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Abstract: One of the well-known recommendation systems is memory-based collaborative filtering 

that utilizes similarity metrics. Recently, the similarity metrics have taken into account the user rat-

ing and user behavior scores. The user behavior score indicates the user preference in each product 

type (genre). The added user behavior score to the similarity metric results in more complex com-

putation. To reduce the complex computation, we combined the clustering method and user behav-

ior score-based similarity. The clustering method applies k-means clustering by determination of 

the number of clusters using the Silhouette Coefficient. Whereas the user behavior score-based sim-

ilarity utilizes User Profile Correlation-based Similarity (UPCSim). The experimental results with 

the MovieLens 100k dataset showed a faster computation time of 4.16 s. In addition, the Mean Ab-

solute Error (MAE) and Root Mean Square Error (RMSE) values decreased by 1.88% and 1.46% com-

pared to the baseline algorithm. 

Keywords: collaborative filtering; memory-based; similarity metrics; k-means clustering;  

Silhouette Coefficient 

 

1. Introduction 

The increasing volume and complexity of online information make it difficult for us-

ers to obtain appropriate information. The recommendation system is the ultimate solu-

tion to deal with the information explosion [1,2]. This system is a valuable information 

filtering tool to assist users in finding a product or service from the many possibilities that 

exist. 

Recommendation systems have developed rapidly, and various domains have used 

them, such as movies, music, news, books, restaurants, and other media. In addition, sev-

eral researchers have developed recommendation systems with many existing ap-

proaches, including demographic filtering, content-based filtering, collaborative filtering, 

and hybrid filtering [3,4]. 

One of the most prevalent approaches to recommendation systems is collaborative 

filtering [5–8]. This approach is capable of generating recommendations based on the rat-

ings provided by the users for several items. Collaborative filtering consists of two meth-

ods: model-based and memory-based. The first method uses a model built from the rat-

ings to generate recommendations, while the second method utilizes similarity metrics to 

get the distance between two users/items [6,9]. 

In recent years, several researchers have proposed collaborative filtering using the 

similarity metrics approach to increase the accuracy of recommendations. Some of the 

proposed similarity metrics are Proximity-Significance-Singularity (PSS) [10], 

Bhattacharyya [11], multi-level collaborative filtering [12], item frequency-based similar-

ity [13], Triangle Multiplying Jaccard (TMJ) [14], and three impact factors-based similarity 

Citation: Widiyaningtyas, T.;  

Hidayah, I.; Adji, T.B.  

Recommendation Algorithm Using 

Clustering-Based UPCSim  

(CB-UPCSim). Computers 2021, 10, 

123. https://doi.org/10.3390/ 

computers10100123 

Academic Editor: George Angelos 

Papadopoulos 

Received: 19 August 2021 

Accepted: 26 September 2021 

Published: 6 October 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 



Computers 2021, 10, 123 2 of 17 
 

[3]. However, these similarity metrics only consider the user rating score to calculate sim-

ilarities between users. The user rating score is the value given directly by the user in 

assessing the selected or purchased product. This score ranges from 1 to 5, with a score of 

1 indicating that the user really dislikes the selected product and a score of 5 indicating 

that the user really likes the selected product. 

Recently, the development of similarity metrics has considered the user rating score 

and user behavior score. The similarity metrics that have adopted user behavior scores in 

calculating similarity are User score Probability Collaborative Filtering (UPCF) [15] and 

User Profile Correlation-based Similarity (UPCSim) [16]. However, adding the user be-

havior score variable in the similarity calculation causes the computation to be more com-

plex. Consequently, it consumes time with the increasing data. 

Several studies [17–19] have utilized clustering methods by reducing large amounts 

of data to overcome the computational complexity of recommendation systems. The stud-

ies applied the partition-based clustering methods by determination of the number of 

clusters directly. The problem of these studies is determining the number of clusters with-

out measuring the clustering quality to get the optimal number of clusters that affect the 

results of the recommendations. 

Based on the above problems, our research proposes a recommendation system 

model that combines the clustering method and user behavior score-based similarity to 

reduce computational time, called Clustering-Based UPCSim (CB-UPCSim). The cluster-

ing method uses the partition-based method of k-means, measuring the clustering quality 

using the intrinsic model of the Silhouette Coefficient and grouping users based on user 

profile data (i.e., gender, age, job, and location). Meanwhile, the similarity metric uses 

UPCSim. 

