

Computers 2021, 10, 125. https://doi.org/10.3390/computers10100125 www.mdpi.com/journal/computers

Article

Invariant-Based Safety Assessment of FPGA Projects:
Conception and Technique
Vyacheslav Kharchenko, Oleg Illiashenko * and Vladimir Sklyar

Department of Computer Systems, Networks and Cybersecurity, National Aerospace University “KhAI”, 17,
Chkalov Str., 61070 Kharkiv, Ukraine; v.kharchenko@csn.khai.edu (V.K.); v.sklyar@csn.khai.edu (V.S.)
* Correspondence: o.illiashenko@khai.edu

Abstract: This paper describes a proposed method and technology of safety assessment of projects
based on field programmable gate arrays (FPGA). Safety assessment is based on special invariants,
e.g., properties which remain unchanged when a specified transformation is applied. A classifica-
tion and examples of FPGA project invariants are provided. In the paper, two types of invariants
are described. The first type of invariants used for such assessment are those which are versatile
since they reflect the unchanged properties of FPGA projects, hardware description languages, etc.
These invariants can be replenished as experience gained in project implementation accumulates.
The second type of invariants is formed based on an analysis of the specifics of a particular FPGA
project and reflects the features of the tasks to be solved, the algorithms that are implemented, the
hardware FPGA chips used, and the computer-aided design tools, etc. The paper contains a descrip-
tion of the overall conception and particular stages of FPGA projects invariant-based safety assess-
ment. As examples for solving some tasks (using of invariants and defect injections), the paper con-
tains several algorithms written in the VHSIC hardware description language (VHDL). The paper
summarizes the results obtained during several years of practical and theoretical research. It can be
of practical use for engineers and researchers in the field of quality, reliability, and security of em-
bedded systems, software and information management systems for critical and business applica-
tions.

Keywords: FPGA; project; instrumentation and control systems; design methods and tools; invari-
ant; safety-critical systems; safety assessment

1. Introduction
Ensuring the functional safety and reliability of instrumentation and control systems

(I&Cs) is highly dependent on the quality of the software (SW) and programmable com-
ponents. Independent verification and validation (IV&V) is a key test methodology for
critical software and programmable logic-based systems (e.g., FPGA) [1–3]. As an exam-
ple, IV&V is performed as a mandatory (regulatory) requirement for the safety-important
ICSs used in nuclear power plants (NPP) (regulations are included in IAEA standards),
space systems (such regulations are included in ECSS, ESA standards) and other types of
critical systems [4,5]. For critical domains like the energy sector (already mentioned NPPs)
the operating reliability assessment of FPGA-based I&Cs is always one of the most im-
portant activities [6].

Evidence-based measurable implementation of the principle of technological diver-
sity is the basic concept in achieving the required reliability of results and cost-effective-
ness in the IV&V. Evidence consists of providing trustworthy quantitative assessments
during the verification process of software (SW) or FPGA-based design.

Citation: Kharchenko, V.;

Illiashenko, O.; Sklyar, V.

Invariant-Based Safety Assessment

of FPGA Projects: Conception and

Technique. Computers 2021, 10, 125.

https://doi.org/10.3390/

computers10100125

Academic Editor: George K. Adam

Received: 5 September 2021

Accepted: 6 October 2021

Published: 10 October 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and institu-

tional affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Computers 2021, 10, 125 2 of 19

Many publications related to IV&V are based on formal methods, which use algebraic
and special notations like B, Z, Event-B, VDM, and temporal logic as well as appropriate
methods for verifying the correctness of the description and fulfillment of requirements
within the relevant formal systems [7–10]. Some cases of their use in industrial systems
have been successful [1,9].

Recently, methods based on the validation of models built for SW or systems in gen-
eral, in particular the verification of the fulfillment of a set of invariants—certain state-
ments, analytical or logical relationships that are fulfilled under any circumstances [11,12],
have become widespread. Examples of formal verification methodologies for FPGA-based
systems are presented in [13,14]. In [15] FPGA is used as a tool to prove that the system
can meet the real-time requirement through an obstacle avoidance demonstration in a
changing environment. The approach presented here can be applied to different systems’
dynamics, and potentially leveraged for higher dimension systems.

The papers [16,17] contain a description of the functional verification methodology
for highly parametrizable, continuously operating FPGA designs in such safety-critical
domains as a radiation monitoring system at CERN. The papers [18–20] describe methods
of model-checking-based verification of FPGA projects for NPP I&Cs. In [21] authors pro-
pose a formal verification methodology for checking both functional and timing require-
ments of real-time digital controllers targeted at FPGA as well.

The authors of [22,23] note that the search for vulnerabilities and faults and formal
verification are integral stages of design, especially for the model method for developing
FPGA projects, determining their compliance with the requirements. Requirements can
be defined in UML [24], or text form, while the FPGA design can be created in VHDL [25]
or System Verilog [26] and then embodied in binary code. Systems and tools for formal
verification (such as VC Formal [27], Vivado Verification [28], JasperGold [29], and others)
have been developed by many industrial companies and implemented in the process of
creating and certificating FPGA platforms and platform-based decisions.

The authors of [30] and [31] develop an algebraic approach, insertion models as gen-
eralizations of algebraic modeling for sets of agents and environments, insertional seman-
tics of VHDL language, represented by behavioral algebra [32,33] and can be implemented
using algebraic virtual machines. [34]. The method of model verification and abstract in-
terpretation is investigated in [35]. In [36] heuristic methods are used to identify potential
places in a race, a review of which is given in [37]. For parallel constructions, it is necessary
to perform appropriate verification for the permutability property [38].

There are specific problems for the verification of FPGA projects for safety-critical
systems, such as reactor trip systems, based on the application of diversity [39–41] and
defense-in-depth [39,42] (the so-called D3 principle). These problems are caused by re-
quirements to detect and tolerate design faults (joint and individual) of different versions
[43].

The main results of the analysis can be summarized in three points. Firstly, there are
severe restrictions on the use of the analyzed formal and semi-formal methods, due to
their great complexity and the inability to use automation tools to generate descriptions
of requirements (in understandable notation) as well as the complexity of their implemen-
tation. Secondly, the application of these methods is limited by the fact that engineers
must be skilled in terms of knowledge of mathematical logic methods to provide a formal
description and make a formal check. Thirdly, the inability to find models, multiple mod-
els, or invariants that provide the necessary completeness and reliability of the estimation.
Additionally, for some types of systems, even the use of formal methods requires inde-
pendent verification and validation.

Due to the task of invariant-based of assessment safety in FPGA projects the follow-
ing aspects are still challenging: the determination of the main stages of evaluating FPGA
projects using invariants, development of the features of invariants for FPGA projects,
defining the universal invariants and their means of calibration for VHDL. The attributes
of the quality model of invariants for FPGA designs as a measure of invariants need to be

Computers 2021, 10, 125 3 of 19

determined and the procedure for formation and selection of a set of invariants for evalu-
ating the FPGA project needs to be provided.

Structurally, the paper consists of the following sections. Section 2 is devoted to de-
scribing the conception and stages of invariant-based assessment of FPGA projects, in-
cluding the development of a set of invariants and their calibration. General requirements
and attributes for invariants are discussed in Section 3. Classification and different types
of invariants are analyzed in Section 4. Principles and stages of FPGA project invariant
development are described in Section 5. A case study of safety invariant-based assessment
of the FPGA project is presented in Section 6. Section 7 concludes the research results and
discusses future steps.

