 0.3778 0.3729

σ = 20 QTE QNCIE QAB/F QP MI QY QCB VIFF

SDF 0.4530 0.8055 0.1845 0.1833 0.7530 0.3245 0.3710 0.2725
proposed 0.4871 0.8067 0.3221 0.2689 0.9477 0.4269 0.3594 0.3904

σ = 50 QTE QNCIE QAB/F QP MI QY QCB VIFF

SDF 0.4443 0.8055 0.1348 0.1240 0.7440 0.2724 0.3188 0.2510
proposed 0.4875 0.8064 0.2554 0.1903 0.9326 0.3472 0.2994 0.3013

Table 13. Objective evaluations of separate and simultaneous noisy-infrared-visible image denoising
and fusion.

σ = 0 QTE QNCIE QAB/F QP MI QY QCB VIFF

SDF 0.3867 0.8070 0.6435 0.5897 0.7985 0.7908 0.4808 0.3042
proposed 0.3582 0.8059 0.6543 0.5000 0.8173 0.8785 0.5434 0.3975

σ = 10 QTE QNCIE QAB/F QP MI QY QCB VIFF

SDF 0.3383 0.8064 0.4510 0.2406 0.7029 0.6174 0.5279 0.2820
proposed 0.3185 0.8048 0.4514 0.3049 0.7232 0.6580 0.5111 0.3727

σ = 20 QTE QNCIE QAB/F QP MI QY QCB VIFF

SDF 0.3095 0.8051 0.3602 0.1283 0.6554 0.5401 0.4515 0.2540
proposed 0.3217 0.8050 0.3862 0.2355 0.7309 0.5704 0.4641 0.3429

σ = 50 QTE QNCIE QAB/F QP MI QY QCB VIFF

SDF 0.2744 0.8054 0.2235 0.0909 0.6228 0.3038 0.3233 0.1893
proposed 0.2933 0.8041 0.2378 0.1324 0.6522 0.3856 0.3771 0.2356

Tables 14–16 compare the average objective evaluation results of each image type obtaind
by SDF and the proposed method. The corresponding results are consistent with the results
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of the above demonstrated images. Compared with conventional image fusion and denoising
method SDF, the proposed method has better performance in most of conditions.

Table 14. Average objective evaluations of separate and simultaneous noisy-multi-focus image
denoising and fusion.

σ = 0 QTE QNCIE QAB/F QP MI QY QCB VIFF

SDF 0.7165 0.8194 0.6979 0.8343 1.9513 0.8564 0.7159 0.6668
proposed 0.9166 0.8255 0.7308 0.8503 2.3454 0.9662 0.7574 0.6968

σ = 10 QTE QNCIE QAB/F QP MI QY QCB VIFF

SDF 0.6655 0.8174 0.4876 0.6265 1.7855 0.7050 0.6653 0.6330
proposed 0.6532 0.8160 0.5863 0.6999 1.8877 0.7829 0.6808 0.6455

σ = 20 QTE QNCIE QAB/F QP MI QY QCB VIFF

SDF 0.6048 0.8138 0.3776 0.5579 1.6924 0.6063 0.6367 0.5699
proposed 0.6106 0.8149 0.4878 0.5542 1.5677 0.6938 0.6375 0.5782

σ = 50 QTE QNCIE QAB/F QP MI QY QCB VIFF

SDF 0.5188 0.8155 0.2668 0.3798 1.2281 0.4696 0.4575 0.4159
proposed 0.5477 0.8125 0.3018 0.3059 1.3857 0.5035 0.5280 0.4346

Table 15. Average objective evaluations of separate and simultaneous noisy-multi-modality medical
image denoising and fusion.

σ = 0 QTE QNCIE QAB/F QP MI QY QCB VIFF

SDF 0.6443 0.8098 0.4787 0.4428 1.2120 0.7242 0.5307 0.4448
proposed 0.6546 0.8105 0.6589 0.5378 1.2227 0.7155 0.4704 0.4370

σ = 10 QTE QNCIE QAB/F QP MI QY QCB VIFF

SDF 0.4511 0.8062 0.2164 0.2319 0.7753 0.3294 0.4248 0.2804
proposed 0.5606 0.8083 0.4087 0.3945 1.0558 0.5415 0.3784 0.3735

σ = 20 QTE QNCIE QAB/F QP MI QY QCB VIFF

SDF 0.4534 0.8061 0.1852 0.1838 0.7536 0.3249 0.3716 0.2731
proposed 0.4876 0.8072 0.3226 0.2696 0.9484 0.4275 0.3599 0.3911

σ = 50 QTE QNCIE QAB/F QP MI QY QCB VIFF

SDF 0.4448 0.8062 0.1354 0.1248 0.7447 0.2729 0.3193 0.2517
proposed 0.4879 0.8068 0.2560 0.1908 0.9333 0.3478 0.3001 0.3019

Table 16. Average objective evaluations of separate and simultaneous noisy-infrared-visible image
denoising and fusion.