The remainder of this paper is organized as follows. Section 2 summarizes previous 

researches that consider similarity metrics and clustering in recommendation systems. 

Section 3 then presents the detail on the stages of the proposed method. Section 4 describes 

the experimental results and discussion. Finally, Section 5 concludes the results of our 

study and offers recommendations for further research. 

2. Related Work 

The memory-based method employs all rating data to generate a list of recom-

mended products [11]. This method focuses on similarity metrics to count the similarity 

between products/users. The similarity metrics build upon the distance between two us-

ers or products. Pearson Correlation Coefficient (PCC) and Cosine Similarity (COS) are 

traditional similarity metrics that are frequently used in recommendation systems [20]. 

Several studies performed improvement of traditional similarity metrics to increase 

the performance of recommendation systems. Patra et al. [11] presented the Bhattacharyya 

coefficient in collaborative filtering (BCF) similarity. BCF utilized all rating scores assessed 

by pairs of users, combined with Jaccard similarity. Furthermore, Polatidis et al. [12] pre-

sented the improvement of PCC by using the number of co-rated products in some levels. 

This new similarity metric is then called multi-level collaborative filtering. Sun et al. [14] 

offered a new similarity metric called TMJ (Triangle Multiplying Jaccard) similarity. Tri-

angle similarity considers the co-rated data, while Jaccard similarity provides information 

on ratings not assessed together. Finally, Feng et al. [3] developed a new similarity metric 

by considering three impact factors (Sa, Sb, and Sc). Sa describes the similarity between us-

ers, Sb states the tendency of users to give ratings, and Sc expresses the rating weight of 

each user. In general, these previous researchers only utilize the user rating score to count 

the similarity metrics. 

Furthermore, Wu et al. [15] proposed a novel similarity metric by incorporating the 

user rating-based and behavior-based similarity score to improve recommendation accu-

racy. The user behavior score is the accumulated scores in assessing/viewing the product 

type (genre). In the movie recommender system, this score indicates how much users like 

a movie genre based on the movie title they watch. For example, User A watches the movie 
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title “Aladdin” with the movie genre of animation, children, and comedy. Each genre will 

get a behavior score of “1”. After that, User A watches the movie title “Get Shorty,” which 

has the movie genre of action, comedy, and drama. Each genre will also get the behavior 

score by “1”. Consequently, User A implicitly gives the user behavior scores of animation 

= 1, children = 1, comedy = 2, action = 1, and drama = 1. The genre “Comedy” gets a score 

= 2 because the movie titles of “Alladin” and “Get Shorty” are included in the genre “Com-

edy.” Therefore, the user behavior score ranges from 1 to N. If the user frequently accesses 

the product types, the value of N will be immense. Conversely, if the user rarely accesses 

the product types, the value of N will be smaller. Wu et al. applied the probability of the 

user behavior score to calculate the similarity metric. This similarity metric is called User 

score Probability Collaborative Filtering (UPCF). Their research results reduced the MAE 

and RMSE values by 1.51% and 0.94% compared to the traditional similarity metric, i.e., 

Cosine Similarity. 

Recently, the research conducted by [16] presents a novel similarity metric known as 

User Profile Correlation-based Similarity (UPCSim). UPCSim improved UPCF, replacing 

the similarity weight in UPCF (threshold value) with the correlation coefficient between 

user profile factors and user rating/behavior score. The results showed that the MAE and 

RMSE values decreased by 1.64% and 1.4%. 

Although UPCF and UPCSim improve recommendation performance, these similar-

ity metrics still have shortcomings. Combining the two similarities makes the computa-

tion more complex. Therefore, the increasing data will consume time to produce recom-

mendations. 

Several researchers applied clustering methods to reduce the increasing data in their 

recommendation system. For example, Vellaichamy et al. [19] utilized clustering to over-

come the scalability problem and improve recommendation quality. The clustering algo-

rithm applied Fuzzy C-Means (FCM) with Bat optimization and determined the number 

of clusters to 16 groups. Bat algorithm serves to obtain the initial cluster position. Further-

more, PCC similarity calculates the similarity between users. The experimental results re-

duced the MAE value and increased the precision and recall values. 