2. Conception and Stages of Invariant-Oriented Assessment of FPGA Projects
2.1. Overall Tasks and Conception Invariant-Oriented Assessment

Safety assessment of FPGA projects following the general principles of invariant-ori-
ented assessment includes six basic interrelated tasks and stages of their solution:

1. analysis of technical documentation and development of a model of the object under
assessment (SW and technical documentation) in the FPGA project;

2. development of the regulatory profile (set of requirements) of the FPGA-based project
based on the purpose and type of system where FPGA is used;

3. extraction (development) of algorithmic, software, and other models, which is per-
formed during the analysis of FPGA project documentation;

4. specification and analysis of a set of invariants;
5. invariant calibration;
6. determination of FPGA project assessment reliability and completeness.

The overall scheme of an invariant-oriented assessment of FPGA projects following
these tasks and steps is presented in Figure 1. The brief description of each of the six stages
according to the scheme is as follows: problem statement, concept, solution method, re-
sults, requirements for tool development. Several types of lines are used depicting differ-
ent types of interrelations between six tasks: main connections are marked with a normal
line; calibration links are marked with a dashed line and links for nonfunctional require-
ments are marked with a dash-dotted line.

This section does not consider aspects of evaluating microprocessor-based projects.
However, the structure and correlation of the tasks presented in Figure 1 go beyond the
evaluation of FPGA projects.

Computers 2021, 10, 125 4 of 19

1. Technical documentation (TD)
analysis

(object expertise model formation)

2. Regulatory profile of the project
formation

3. Extraction of algorithmic, software
and other models

4. Specification and analysis of
invariants set

5. Invariants calibration

6. Project evaluation and
determination of the evaluation

completeness and reliability

Data to form the
reference profile

Al
go

rit
hm

s s
el

ec
tio

n,
 co

de

Re
su

lts
 o

f T
D

an
al

ys
is

Invariants
specification

No
n-

fu
nc

tio
na

l i
nv

ar
ia

nt
s

Profile data

Special analysis, transformation

Parsing

Facet and hierarchical
models presentation

 Check-list presentation

Checklist representation

Versatile
invariants
calibration

results

Specific
invariants
calibration

results

Results of invariant-based safety
assessment of FPGA project

Figure 1. Overall scheme of invariant-oriented evaluation of FPGA projects and relationships between the stages.

Brief description of all stages will be given below in the subsections 2.2–2.7 using the
following structure:
• problem statement and description of goal of the current stage;
• description of the solution and implementation of the obtained results;
• input and output data for the particular stage;
• requirements for tools development.

2.2. Analysis of Technical Documentation and Developing the Model of the FPGA Project
Assessment

Problem statement: to analyze the technical documentation and to develop an assess-
ment object model of the FPGA projects.

Concept: presentation of the expertise object model in the form of a checklist of doc-
uments that should be considered during the evaluation.

Initial data: a set of documentation for the FPGA project.

Computers 2021, 10, 125 5 of 19

Solution: requirements of regulatory documents containing the structure of the tech-
nical documentation of the project systems on complex electronic components (i.e., FPGA)
analysis and experience in the development and verification of FPGA projects analysis are
to be provided.

Results: a model of the FPGA project (e.g., documentation).
Tool development requirements: this task can be implemented in the form of a tool

for presenting the project documentation.

2.3. Formation of the Regulatory Profile of the FPGA Project Based on the Purpose and Type of
the System

Problem statement: to develop a reference regulatory profile for the FPGA project to
compare the reference and real models.

Concept: presentation of the normative profile of the project in the form of a param-
eterizable facet-hierarchical model and/or checklist.

Initial data: results of solving the first stage (Figure 1) as well as a replenishing pro-
file-forming base of standards.

Solution method: regulatory documents analysis with development and configura-
tion of the profile-forming base, the formation of a project-oriented system profile con-
venient for comparison.

Results: a detailed structure of the reference regulatory profile of the FPGA project
and/or checklist for checking the real profile should be presented. The results of solving
the first stage (Figure 1) can be part of a general checklist. The results of the stage are used
in the sixth stage (Figure 1).

Tool development requirements: this task can be implemented in the form of a tool
for generating a normative project profile, which provides the ability to compare data ob-
tained in this task and the first stage (Figure 1).

2.4. Extraction of Algorithmic, Software and Other Models, Carried out According to the Design
Documentation Analysis Results

Problem statement: define a list of extracted software, algorithmic, and other (auto-
matic or set-theoretic) models for FPGA projects similar to software or other formal struc-
tures suitable for further software processing.

Concept: software-implemented functions of FPGA project model representation, as
well as other project components for invariant-oriented analysis and evaluation.

Input data: results of the first stage (Figure 1), as well as a replenishing set of models
for FPGA projects.

The solution method: structure and technical content review of a typical FPGA de-
sign documentation and the technologies for its development and verification to identify
extractable software models and specify various invariants.

Results: The structure of technical documentation for FPGA project analysis should
be presented and extracted from software models (i.e., control algorithm models in lan-
guages such as VHDL, PID controllers, and soft processors (IP cores)), as well as other
models for checking invariants should be defined.

The results of this step are used in the fourth stage (Figure 1). Additionally, the results
of the step can be used in the fifth stage to refine the defect profile.

Tool development requirements: this task can be implemented either in a non-auto-
matic mode or in the form of a tool that implements the function of storing the extracted
models.

2.5. Specification and Analysis of Set of Invariants
Problem statement: define a specification of invariants in the form of a list for ex-

tractable software and other models for FPGA projects.

Computers 2021, 10, 125 6 of 19

Concept: invariants list definition is performed considering the extracted software,
algorithmic, and other models for FPGA project specifics and their presentation features
at different stages of project development and operation lifecycle after implementation in
the chip.

Initial data: results of the third stage (Figure 1) as well as an updated set of invariants
for FPGA projects.

Solution method: extractable software models for FPGA projects and features of au-
tomatic models of implemented projects analysis, including state graphs, time diagrams,
etc. in order to identify sets of versatile and specific invariants.

Results: a preliminary grouped list of invariants should be presented (control algo-
rithm models in languages such as VHDL, PID controllers, soft processors (IP cores)),
which can be specified for further work. The results of this stage are used in the fifth and
sixth stages (Figure 1).

Tool development requirements: this task can be implemented either in a non-auto-
matic mode or in the form of an information (or information-analytical) type tool that
implements the function of generating and storing invariants for extracted models’
groups.

2.6. Invariant Calibration
Problem statement: the development of procedures for assessing the sensitivity of

invariants to various types of defects, i.e., determination of a binary value (0 or 1) for in-
variance or invariant distortion in the presence of appropriate FPGA design defects.

Concept: calibration of invariants is performed based on injection-oriented proce-
dures and reasonable profiles of defect injection.

Initial data: the previous tasks results, as well as replenished defect profiles to in-
crease calibration accuracy.

The solution method: using drop injection of defects of various types and fixing the
invariants’ verification results to assess their sensitivity. Calibration of a part of the invar-
iants (the so-called versatile invariants) should be performed in advance. The calibration
of specific invariants of the evaluated project can be performed during the verification
process. The defect profile needs to be developed considering the FPGA project features.

Results: sensitivity indicators of each invariant should be determined. These results
can be represented by the “invariant-defect” matrix of Boolean type; in case the sensitivity
metric is not binary but is determined in the range from 0 to 1. The results of the stage are
used in the sixth task.

Tool development requirements: it can be implemented as an analytical-type tool that
performs the following set of operations: defect selection from versatile or project-oriented
invariant profiles, injecting operational defects at a selected point of the program (project),
development of test sequences, checking the invariant analysis results, resulting in sensi-
tivity matrix presentation.