σ = 0 QTE QNCIE QAB/F QP MI QY QCB VIFF

SDF 0.3873 0.8076 0.6440 0.5905 0.7992 0.7914 0.4813 0.3048
proposed 0.3590 0.8064 0.6547 0.5006 0.8176 0.8791 0.5439 0.3978

σ = 10 QTE QNCIE QAB/F QP MI QY QCB VIFF

SDF 0.3389 0.8067 0.4515 0.2412 0.7036 0.6179 0.5286 0.2827
proposed 0.3189 0.8054 0.4519 0.3056 0.7239 0.6586 0.5119 0.3735

σ = 20 QTE QNCIE QAB/F QP MI QY QCB VIFF

SDF 0.3102 0.8058 0.3608 0.1289 0.6562 0.5409 0.4522 0.2546
proposed 0.3223 0.8057 0.3868 0.2362 0.7317 0.5710 0.4648 0.3434

σ = 50 QTE QNCIE QAB/F QP MI QY QCB VIFF

SDF 0.2750 0.8059 0.2241 0.0916 0.6234 0.3045 0.3238 0.1899
proposed 0.2938 0.8046 0.2383 0.1328 0.6529 0.3860 0.3778 0.2363
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4.3.2. Comparison of Computational Efficiency

Simultaneous image denoising and fusion can decrease the total processing time of
noisy image fusion. The average processing times of separate and simultaneous image
denoising and fusion are shown in Table 17. The processing times of SDF image denoising
and fusion are demonstrated respectively. Since the proposed method processes image
denoising and fusion simultaneously, it achieves the minimum total processing time as
shown in Table 17.

Table 17. Comparison of Average Computational Efficiency.

Noisy Image Fusion Computational Efficiency of 256× 256 Images

Processing Time of SDF
Total Processing Time of Proposed MethodImage Denoising and Fusion

Denoising Fusion Total

41.77 s 28.61 s 70.38 s 21.73 s

Noisy Image Fusion Computational Efficiency of 320× 240 Images

Processing Time of SDF
Total Processing Time of Proposed MethodImage Denoising and Fusion

Denoising Fusion Total

48.72 s 34.69 s 83.41 s 26.83 s

The total computation cost of the proposed method is much lower than SDF. On
average, the proposed method expends 21.73 s to process an image pair with the size
of 256 × 256, that is more than 3 times faster than the competitor. For image pairs of
320 × 240, the proposed method also spends 3 times less computation time than SDF.
Moreover, Table 17 shows the computation cost of proposed method is similar to the
computation cost of the conventional image denoising or image fusion. In conclusion,
compared with SDF, the proposed shows better performance in both processed image
quality and computation cost.

5. Conclusions and Future Work

In this paper, a novel framework of image simultaneous denoising and fusion with
a novel SR model is proposed. Noisy source images are decomposed into cartoon and
texture components for separating image noise and detailed information to the texture
components. To fuse the noisy texture components, a GSM-based image patch denoising
and sparse coding model is presented for coding patches of noisy components to denoised
sparse coefficients. Principle components of source noisy images are extracted to construct
a dictionary, that is used to sparse code the texture components. Denoised and coded
coefficients are fused by the l1 value of hidden scalar multiplier θ. Since cartoon components
are noise free, a conventional spatial-domain based weighted average rule is implemented.
The weighted average fusion rule can greatly preserve the structure information, that
is contained in cartoon components of source images. Integrated cartoon and texture
components are summated to a denoised and fused image. The fusion results of the
proposed method in various experiments is promising, when compared with other SR-
based simultaneous denoising and fusion methods. Additionally, the computational
efficiency of the proposed image fusion framework is comparable to SR-based simultaneous
denoising and fusion methods with similar functions. Compared with image processed
by SR-based denoising and fusing method separately, the proposed method also shows
superior performance in both image quality and computation cost.

Although the proposed method gets better or comparable performance in computa-
tion costs compared with existing SR-based methods, the proposed method is still time
consuming. Since there are plentiful matrix computations in sparse coding and dictionary
learning, the processing time of SR-based method is a little bit long. The employment of a
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group-based sparse model for improving dictionary construction and parallel processing
of both sparse representation and fusion process is a future research topic. Additionally,
the proposed method will be further extended to the simultaneous denoising and fusion of
colorful or multi-spectral images. The proposed method will be modified to process each
image layer first. Then, the processed each image layer is stacked to obtain the denoised
fusion result.
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Appendix A

Algorithm A1 Cartoon Components Denoising and Fusion

Input:
n noisy multi-modality images x1, x2, ..., xn, the maximum iterative number k and j for
outer loop and inner loop, respectively.

Output:
Fused image x f

1: Outer Loop
2: for i1 = 1 to k do do
3: Image-to-patch transformation
4: Transform each source image to z image patches.
5: Obtain dictionary from image patches of all source images using PCA method.
6: for l = 1 to z do
7: Update the reconstructed image patches xt

l , t ∈ (1, 2, ...n), which represent l-th
image patch of xt for fixed Bt

l and θt
l using Equation (8)

8: end for
9: Inner Loop

10: for i2 = 1 to j do
11: for l = 1 to z do
12: Update θt

l for fixed Bt
l using Equation (11);

13: Update Bt
l for fixed θt

l using Equation (13).
14: end for
15: end for
16: end for
17: Get fused hidden scalar multipliers θ

f
l according to Max-L1 fusion rule as follows:

18: θ
f
l = θt

l , i f
∥∥θt

l

∥∥
1 = max(

∥∥θ1
l

∥∥
1,
∥∥θ2

l

∥∥
1, ...

∥∥θn
l

∥∥
1).

19: The corresponding B f
l of lth image patch, B f

l = Bt
l and the corresponding Λ f

l = Λt
l .

20: When θ
f
l and B f

l of l-th image patch are obtained, the fused image patch can be
reconstructed by the following equation:

21: x f
l = DΛ f

l B f
l , where Λ f

l is a diagonal matrix of θ
f
l .
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