Meanwhile, Lestari et al. [17] applied k-means clustering to reduce the dataset by 

determining the number of clusters with 7. The cluster division utilized one of the user 

profiles factors, namely age. Each cluster then performs the recommendation process us-

ing a ranking-oriented collaborative filtering approach, known as WP-Rank. The results 

showed the Normalized Discounted Cumulative Gain (NDCG) increased by 0.022 and a 

longer running time of 0.026 s. 

In the meantime, Tran et al. [18] implemented collaborative filtering based on clus-

tering with an incentive/penalized user (IPU) model to overcome a large volume of data 

and improve the performance of the recommendation system. Their research combines 

spectral clustering and FCM algorithms by dividing the rating data into 10 clusters. After 

that, each product receives an incentive/penalty based on the user’s tendency in the clus-

ter. The experimental results showed a significant increase in the F1 score, precision, and 

recall. 

The three previous studies [17–19] utilize the partition-based clustering methods, i.e., 

FCM and k-means. The FCM has O(nk2t) time complexity, whereas the k-means has O(nkt). 

n, k, and t represent the number of data, the number of clusters, and the number of itera-

tions, respectively [21]. These studies determined the number of clusters without measur-

ing the clustering quality to obtain the optimal number of clusters. In addition, the study 

conducted by [17] only used the age factor in grouping users without considering other 

factors that affected the user preferences. Therefore, our study utilizes the intrinsic 

method of the Silhouette Coefficient to determine the optimal number of clusters and clus-

tering the user and rating data based on all user profile factors (i.e., age, gender, job, and 

location). The clustering method in our study uses k-means clustering because the k-means 

method requires less computation time than FCM. 
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3. Research Method 

This research proposes a recommendation algorithm that combines the clustering 

method and similarity based on user behavior scores (i.e., UPCSim), known as CB-UP-

CSim. The study consists of five stages: data collection, data preparation, clustering pro-

cess, memory-based process, and evaluation, as illustrated in Figure 1. The following sub-

section presents the details of each stage. 

 

Figure 1. Research stages. 
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3.1. Data Collection 

We utilized the MovieLens 100k dataset in this study. The dataset includes 100,000 

ratings, 943 users, and 1682 movies collected by the “GroupLens Research Group of the 

University of Minnesota [22]. The rating scale is between 1 and 5. Score 1 indicates the 

user does not really like the movie, and score 5 indicates the user really likes the movie. 

The sparsity and density of this rating data are 93.7% and 6.3%. There are 19 genres in the 

dataset, and each movie can contain several genres. Each user rates at least 20 movies and 

has information about the user profile (i.e., gender, age, job, and location). 

3.2. Data Preparation 

In this study, the data preparation stage is data pre-processing that prepares raw data 

before the following process (clustering and memory-based processes) to obtain clean 

data. One way to data pre-processing is to reduce irrelevant attributes. For example, there 

are timestamps, movie titles, release dates, video release dates, and IMDb URLs as irrele-

vant attributes in the MovieLens dataset. 

3.3. Clustering Process 

This stage consists of two steps. The first step is to determine the number of clusters 

to get the optimal number of clusters using the Silhouette Coefficient. The second step is 

to group the user data using the k-means algorithm, where k is the number of clusters with 

the maximum Silhouette Coefficient value. The details of each method are presented as 

follows. 

3.3.1. Determination of the Number of Clusters 

This process aims to measure the clustering quality to obtain the optimal number of 

clusters (k). The clustering quality measurement consists of two methods: extrinsic and 

intrinsic [21]. The extrinsic method compares a clustering result with the ideal clustering 

made by experts. If there is no ideal clustering from experts, we can use the intrinsic 

method, which evaluates the clustering quality by testing how far apart the clusters are 

and how dense the clusters are. 

One of the metrics used in the intrinsic method is the Silhouette Coefficient. This method 

measures an object’s similarity to its cluster (cohesion) compared to other clusters (separation). 