2.7. Project and Determination of the Trustworthiness Assessment
Problem statement: to develop a procedure for comparing the normative (reference)

profile and the project profile, as well as a general assessment of the FPGA project, con-
sidering the results of invariant verification with an indication of its reliability.

Concept: reliability assessment of FPGA project safety assessment based on the in-
variants verification analysis results, including the reference and real project profile com-
parison.

Initial data: results of the third, fifth, and sixth stages (Figure 1).
The solution method: processing the obtained invariants checking result, considering

their calibration and matrices of sensitivity to defects results and mismatch metric calcu-
lation and the common assessment formation based on it.

Results: The results of the evaluation in metric form and a set of reports on interim
and final assessments should be obtained.

Computers 2021, 10, 125 7 of 19

Tool development requirements: this task can be implemented in the form of an an-
alytical-type tool that provides comparison and analysis of data obtained during the sec-
ond, fourth, and fifth stages, metric calculation, and convolution, assessment results re-
port generation.

After this step, the requirements to invariants (as a checking procedure) are formu-
lated based on the operation sequences of invariant-based assessment.

3. General Requirements of Invariants
To assess the quality and correctness of individual invariants, as well as systems of

invariants, many properties and characteristics can be used. Some of them were previ-
ously described by authors concerning invariants for formal methods supported by Event-
B notation [7]. Table 1 lists the characteristics of the invariants that provide their quality
model.

Table 1. Invariants’ requirements.

Requirement Description

Conciseness and formality
of description

The invariant must be characterized by a number or a compact mathematical construc-
tion: a tuple of numbers, a predicate, an equation or an inequality, an expression of tem-

poral logic, a simple graph containing several vertices and arcs, a fragment of an automa-
ton table that defines the functions of transitions and outputs, etc.

Clarity and physicality

The invariant has a clear physical meaning and purpose (it limits the permissible values
range of a certain system variable, determines the compatibility of events, or sets the
logic for changing system states). The purpose is determined by the type of invariant,

based on the used test feature (e.g., accuracy, logical, functional, semantic, etc.).

Measurability The invariant should be subject to simple verification, and it should be evaluated using
simple metrics within the given scale.

Criticality

Following the criticality characteristic, invariants can form a priority series, which should
be considered during evaluations, as well as when forming a system of invariants to en-

sure the required reliability while minimizing costs. For critical applications, in which de-
velopment implies using formal methods, the invariants must control the observance of

properties associated primarily with safety functions.

Traceability

For each invariant, it should be clearly understood which requirement verification fulfill-
ment it meets, and which violation of this requirement is monitored. The traceability

characteristics can be described by the matrix “FPGA design requirements—invariants”.
The invariant allows one to verify the performance of one or more system properties and

their corresponding requirements.

Globality
The invariant must be true constantly on the whole set of states or only when the system
is in a certain state. For invariants, the field of their action must be known (i.e., the entire

system and its model or individual components of the system).

Controllability

For an invariant, the following conditions should be met: a subset of controlled require-
ments (i.e., completeness of control, degree of coverage) is established; the reliability of
the control of the requirement(s) is provided; the possible control errors are specified.

These characteristics can be determined experimentally by defect injection and evaluat-
ing the invariant sensitivity.

Diagnostic ability

The diagnostic ability of an invariant consists of the possibility of determining the cause
(defect or another anomaly) by which the invariant violation occurred. This characteristic

is not fundamental, since the main purpose of any invariant is to solve the monitoring
problem.

Flexibility and scalability
This characteristic consists of varying (i.e., adjusting) the mathematical representation of
the invariant possibility depending on the requirements for a controlling or other ability,

as well as on the design features.

Computers 2021, 10, 125 8 of 19

Non-redundancy

Invariants should not repeat the checks and can be used to control defects detected by
standard tools (compiler, supplied tools). The presence of such invariants increases the

cost of verification. Simultaneously, excessive invariants can be used within the system, if
their use allows increasing the verification trustworthiness

These characteristics are the basis for the introduction of the quality indicators of in-
variants that evaluate the degree of perfection (i.e., reachability) of the corresponding
characteristics. They set the scale and methodology for measuring these characteristics.

As mentioned above, a set or a system of invariants is a consistent set that allows, as
mentioned above, controlling the correct behavior of the developed FPGA project on the
whole set of its possible states. The quality criteria for a system of invariants are as follows
[44,45]: invariant system completeness, minimum sufficiency to control system properties
by requirements, sabotage (i.e., permissible redundancy) allowing to check one condition
or property in several ways, consistency. Invariants forming a system cannot be based on
conflicting rules.

To assess the quality of the invariant system, it is proposed to use the metrics of com-
pleteness, minimality, admissible and unacceptable redundancy, which allow one to esti-
mate and choose an invariant system that is optimal by some criteria. The requirements
(characteristics) of invariants form a priority series depending on their value and im-
portance. Among the most important are the following: controllability, measurability,
traceability, laconicism, and formality of the description.

4. Classification and Analysis of Invariants
4.1. Classification Attributes

As classification attributes for invariants the following are proposed to be used:
• universality degree—determines the possibility or expediency of using the invariant to

test different FPGA projects;
• used model type (for which the invariant is being developed)—the model is the pri-

mary basis for invariant development;
• controlled attribute—determined by developing and checking the invariant method;
• type of a particular invariant—determined by the model type (a feature concerning a

hierarchy with a previous feature, i.e., dependent on it). Each invariant belongs to a
group characterized by a controlled trait;

• calibration method—defines the rules, procedures, and software used to evaluate sen-
sitivity;

• scope—sets the project capacity or indicates the set of its components on which the
invariant is used;

• source object for which the invariant is synthesized. This feature depends on the pre-
vious feature, the scope of the invariant;

• sensitivity values—determines the set of sensitivity values for the invariant (with a
general fixed range of values (0–1));

• rigidity degree—allows invariant differentiation based on the mandatory implemen-
tation. It may be in a hierarchical relationship with the previous attribute;

• verification sign—specifies the type of invariant based on its verification features and
objectives;

• parameterization ability—determined by the adaptability of the invariant to change de-
pending on the type of project and the requirements for sensitivity.

• Figure 2 shows the structured classification scheme of invariants for FPGA projects.

Computers 2021, 10, 125 9 of 19

Model type

Invariant type

Controlled attribute

Calibration method

Scope

Source object

Regidity degree

Universality

Sensitivity values

Verification sign

Parametrization ability

Versatile Specific (project-oriented)

МNFR МTCМFR МADМP

INFR

INFR

IFR1 IP1 IAD1 ITC1

IFRm IPn IADp ITCq

Precision OthersLogicalFunc-
tionalSemantic

Analytic ExpertSowing-oriented

Global Local

Require-
ments DefectsCompo-

nentsStagesProper-
ties

Binary {0,1} Normalized [0,1]

Unconditional (hard) Conditional (soft)

Negative Positive

Non-parametrizable Parametrizable

Features Invariant types

Figure 2. Classification scheme of invariants for FPGA projects.