The following steps describe how to count the Silhouette Coefficient’s value [21]: 

1. Calculate the average distance from one document to another in a cluster using the 

formula defined in Equation (1). 

𝑎(𝑖)  =  
1

|𝐴| − 1
∑ 𝑑(𝑖, 𝑗)

𝑗𝜖𝐴,𝑗≠𝑖

 (1) 

𝑗 is another document in one cluster 𝐴, and 𝑑(𝑖, 𝑗) is the distance between document 

𝑖 and document 𝑗. 

2. Calculate the average distance from the document 𝑖 to all documents in other clus-

ters, using the formula defined in Equation (2). Then, find the minimum average dis-

tance using Equation (3). 

𝑑(𝑖, 𝐶)  =  
1

|𝐶|
∑𝑑(𝑖, 𝑗)

𝑗𝜖𝐶

 (2) 

𝑏(𝑖)  =  𝑚𝑖𝑛𝑐≠𝐴 𝑑(𝑖, 𝐶)  (3) 

3. Calculate the Silhouette Coefficient value using Equation (4). 

𝑆(𝑖)  =  
𝑏(𝑖) − 𝑎(𝑖)

max (𝑎(𝑖), 𝑏(𝑖))
 (4) 
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The value of 𝑎(𝑖) represents the density of the cluster containing object i. The smaller 

the value of 𝑎(𝑖), the denser the cluster. Meanwhile, the value of 𝑏(𝑖) indicates how far 

object 𝑖 is apart from other clusters. The greater the value of 𝑏(𝑖), the further apart object 

𝑖 is from other clusters. If the value of 𝑎(𝑖) is minimal and the value of 𝑏(𝑖) is immense, 

then the Silhouette Coefficient of object 𝑖 will be close to 1. It means that the cluster con-

taining object 𝑖 is very dense, and object 𝑖 is far from other clusters. Conversely, if the 

value of 𝑎(𝑖) is immense and the value of 𝑏(𝑖) is minimal, then the Silhouette Coefficient 

of object 𝑖 will be close to −1. It means that the cluster containing object 𝑖 is not con-

gested, and object 𝑖 is very close to other clusters. 

The clustering results are said to be good if the Silhouette Coefficient value is posi-

tive. The Silhouette Coefficient value equal to 1 is the maximum value, which states that 

the number of clusters produced is perfect. This study uses the intrinsic Silhouette Coef-

ficient method to obtain the optimal number of clusters (k). 

We need to determine the optimal number of clusters because previous researches 

[17–19] determined the number of clusters directly without measuring the clustering qual-

ity to obtain the optimal number of clusters that will affect the similar user preferences in 

the same cluster. 

3.3.2. Data Clustering 

Clustering is a technique in data mining that groups the same objects in one cluster 

and different objects into different clusters [23–26]. Clustering is known as unsupervised 

learning because there is no class label. The clustering consists of four methods: hierar-

chical-based, grid-based, density-based, and partition-based. 

The partition-based method works by dividing the data into several non-overlapping 

groups, and each data is in precisely one cluster [21]. This method is also known as the 

center-based method or the representative-based method [27]. Some of the algorithms in-

cluded in the partition-based method are k-means, k-medoids, k-modes, and fuzzy c-

means. k-means is one of the prominent algorithms in recommender systems [28]. 

The k-means algorithm aims to group data by maximizing data similarity in one clus-

ter and minimizing the similarity inter clusters. The similarity measurement utilizes a dis-

tance function. The distance between data p in the Ci cluster and ci centroid in the k-means 

algorithm uses the Euclidean distance. The shortest distance between the data and the 

centroid point indicates the maximum data similarity. The output of the k-means is highly 

dependent on the initial centroid that is randomly determined [26,29–31]. 

This study applies a partition-based method, k-means clustering, because this 

method is simple, easy to implement, and has fast computation time. Therefore, it is suit-

able for solving complex computational problems in the similarity metrics of recommen-

dation systems. The clustering process works by grouping user and rating data based on 

all user profile factors. 

3.4. Memory-Based Process 

The memory-based method consisted of two processes: similarity calculation and rat-

ing prediction. In this study, the similarity calculation applies UPCSim [16], which refers 

to Equation (5). 