4.2. Grouping the Invariants
By universality degree, the invariants are divided into versatile and specific. The first

one can be used to test different FPGA projects, the second are developed to be applied to
the individual projects. A key feature of the classification is used model type. Based on it,

Computers 2021, 10, 125 10 of 19

invariant sets of FPGA projects are divided into the following groups: invariants of non-
functional (general) requirements models MNFR; invariants for functional requirements
models MFR; invariants for program models MP; invariants for algorithmic models MAD;
invariants for time chart models MTC, etc.
Based on the controlled attribute, the following sets of the invariants are then formed (The
types of specific invariants for various models are described below)
• precision invariants—based on the identification and fixing of restrictions on the sys-

tem variables (i.e., setting the range of permissible changes);
• semantic invariants—based on the system variables physical dimension invariance de-

termination during their transformations in the process of computing or restrictions
on an allowable change in dimension, considering the known laws of physics;

• functional invariants—based on the behavior of the system control. Being in a certain
state, getting out of it, and transitions between states when performing different func-
tions;

• logical invariants—based on the start and verification of the fulfillment of the neces-
sary pre- and post-conditions for the occurrence of events, calling procedures or func-
tions.
The classification of the possible sets of invariants is described further in the current

section.
Invariants can be distinguished by the calibration method. In such cases, the sensitivity

of the invariant can be determined as follows: analytically using formal reasoning and rig-
orous evidence, using fault-oriented procedures and using the expert methods.

Depending on the scope, the invariants can be distinguished in the following way:
global invariants valid for the entire FPGA project, local invariants for individual project
components or their clearly fixed parts.

According to the source object for which the invariant is synthesized, they can be dis-
tinguished as obtained for system requirements, designed to test system properties that
can be derived from requirements, synthesized based on the results obtained at individual
project stages, developed for individual project architecture components, obtained from a
known set of defects or anomalies that may be inherent in the project.

This facet depends on the previous one, since the first, second, and fifth (and, under
certain conditions, third) types of invariants of this facet are global invariants, and the third
to fifth (and probably the first) are local invariants.

By the sensitivity value, the set of invariants is divided into binary invariants for which
the sensitivity metric takes two values (0 and 1), normalized invariants for which the sen-
sitivity metric takes an infinite or fixed set of values in the interval from 0 to 1.

It should be considered that since the sensitivity value of an invariant can have dif-
ferent meanings with respect to different project anomalies, a type of mixed invariant with
binary and normalized components is possible.

According to the rigidity degree, invariants can be of two types:
• conditional (i.e., soft) invariants, which fulfillment is not mandatory. (e.g., they may

relate to the style of programming in the VHDL language);
• unconditional (i.e., hard) invariants, which the fulfillment is mandatory from the point

of view of safety requirements. Invariants of this type are hierarchically related to the
previous taxonomic group. Conditional invariants, as a rule, are a subset of normal-
ized invariants and a scale from 0 to 1 is used to estimate them, and unconditional
invariants are a subset of, primarily, binary invariants, and two discrete values 0 and
1 are used to estimate them.
By verification sign, these sets of invariants are possible:

• positive invariants that should always be fulfilled for the entire FPGA project or
within the specified local zone;

Computers 2021, 10, 125 11 of 19

• negative invariants defined by constraints (rules) that should never be violated. In
other words, in a binary sensitivity estimation-positive estimation, positive invari-
ants should always be equal to “1”, and negative invariants should never turn to “0”.

• By parameterization ability, the invariants are divided into two groups:
• non-parametrizable which cannot be customized for a specific project and are fixed in

their view;
• parameterizable which can be changed (e.g., be configured, adapted) depending on

o project type—this type of parameterization consists of considering project type
features and the corresponding mathematical representation of invariant cor-
rection (e.g., variation in “width”);

o sensitivity requirements—this type of parameterization for sensitivity is also im-
plemented by correcting the mathematical representation (e.g., variation in
“depth” and “width”).

A special type of parameterization is the variation of the set of invariants in the chosen
system. Here, it is possible to choose not a minimal, but redundant in a sense system based
on the requirements for completeness and reliability of the assessment.

The following classification of the invariants used for operational control is used in the
FPGA design verification. Most of these invariants can be used during the intended ap-
plication of the developed system or its components for the implementation of on-line
testing schemes. These invariants include, first, the following sets: precision, semantic,
functional and logical invariants (classification attribute: “controlled attribute”), global
and local invariants (attribute: “scope”), binary invariants (attribute: “sensitivity value”),
negative and positive invariants (attribute: “verification sign”), parametrizable and non-
parametrizable invariants (attribute: “parameterization ability”).

5. FPGA Project Invariant Development
5.1. Development Principles

The task of generating (i.e., searching, synthesizing) of invariants is not formal. Its
solution depends on the experience and qualifications of the developer, expert, or evalu-
ator. This task is heuristic and is close to an art (in the sense of the “art of programming”).

To some extent, it contradicts the essence of formal methods and the model-based
approach (i.e., model-checking). Simultaneously, if there is sufficient information to cal-
culate the metrics of the individual invariants, an assessment of the quality of the system
of invariants can be a clear and formal (i.e., engineering) procedure.

The synthesis of invariants can be conducted based on several approaches that differ
in the use of sources of information, stages and principles of invariant development:

1. Based on the system requirements analysis. It is implemented in the early stages of sys-
tem development and requires minimal specific design results data. This path is gen-
eral and does not depend on the type of system (e.g., FPGA design, microprocessor
or other systems). The specificity of FPGA projects is manifested here through a
method for checking invariants.

2. Based on the entire system analysis and identification of its properties, which can be repre-
sented by invariants. It can be implemented during the verification of a completed
project. This approach is also general, and the specificity of the project affects the way
of checking the invariant.

3. Based on the analysis of the results obtained at each stage of the project development.
It is realized during step-by-step detailing and verification of stages, starting from the
verbal specification and ending with the generation of program code with a proof of
the correctness of the project. Such a path to the greatest extent considers the specifics
of the FPGA project.

4. Based on the analysis of each system component property identification. It should be im-
plemented during and after completion of the individual components of the system

Computers 2021, 10, 125 12 of 19

development: software, hardware, or based on FPGAs; in turn, each component can
be decomposed into subcomponents to extract invariants.

5. Based on the analysis of typical defects characteristic of individual components and the
system as a whole or detected at different stages of its development. This approach
can be considered a derivative or part of approaches 1–4.
The synthesis results of invariants can be presented in the form of the following local

or global matrices: matrices “requirements-invariants” ΩRI = ||ωji||, matrices “properties-
invariants” ΩPI = ||ωki||, matrices “stages-invariants” ΩSI = ||ωli||, matrices “compo-
nents-invariants” ΩCI = ||ωmi||, matrices “defects-invariants” ΩDI = ||ωpi||.

In the matrices the corresponding elements ωji indicate that the invariant Ii covers the
requirement rj (property pk, stage sl, component cm, defect fp).

Note that the synthesis of invariants can be conducted in the general case according
to two schemes (strategies):
• “top-down”—when a method synthesizes (generates) an invariant (or system of in-

variants) and then the defects that are “covered” by this invariant are determined;
• “bottom-top”—when the possible defects of the FPGA design are first determined

and invariants are developed for certain types of these defects.
A mixed principle of development is also possible when the development strategy

may be different for different anomalies, the design of its components and stages.
In the concept of this work, the principle of developing top-down invariants has been

adopted as the main one. However, for some situations the mixed principle may also be
applied.

5.2. The Invariants Development Stages
5.2.1. Overall Development Stages Description

The synthesis (i.e., selection) of a system of invariants in the general case includes five
stages (their list and content correspond to the conceptual scheme of an invariant-oriented
evaluation of FPGA projects, Figure 1):

1. Requirements, system design, results of individual steps’ analyses;
2. Clarification of the requirements for the estimation reliability (selection of the opti-

mality criteria for a set of invariants);
3. Software, algorithmic, automaton and other mathematical models set formation and

their corresponding invariants;
4. Each of the invariant calibration;
5. The choice of a subset of invariants that is optimal by some criteria.

It should be emphasized that problems three and four can be solved by analyzing
and selecting invariants from the previously obtained (and replenished from project to
project) set of possible invariants, some of which (as noted above in Section 4) are univer-
sal and some are specific.

5.2.2. The Invariants Synthesis Algorithm
This approach of the invariant synthesis can be implemented in such a general se-

quence:
1. The requirements set RS = {Ri} to the system is analyzed and normalized (priority ones

that need to be verified are selected and specified). Many RSs include both functional
and nonfunctional requirements;

2. For each requirement Ri or their subset ∆R a “covering” invariant Ij or a “covering”
subset of ∆Ir is defined. It is solved in three ways:

• a degenerate case: each requirement is an invariant, and its verification is car-
ried out by an expert or other ways. The most convenient form for presenting
the results is a checklist;

Computers 2021, 10, 125 13 of 19

• each requirement or a subset is associated with an invariant (a subset of invar-
iants) based on the physical meaning of the requirements, the possibility of
their semantic compression and compact mathematical representation. An in-
termediate step here may be to obtain a mathematical model according to the
requirements;

• a combination of methods “a” and “b”. Within this combination method “a” is
used to verify nonfunctional requirements and method “b” is used to verify
functional requirements;

1. The problem of covering requirements is solved with the invariant set IS = {Ij} and the
minimal invariants systems ISys belonging to IS are determined;

2. The optimal system of invariants ISysopt is selected according to given criteria, consid-
ering the calibration results of each invariant.
Given this sequence, in the case of using formal FPGA project development methods

(e.g., BHDL [46,47]), it is unclear how (i.e., architecturally) the system functionality is
based on the invariant system ISysopt.

An alternative to this sequence is the step-by-step detailing procedure accepted for
formal methods, when invariants are determined at each step. Then at each step it is pos-
sible to develop and solve the local problem of obtaining the minimal subsystem of invar-
iants ISysh.

5.2.3. Invariant Synthesis Based on the Property Analysis
The second approach is implemented in a similar general sequence as the first. The

difference is that the source of information for obtaining the invariants is not the require-
ments, but the properties of the system, analysis of which reveals some constant relation-
ships. Such relationships (i.e., invariants) may include, e.g., semantic invariants that con-
trol the correctness of the variable dimension. This example belongs to the number of ver-
satile invariants that can be applied regardless of the specific application:

1. The property set of the system PS = {Pf} is analyzed and formed. Among the elements
of the set, priority ones (critical for the system) can also be selected.

2. For each property Pf or their subset ∆P the “covering” invariant If or the “covering”
subset ∆If are defined.

3. The problem of covering requirements is solved by the invariant set IS = {If} and the
minimal systems of invariants ISysw belonging to IS are determined.

4. The optimal invariants system ISopt is selected according to a given criterion consider-
ing the calibration results of each invariant.

5.2.4. The of Invariant Synthesis Based on the Stages of Project Development Analysis
Results

The peculiarity of this action sequence lies in the fact that operations one and two of
the previous methods are repeated here for each stage, and then the resulting set is ana-
lyzed in the following way:

1. Requirements set RSz for the development stage Sz are analyzed (and the RSz proper-
ties identified at this stage) and their prioritization and preliminary selection are con-
ducted.

2. For each requirement Rza belonging to RSz (properties Pzb belonging to RSz) or their
subsets ∆Rz the “covering” invariant Iza (b) or the “covering” subset of the invariants

∆Iza (b) are defined.
3. Operations 1 and 2 are repeated for all stages (z = 1, …, E).
4. The problem of covering the requirements of RS or RSz with invariants sets IS = {ISz}

is solved and the minimal systems of invariants ISysh, belonging to IS re determined
(by stages or/and as a whole).

5. The optimal invariants system ISysopt is selected according to a given criterion, con-
sidering the calibration results of each of the invariants.

Computers 2021, 10, 125 14 of 19

The optimization task in this case can be solved in two ways, depending on the table
used and the coverage problem solving results: as a set of particular tasks for each stage con-
sidering local coverages (tables of coverages by stages) and as a general optimization prob-
lem, considering general coverage (a common coverage table that considers all the invari-
ants found for all stages).

Obviously, the second method provides a more accurate solution, but it incurs large
computational costs. Additionally, when solving the problem in the first way, there are
risks that some of the possible defects associated with the step-by-step approach will not
be identified.

5.2.5. Invariant Synthesis Based on the System Components’ Properties Analysis and
Identification

Here, a component-oriented approach is used to form the invariant set. For each pro-
ject component, including the FPGA project the approaches described above based on an
analysis of requirements or properties, respectively, can be implemented.

The second one is preferable, since the requirements for individual components of
the project may not be described in detail and, therefore, for the implementation of the
approach based on the requirements, it will be necessary to conduct their detailed elabo-
ration.

Therefore, the synthesis of invariants based on the FPGA project components prop-
erties analysis and identification can be performed in the following sequence:

1. The system components set CS = {Kd} is formed.
2. Component properties are set CPSd = {CPdf} for each component Cd and priorities (crit-

ical for the system) are selected.
3. For each property CPdf or it’s subset ∆CPdf a “covering” invariant If or a “covering”

subset of invariants ∆If is defined.
4. The problem of covering the component properties with the invariants set ISd = {Idf}

and the minimal invariants systems ISysdv, belonging to ISd is determined.
5. Minimal invariant systems ISysx are obtained: to obtain them, the Cartesian product

of the sets, ISysdv, found for the individual components is performed, and then the
groups that meet the criterion of minimality are selected.

6. According to a given criterion, the optimal invariants system ISysopt is selected consid-
ering the calibration results of each invariant and the costs associated with their use.
It should be emphasized that for a complete solution to the problem, the invariants

set ISopt must be supplemented by an invariant or invariants subset, allowing us to verify
the project configuration problem and solution correctness.

6. Case Study to FPGA Safety Invariant-Based Assessment
The described approach and technique were applied during the implementation of

several projects: a fully industrial project on the certification of FPGA platform developed
by RadICS [48–50], capacity building of higher education and implementation of the joint
academia–industry project “Safety-critical software independent verification and latent
fault assessment based on diverse measurement of invariants”. Invariant-based safety as-
sessment of FPGA projects also served as a good support for achieving the required reli-
ability of results and cost-effectiveness when assessing of hardware diversity during the
IV&V of safety-critical systems [51].

FPGA design (FPGA project) is a set of electronic circuit components that are repre-
sented as a set of expressions in the hardware description language (HDL—description)
and intended for loading into a microcircuit. The components of the electronic FPGA pro-
ject are IP cores and IIP infrastructures.

The tools used to develop electronic FPGA projects should be licensed software prod-
ucts. IPs must undergo preliminary verification and certification and are acceptable for
use in security-related applications. The syntax of the VHDL language is presented in

Computers 2021, 10, 125 15 of 19

IEEE 1076–2019 “IEEE Standard for VHDL Language Reference Manual” [52]. The source
code of objects written by programmers must comply with this standard and must not
contain extensions of the VHDL language. The following invariants were used in these
projects:
• usage of the explicit principle of mapping component ports to the signals arriving at

them in the port map (=>);
• “sensitivity list” should contain signals that are used in the body of the process;
• the use of conditional operators must be accompanied by a post-condition (full con-

dition);
• not to use a “hard” index when working with a signal vector, etc.
• It should be emphasized that the control of the rules for the use of the VHDL pro-

gramming language are quality assurance and risk management mechanisms in the
development of electronic FPGA projects that implement functions important to
safety.