𝑆(𝑥, 𝑦)  =  𝛼 𝑆𝑟(𝑥, 𝑦) + 𝛽 𝑆𝑏(𝑥, 𝑦) (5) 

𝑆(𝑥, 𝑦) represents the final similarity between users 𝑥 and 𝑦. 𝑆𝑟(𝑥, 𝑦) denotes the user 

rating score-based similarity between users 𝑥 and 𝑦, whose formula refers to Equation 

(6).  𝑆𝑏(𝑥, 𝑦)  states the user behavior score-based similarity between users 𝑥  and 𝑦 , 

whose formula refers to the Equation (7). Finally, 𝛼 and 𝛽 are correlation coefficients be-

tween user profile attributes and user rating/behavior scores, calculated using multiple 

linear regression [16]. 
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𝑆𝑟(𝑥, 𝑦)  =  
∑ (𝑟𝑥𝑝 − �̅�𝑥)𝑝∈𝑃𝑥∩𝑃𝑦

(𝑟𝑦𝑝 − �̅�𝑦)

√∑ (𝑟𝑥𝑝 − �̅�𝑥)
2

𝑝∈𝑃𝑥∩𝑃𝑦
. √∑ (𝑟𝑦𝑝 − �̅�𝑦)

2
𝑝∈𝑃𝑥∩𝑃𝑦

 (6) 

𝑃𝑥 and 𝑃𝑦 express the set of products rated by user 𝑥 and user 𝑦, respectively. Next, 𝑟𝑥𝑝 

and 𝑟𝑦𝑝 state the rating values on product 𝑝 by user 𝑥 and user 𝑦, respectively. Further-

more, �̅�𝑥 and �̅�𝑦 describe the rating averages for users 𝑥 and 𝑦. Finally, 𝑝 is one of the 

co-rated products by users 𝑥 and 𝑦. 

 𝑆𝑏(𝑥, 𝑦)  =  
∑ (𝑃𝑥𝑔 − �̅�𝑥)𝑔∈𝐺𝑥∩𝐺𝑦

(𝑃𝑦𝑔 − �̅�𝑦)

√∑ (𝑃𝑥𝑔 − �̅�𝑥)
2

𝑔∈𝐺𝑥∩𝐺𝑦
. √∑ (𝑃𝑦𝑔 − �̅�𝑦)

2
𝑔∈𝐺𝑥∩𝐺𝑦

 (7) 

𝐺𝑥 and 𝐺𝑦 denote the set of product types assessed by user 𝑥 and user 𝑦, respectively. 

Next, 𝑃𝑥𝑔  and 𝑃𝑦𝑔  express the probability of product type 𝑔 given by users 𝑥 and 𝑦. 

Furthermore, �̅�𝑥 and �̅�𝑦 indicate the average probability of product type from users 𝑥 

and 𝑦. Finally, 𝑔 is a co-rated product type of users 𝑥 and 𝑦. 

The illustration of the similarity calculation between users can be explained as fol-

lows. The initial step is generating a rating matrix. For example, matrix 𝑅 shows the user 

rating score given by five users on seven products. The blank value of matrix 𝑅 indicates 

the sparseness of the matrix. 

𝑅 =  

[
 
 
 
 
5 3 4 2
4 2 4 4
4 4 5 3

2 3 1 5
1 1 4 1 ]

 
 
 
 

  

After generating the rating matrix, the next step calculates the similarity based on the 

user rating score (𝑆𝑟) by referring to Equation (6). Matrix 𝑆𝑟  shows the results of similarity 

𝑆𝑟 . 

𝑆𝑟  =  

[
 
 
 
 

1 0.9939 0.9701 0.9899 0.7954
0.9939 1 0.9939 0.9923 0.8642
0.9701 0.9939 1 1 0.9899
0.9899 0.9923 1 1 0.7265
0.7954 0.8642 0.9899 0.7265 1 ]

 
 
 
 

  

After calculating the similarity 𝑆𝑟 , the next step calculates the user behavior score-

based similarity (𝑆𝑏). Equation (7) explains this similarity 𝑆𝑏 using the probability matrix 

of user behavior scores and the similarity 𝑆𝑏 formula. The user behavior score is the total 

score given by the user in accessing the product type. Table 1 shows the product type data 

of the seven products rated by the previous five users. In this case, each product can be 

part of several products types. For example, product p1 (movie title “Alladin”) includes 

the product’s types of animation, children, and comedy. 