6.1. Explicit Principle of Mapping Components to the Signals in the PORT MAP Section
Using the explicit principle of mapping component ports to the signals arriving at

them in the port map (=>). Using this invariant provides an exception: errors in declaring
and using components or errors when changing port names in the “entity” (interface) of
the component.

A computer-aided design (CAD) tool detects an error for mixed port assignment only
when explicit assignment is used at first and implicit lately. Mixed port assignment is
allowed in the following sequence: ports are specified first implicitly, and subsequent
ports are binding explicitly using “=>”.

The following examples can describe this principle:
• Explicit port assignment

HKDFF: DFFE port map (d => D_I, clk => CLK_I, q => Q_O, ena => Enable_I, clrn =>
Clear_I, prn => Set_I);

• Implicit port assignment
HKDFF: DFFE port map (D_I, CLK_I, Q_O, Enable_I, Clear_I, Set_I);
• Mixed port assignment

HKDFF: DFFE port map (D_I, CLK_I, q => Q_O, ena => Enable_I, clrn => Clear_I, prn =>
Set_I);

• Captured CAD

HKDFF: DFFE port map (q => Q_O, ena => Enable_I, clrn => Clear_I, prn => Set_I, D_I,
CLK_I);

To calibrate the invariant, the following operations are performed:
1. Searching for the PORT MAP (); construction.
2. Reading the contents of the brackets.
3. Invariant check: whether it worked or not?
4. Injecting the defect: replacing the explicit principle of specifying ports with positional

one: replacing each design x => y with y.
5. Invariant check: whether it worked or not?
6. Injecting the defect: replacing the explicit principle of specifying mixed ports: replac-

ing the first structure (s) x => y with y.
7. Invariant check: whether it worked or not?

6.2. Using of the Signals from PROCESS “Sensitivity List” in Its Body
In this case, the exception is provided by either unnecessary triggering of the process,

and as a result, frequent changes in the output, or failure of the process at the right time.

Computers 2021, 10, 125 16 of 19

CAD issues a warning if the sensitivity list does not contain all the input signals of the
process but does not respond to the redundancy of its contents.

Table 2 lists the mentioned examples (i.e., full, incomplete and excess sensitivity lists)
are provided.

Table 2. Examples of use of the signals from PROCESS “sensitivity list”.

 Full Sensitivity List Incomplete Sensitivity List Excess Sensitivity List

1. Activation: PROCESS (CLK_I, Data_I)
IS

Activation: PROCESS (CLK_I) IS Activation: PROCESS (CLK_I, Data_I, test)
IS

2. BEGIN BEGIN BEGIN
3. IF RISING_EDGE(CLK_I) THEN IF RISING_EDGE(CLK_I) THEN IF RISING_EDGE(CLK_I) THEN
4. IF Data_I = ‘1’ THEN Data_O <= ‘0’; IF Data_I = ‘1’ THEN Data_O <= ‘0’; IF Data_I = ‘1’ THEN Data_O <= ‘0’;
5. ELSE Data_O <= ‘1′; ELSE Data_O <= ‘1′; ELSE Data_O <= ‘1’;
6. END IF; END IF; END IF;
7. END IF; END IF; END IF;
8. END PROCESS Activation; END PROCESS Activation; END PROCESS Activation;

6.3. Calibration of the Invariant
To calibrate the invariant, the following operations are performed:

1. Search for the PROCESS (); construction
2. Reading the contents of the brackets and searching the process body for all input sig-

nals
3. Invariant check: whether it worked or not?
4. Injecting the defect (if the list contains two or more signals): replacing the complete

sensitivity list with an incomplete one: remove the signal that is used in the body of
the process from the list.

5. Invariant check: whether it worked or not?
6. Injecting the defect: redundant sensitivity list formation: supplementing the sensitiv-

ity list with an input signal that is not used in the process body.
7. Invariant check: whether it worked or not?

Checking of the invariants considering their calibration results allows assessing
FPGA project in the process of IV&V.

7. Discussion
The invariant-oriented assessment is part of the model checking. The main idea of

model checking is to overcome the dimensionality problems, which take place in the ver-
ification. However, simultaneously, a contradiction always arises as to how the com-
pleteness of verification is ensured. Since there is a transition from the enumeration of
all input sets to building a model and to checking the object against the model the di-
mension of the problem decreases, but a problem arises with the completeness of the
assessment.

Within the framework of the work presented, this contradiction is untied by identi-
fying invariants as some checking entities and then determining the set of invariants that
is necessary to ensure the required completeness of coverage. However, it is not enough.
Secondly, thanks to the calibration of invariants, the reliability of the control of one or
another entity using this invariant is assessed.

For many I&Cs, the risk is that the required number of invariants will not be found
to provide completeness of the estimation. In this sense, FPGA systems and the corre-
sponding projects provide several additional opportunities for constructing a set of invar-
iants. When using the described conception (besides, it could be applied not only for
FPGA-based projects), two requirements must always be considered: the completeness of
the coverage and the reliability of the assessment. This problem is solved with the help of

Computers 2021, 10, 125 17 of 19

the invariant calibration. The proposed classification of the set of invariants makes it pos-
sible to evaluate FPGA projects from different angles in terms of covering requirements,
stages, components and possible defects. The difficulty here lies in assessing the compat-
ibility of these invariants and how they complement each other in terms of the complete-
ness and reliability of the assessment. The proposed classification and different types of
invariants allow a comprehensive assessment of the project and reduce the risks that the
assessment will be incomplete or unreliable.

An important issue that affects the reliability of the safety assessment when using the
invariant-based approach is the synthesis (selection) of a system of invariants for a specific
FPGA project, which will minimize the risks of undetected failures. For this purpose, a
calibration procedure is implemented, which makes it possible to clarify the individual
characteristics of the invariants, and the procedure for forming a set of FPGA invariants,
which provides the required estimation indicators. Presented results can contribute to the
development of hyper-reliable logic and memory elements memory elements, based on
FPGAs, their simulation, and reliability and safety assessment as well [53].

The ongoing and future research is devoted to the development of tool-based quan-
titative assessment of FPGA project safety by use of set of metrics. Besides, an important
research direction is searching for specific invariants and development of invariant based
verification methods and tools for multi-version FPGA systems [40–42].

8. Conclusions
Invariant-based safety assessment is based on a set of invariants that are partly uni-

versal and formed in advance, since they reflect the invariable properties of FPGA pro-
jects, hardware description languages. This set can be replenished as experience is gained
during project implementation. Another part of the invariants is formed on the basis of
the specific FPGA project requirements analysis and reflects the features of the tasks to be
solved, the algorithms that are implemented, the chips and tools used.

The following results were obtained in the current paper: A conception of invariant-
oriented safety assessment of FPGA projects was suggested. The corresponding stages of
the conception application were described. A classification of invariants that considers
features of FPGA technology was presented. Several invariant-oriented procedures were
proposed for the developer, including the development of set of invariants for different
approaches and procedures for constructing and choosing invariants.

Requirements for invariants were given and some use-cases related to the application
of the suggested invariant-based safety assessment technique were provided for IV&V of
FPGA projects.

Author Contributions: Conceptualization, V.K. and V.S.; methodology, V.K. and O.I.; software
code, O.I.; validation, V.S.; formal analysis, O.I.; investigation, O.I.; resources, V.K.; data curation,
V.S.; writing—original draft, O.I.; writing—review and editing, V.K. and O.I.; supervision, V.K.;
project administration, V.K.; funding acquisition, O.I. All authors have read and agreed to the pub-
lished version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data has been present in main text.

Acknowledgments: This work was supported by the ECHO project, which has received funding
from the European Union’s Horizon 2020 research and innovation program under the grant agree-
ment no 830943. The authors appreciate the scientific society of the consortium and in particular the
staff of Department of Computer Systems, Networks and Cybersecurity of the National Aerospace
University “KhAI” for invaluable inspiration, hard work and creative analysis during the prepara-
tion of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Computers 2021, 10, 125 18 of 19

References
1. Grimm, T.; Lettnin, D.; Hübner, M. A Survey on Formal Verification Techniques for Safety-Critical Systems-on-Chip. Electronics

2018, 7, 81, doi:10.3390/electronics7060081.
2. Yasko, A.; Babeshko, E.; Kharchenko, V. Verification of FPGA Based NPP I&C Systems Considering Multiple Faults: Technique

and Automation Tool. Proceedings of the 25th International Conference on Nuclear Engineering, Shanghai, China, 2–6 July
2017; Volume 9, doi:10.1115/ICONE25-67065.

3. Bernardeschi, C.; Cassano, L.; Domenici, A. SRAM-based FPGA systems for safety-critical applications: A survey on design
standards and proposed methodologies. J. Comput. Sci. Technol. 2015, 30, 373–390, doi:10.1007/s11390-015-1530-5.

4. IEC 61508-1:2010 Ed.2. Functional Safety of Electrical/Electronic/Programmable Electronic Safety-Related Systems. 2010; p. 127.
5. Naser, J.; Fink, B.; Killian, C.; Nguyen, T.; Druilhe, A. Guidelines on the Use of Field Programmable Gate Arrays in Nuclear Power

Plant I&C Systems; EPRI: Palo Alto, CA, USA, 2009; p. 1019181.
6. Babeshko, E.; Kharchenko, V.; Leontiiev, K.; Ruchkov, E. Practical aspects of operating and analytical reliability assessment of

FPGA-based I&C systems. Radioelectron. Comput. Syst. 2020, 3, 75–83, doi:10.32620/reks.2020.3.08.
7. Abrial, J.-R. Modeling in Event-B: System and Software Engineering; Cambridge University Press: Cambridge, UK, 2009; p. 612.
8. Diller, A.Z. An Introduction to Formal Methods; Wiley: Hoboken, NJ, USA, 1994; p. 354.
9. Lecomte, T.; Servat, T.; Pouzancre, G. Formal Methods in Safety-Critical Railway Systems. In Proceedings of 10th Brasilian

Symposium on Formal Methods, Ouro Preto, Brazil, 29–31 August 2007.
10. Howar, F.; Barnat, J. (Eds.) Formal Methods for Industrial Critical Systems, Proceedings of the 23rd International Conference

on Formal Methods for Industrial Critical Systems, FMICS, Maynooth, Ireland, September 3-4, 2018 Ireland.
11. Clarke, E.M.; Henzinger, T.A.; Veith, H.; Bloem, R. Handbook of Model Checking; Springer: Berlin/Heidelberg, Germany, 2018,

ISBN 978-3-319-10574-1, doi:10.1007/978-3-319-10575-8.
12. Knauss, E.; Goedicke, M. In Proceedings of the 25th International Working Conference on Requirements Engineering: Founda-

tion for Software Quality, REFSQ 2019, Essen, Germany, 18–21 March 2019.
13. Shuja, S.; Srinivasan, S.K.; Jabeen, S.; Nawarathna, D. A formal verification methodology for DDD mode pacemaker control

programs. J. Electr. Comput. Eng. 2015, 2015, 57, doi:10.1155/2015/939028.
14. Jabeen, S.; Srinivasan, S.K.; Shuja, S.; Dubasi, M.A.L. A formal verification methodology for FPGA-based stepper motor control.

IEEE Embed. Syst. Lett. 2015, 7, 85–88, doi:10.1109/LES.2015.2450677.
15. Bui, M.; Lu, M.; Hojabr, R.; Chen, M.; Shriraman, A. Real-Time Formal Verification of Autonomous Systems with An FPGA.

2020. arXiv preprint arXiv:2012.04011. Available online: https://arxiv.org/pdf/2012.04011.pdf (accessed on 10 September 2021).
16. Ceesay-Seitz, K.; Boukabache, H.; Perrin, D. A Functional Verification Methodology for Highly Parametrizable, Continuously

Operating Safety-Critical FPGA Designs: Applied to the CERN RadiatiOn Monitoring Electronics (CROME). In Proceedings of
the International Conference on Computer Safety, Reliability, and Security September; Springer, Cham/Switzerland, 2020; pp.
67–81, doi:10.1007/978-3-030-54549-9_5.

17. Toner, C.; Boukabache, H.; Ducos, G.; Pangallo, M.; Danzeca, S.; Widorski, M.; Roesler, S.; Perrin, D. Fault Resilient FPGA
Design for 28 nm ZYNQ System-on-Chip Based Radiation Monitoring System at CERN; Microelectronics Reliability 2019, Volume
100–101, doi:10.1016/j.microrel. 113492.

18. Pakonen, A.; Tahvonen, T.; Hartikainen, M.; Pihlanko, M. Practical applications of model checking in the Finnish nuclear in-
dustry. In Proceedings of the 10th International Topical Meeting on Nuclear Plant Instrumentation, Control and Human Ma-
chine Interface Technologies (NPIC & HMIT 2017) San Francisco, CA, USA, June 11-15 2017.

19. Pakonen, A.; Buzhinsky, I.; Björkman, K. Model checking reveals design issues leading to spurious actuation of nuclear instru-
mentation and control systems. Reliab. Eng. Syst. Saf. 2021, 205, 107–237.

20. Buzhinsky, I.; Pakonen, A. Model-checking detailed fault-tolerant nuclear power plant safety functions. IEEE Access 2019, 7,
162139–162 156.

21. Jabeen, S.; Srinivasan, S.S. Formal verification methodology for real-time Field Programmable Gate Array, IET Comput. Digit.
Tech. 2017, 11, 197–203, doi:10.1049/iet-cdt.2016.0189.

22. Kharchenko, V.; Letychevskyi, O.; Odarushchenko, O.; Peschanenko, V.; Volkov, V. Modeling method for development of dig-
ital system algorithms based on programmable logic devices. Cybern. Syst. Anal. 2020, 56, 710–717, doi:10.1007/s10559-020-
00289-8.

23. Swierczynski, P.; Fyrbiak, M.; Koppe, P.; Paar, C. FPGA trojans through detecting and weakening of cryptographic primitives.
IEEE TCAD 2015, 34, 1236–1249, doi:10.1109/TCAD.2015.2399455.

24. Booch, G.; Rumbaugh, J.; Jacobson, I. Unified Modeling Language User Guide. Publisher: Addison-Wesley, Boston, USA, 2008.
25. Coelho, D. The VHDL Handbook; Springer Science & Business Media: New York, NY, USA, 1989.
26. System Verilog. Available online: www.asic-world.com/systemverilog/tutorial.html (accessed on 10 September 2021).
27. VC Formal. Available online: https://www.synopsys.com/verification/static-and-formal-verification/vc-formal.html (accessed

on 10 September 2021).
28. Vivado Verification. Available online: https://www.xilinx.com/products/design-tools/vivado/verification.html (accessed on 10

September 2021).
29. JasperGold. Available online: https://www.cadence.com/ko_KR/home/tools/system-design-and-verification/formal-and-static-

verification/jasper-gold-verification-platform.html (accessed on 10 September 2021).