Table 1. Data product. 

Product 
Product Type 

G1 G2 G3 G4 G5 G6 G7 G8 

p1 0 1 1 1 0 0 0 0 

p2 1 0 0 1 0 1 0 0 

p3 0 0 0 0 0 1 1 0 

p4 0 0 0 0 0 1 0 0 

p5 0 0 0 0 1 0 0 1 
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p6 0 0 0 0 1 0 0 1 

p7 0 0 0 1 0 0 0 0 

p1 = Aladdin, p2 = get shorty, p3 = the day, p4 = white balloons, p5 = seven, p6 = usual suspects, p7 = 

clerks, G1 = action, G2 = animation, G3 = children, G4 = comedy, G5 = crime, G6 = drama, G7 = Sci-fi, 

G8 = thriller. 

Based on matrix 𝑅 and Table 1, the illustration of user behavior scores can be ex-

plained as follows. If user 1 accesses product p1 (the movie title “Aladdin”), then user 1 

also accesses the product types (animation, children, and comedy), each of which will get 

a user behavior score of 1. Furthermore, user 1 accesses products p2, p4, and p5. As a result, 

user 1 will access the product type of action = 1, animation = 1, children = 1, comedy = 2, 

crime = 1, drama = 2, and thriller = 1. These values are called the user behavior scores. In 

the same way, we calculate the user behavior scores for user 2, user 3, user 4, and user 5. 

Matrix 𝐵 shows the final results of calculating the user behavior scores of five users on 

eight product types. 

𝐵 =  

[
 
 
 
 
1 1 1 2 1 2 0 1
0 1 1 1 1 2 1 1
1 1 1 3 1 1 0 1
0 0 0 1 1 2 1 1
0 1 1 2 0 2 1 0]

 
 
 
 

  

The next step is to calculate the probability score of user behavior by dividing the 

user behavior score by the number of users who access the product type. For example, 

based on matrix 𝐵, user 1 and user 3 accessed the product type of G1. Thus, the probability 

of user behavior score for user 1 and user 3 on product type of G1 is 0.5. Matrix 𝑃 shows 

the probability score of user behavior from the five users of eight product types. 

𝑃 =  

[
 
 
 
 
0.5 0.25 0.25 0.4 0.25 0.4 0 0.25
0 0.25 0.25 0.2 0.25 0.4 0.33 0.25

0.5 0.25 0.25 0.6 0.25 0.2 0 0.25
0 0 0 0.2 0.25 0.4 0.33 0.25
0 0.25 0.25 0.4 0 0.4 0.33 0 ]

 
 
 
 

  

Based on matrix 𝑃 and Equation (7), we can calculate the similarity based on user 

behavior score (𝑆𝑏) as shown in matrix 𝑆𝑏 . 

𝑆𝑏  =  

[
 
 
 
 

1 0.4029 0.6675 0.3363 0.9997
0.4029 1 0.5416 0.9893 0.3272
0.6675 0.5416 1 0.6651 0.4688
0.3363 0.9893 0.6651 1 0.1453
0.9997 0.3272 0.4688 0.1453 1 ]

 
 
 
 

  

Finally, the final similarity is calculated by combining the similarity 𝑆𝑟  and similar-

ity 𝑆𝑏 with their weighting. Matrix 𝑆 shows the final similarity between users, which can 

be used as a similarity metric model in the rating prediction. Note that we assume the 

weights of two similarities by 0.3 and 0.4 in this example. 

𝑆 =  

[
 
 
 
 

1 0.8402 0.8914 0.8200 0.8485
0.8402 1 0.8763 0.9915 0.7246
0.8914 0.8763 1 0.9129 0.8544
0.8200 0.9915 0.9129 1 0.5754
0.8485 0.7246 0.8544 0.5754 1 ]
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After calculating similarity, the following process is the rating prediction. This pro-

cess aims to predict the rating score for unrated products by active users. Before making 

a rating prediction, it is necessary to determine the number of nearest neighbors (k). In 

this study, the k value ranges from 10 to 100, incremented by 10 [3,12,14–16]. 