Computers 2021, 10, 125 19 of 19

30. Letichevsky, A.; Letychevskyi, O.; Peschanenko, V. Insertion Modeling and Its Applications. Comput. Sci. J. Mold. 2016, 24, 357–
370.

31. Letichevsky, A.; Gilbert, D. Interaction of agents and environments. In Recent Trends in Algebraic Development Technique; Bert,
D., Choppy, C., Eds.; Publisher Springer: Verlag, Germany, 1999.

32. Letichevsky, A. Algebra of Behavior Transformations and its Applications. In Structural Theory of Automata, Semigroups, and
Universal Algebra; Kudryavtsev, V.B., Rosenberg, I.G., Eds.; Publisher: Springer: Berlin/Heidelberg, Germany, 2005; pp. 241–272.

33. ITU-T Recommendation, Z.120, Message Sequence Charts (MSC). Available online: https://www.itu.int/rec/do-
login_pub.asp?lang=e&id=T-REC-Z.120-201102-I!!PDF-E&type=items (accessed on 10 September 2021).

34. Letychevskyi, O.; Peschanenko, V.; Volkov, V. Algebraic Virtual Machine Project In Proceedings of the17th International Con-
ference ICTERI, September 28 - October 02, 2021, Ukraine, Kherson.

35. Ehlers, T.; Nowotka, D.; Sieweck, P. Finding Race Conditions in Real-Time Code by Using Formal Software Verification, De-
partment of Computer Science, Kiel University, 2014. Available online: https://www.researchgate.net/publica-
tion/288563365_Finding_race_conditions_in_real-time_code_by_using_formal_software_verification (accessed on 10 Septem-
ber 2021).

36. Didier, J.-Y.; Mallem, M. A New Approach to Detect Potential Race Conditions in Component-Based Systems. Available online:
https://hal.archives-ouvertes.fr/hal-01024478 (accessed on 10 September 2021).

37. A Survey of Methods for Preventing Race Conditions; Beckman, N.E., Ed. Available online: https://www.cs.cmu.edu/~nbeckman/pa-
pers/race_detection_survey.pdf (accessed on 10 September 2021).

38. Letichevsky, A.; Letychevskyi, O.; Peschanenko, V. An Interleaving Reduction for Reachability Checking in Symbolic Modeling.
In Proceedings of the 11th Int. Conf. ICTERI 2015, Lviv, Ukraine, 14-16 May 2015, Ermolayev, V. Ed.; CEUR-WS.org/Vol-1356,
ISSN 1613-0073, pp. 338–353. Available online: Ceur-ws.org/Vol-1356/paper_74.pdf (accessed on 10 September).

39. Jonson, G. The INSAG Defense in Depth Concept and D-in-D&D In Instrumentation and Control. In Proceedings of 7th ANS
Topical Meeting on NPIC-HMIT, Las Vegas, LA, USA, 7-11 November 2010.

40. Kharchenko, V.; Bakhmach, E.; Siora, A. Diversity-scalable decisions for FPGA-based safety-critical I&C systems: From theory.
to implementation 6th American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Control, and
Human-Machine Interface Technologies, Knoxville, TN, USA, 5–9 April 2009; pp. 1494-1505.

41. Karam, R.; Hoque, T.; Ray, S.; Tehranipoor, M.; Bhunia, S. MUTARCH: Architectural diversity for FPGA device and IP securi-
tyю 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), 2017; pp. 611–616,
doi:10.1109/ASPDAC.2017.7858391.

42. Kharchenko, V. Independent Verification and Diversity: Two Echelons of Cyber Physical Systems Safety and Security Assur-
ance. In Proc. 2nd Int. Workshop on Information-Communication Technologies & Embedded Systems (ICTES 2020), Mykolaiv,
Ukraine, 12 November 2020; pp. 19–29, CEUR-WS.org/Vol-2762, ISSN 1613-0073. Available online: Ceur-ws.org/Vol-2762/in-
vited2.pdf (accessed on 10 Septermber 2021).

43. Kharchenko, V.; Siora, A.; Sklyar, V.; Volkoviy, A.; Bezsaliy, V. Multi-diversity versus common cause failures: FPGA-based
multi-version NPP I&C systems. 7th International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-
Machine Interface Technologies 2010, NPIC and HMIT, Las Vegas, NV, USA, Volume 2, 7–11 November 2010; pp. 1081–1092.

44. Eriksson, J. Tool-Supported Invariant-Based Programming. PhD Thesis. Åbo Akademi University, Turku, Finland, 2010.
45. Kharchenko, V.; Konorev, B.; Sklyar, V.; Reva, L. Invariant-oriented verification of HDL-based safety critical systems, East-West De-

sign & Test Symposium (EWDTS 2013), Rostov-on-Don, 2013; pp. 1-4, doi:10.1109/EWDTS.2013.6673160.
46. Ostroumov, S.; Tsiopoulos, L. VHDL Code Generation from Formal Event-B Models, In Proceedings of 4th Euromicro Confer-

ence on Digital System Design, Oulu, Finland, 31 August–2 September 2011; pp. 127–134, doi:10.1109/DSD.2011.20.
47. Ostroumov, S.; Troubitsyna, E.; Laibinis, L.; Kharchenko, V. Towards Designing FPGA-Based Systems by Refinement in B In

Dependability and Computer Engineering: Concepts for Software-Intensive Systems; Petre, L., Sere, K., Troubitsyna, E., Eds.; IGI
Global: Hershey, PA, USA, 2012; pp. 92–112, doi: 10.4018/978-1-60960-747-0.ch006.

48. Andrashov, A.; Kharchenko, V.; Sklyar, V.; Reva, L.; Dovgopolyi, V.; Golovir, V. Verification of FPGA electronic designs for
nuclear reactor trip systems: Test- and invariant-based methods. In Proceedings of the 2010 East-West Design & Test Symposium
(EWDTS), St. Petersburg, Russia, 17-20 September, 2010, pp. 92–97, doi:10.1109/EWDTS.2010.5742120.

49. Perepelitsyn, A.; Illiashenko, O.; Duzhyi, V.; Kharchenko, V. Application of the FPGA Technology for the Development of
Multi-Version Safety-Critical NPP Instrumentation and Control Systems. Nucl. Radiat. Saf. 2020, 2, 52–61,
doi:10.32918/nrs.2020.2.07.

50. Kharchenko, V.; Illiashenko, O. Diversity for security: Case assessment for FPGA-based safety-critical systems. In Proceedings
of the MATEC Web of Conferences, 2016, 20th International Conference on Circuits, Systems, Communications and Computers
(CSCC 2016), Corfu Island, Greece, July 14-17, 2016, Volume 76, doi:10.1051/matecconf/20167602051.

51. Illiashenko, O.; Kharchenko, V.; Kor, A.-L.; Panarin, A.; Sklyar, V. Hardware diversity and modified NUREG/CR-7007 based
assessment of NPP I&C safety. In Proceedings of the IEEE 9th International Conference on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applications, IDAACS, Bucharest, Romania 2017, September 21-23, Volume
2, pp. 907–911, doi:10.1109/IDAACS.2017.8095218.

52. "IEEE Standard for VHDL Language Reference Manual," in IEEE Std 1076-2019 , vol., no., pp.1-673, 23 Dec. 2019 1076-2019-IEEE
Standard for VHDL Language Reference Manual. doi: 10.1109/IEEESTD.2019.8938196

53. Tyurin, S. Hyper redundancy for super reliable FPGAs. Radioelectron. Comput. Syst. 2021, 1, pp. 119–132, doi:10.32620/reks.2021.1.11.