The formula for calculating the predicted rating for the unrated products is expressed 

in Equation (8) [3,11]. 

�̂�𝑥𝑝  =  �̅�𝑥 +
∑ 𝑆(𝑥, 𝑦).𝑦𝜖𝑁𝑁𝑥 (𝑟𝑦𝑝 − �̅�𝑦)

∑ |𝑆(𝑥, 𝑦)|𝑦𝜖𝑁𝑁𝑥

 (8) 

�̂�𝑥𝑝 is the predicted rating score from user 𝑥 to product 𝑝. 𝑦𝜖𝑁𝑁𝑥 represents the set of 

users who have the nearest similarity to the user x. 𝑆(𝑥, 𝑦) denotes the final similarity 

between users 𝑥 and 𝑦. �̅�𝑥 and �̅�𝑦 are the rating score average of users 𝑥 and 𝑦, respec-

tively. Finally, 𝑟𝑦𝑝 is the given rating score by user 𝑦 to product 𝑝. 

3.5. Evaluation 

The final stage in this study is evaluation. This stage evaluates the recommendation 

system’s performance that combines the k-means clustering method and user behavior-

based similarity. The recommendation system’s performance was measured by predictive 

metrics and running time. In this study, the predictive metrics utilize Mean Absolute Error 

(MAE) and Root Mean Square Error (RMSE) [32,33]. 

The MAE calculates the average absolute deviation between the actual and the pre-

dicted rating scores. At the same time, RMSE computes the deviation degree between the 

actual and the predicted rating scores. A lower MAE and RSME represent good recom-

mendation quality [19,34]. 

The formulas of MAE and RMSE refer to Equations (9) and (10). 

𝑀𝐴𝐸 =  
1

𝑁
∑ |�̂�𝑥𝑝 − 𝑟𝑥𝑝|

𝑥𝜖𝑈,𝑝𝜖𝑃

 (9) 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (�̂�𝑥𝑝 − 𝑟𝑥𝑝)

2

𝑥𝜖𝑈,𝑝𝜖𝑃

 (10) 

𝑁 is the total of predicted products. The 𝑟𝑥𝑝 and �̂�𝑥𝑝 denote the actual and predicted rat-

ings of the user 𝑥 to product 𝑝, respectively. 

4. Experiment Result and Discussion 

This section provides the experiment results, starting from determination of the num-

ber of clusters, the data distribution after clustering, comparison of MAE and RMSE, and 

comparison of the running time. Finally, the discussion explains the findings of this study. 

Experiments in the MovieLens 100k dataset used the computer specifications of In-

tel® Core™ i7-4510U CPU @ 2.000 GHz (4CPUs), ~2.6 GHz, and RAM of 16 GB. The UP-

CSim and CB-UPCSim algorithms were programmed using Python, running under Mi-

crosoft Windows 7. 

4.1. Result of Silhouette Coefficient 

The experiment for determining the optimal number of clusters begins with selecting 

the number of clusters to be evaluated, ranging from 2 to 19. The minimum number of 

clusters is 2, based on the smallest possible clusters. Meanwhile, the maximum number of 

clusters is 19, referring to the optimal value after the largest clusters used in previous 

studies [17–19]. At k = 18, the Silhouette Coefficient yields the second highest optimal 

value, and at k = 19, the Silhouette Coefficient value decreases again. We do not continue 

to the next k because the higher k needs more computation time. 
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Figure 2 shows the results of the clustering evaluation using the Silhouette Coeffi-

cient method. Note that the Silhouette Coefficient value is an average value taken from 5 

experiments. Based on Figure 2, the number of clusters (k) equal to 3 gets the maximum 

value of the Silhouette Coefficient, showing the optimal number of clusters. Therefore, the 

number of clusters k equal to 3 will be used as the basis for the clustering process. 

 

Figure 2. Result of Silhouette Coefficient. 

4.2. Result of k-Means Clustering 

The k-means clustering process with a value of k = 3 works to group 943 users and 

rating data on the MovieLens 100k dataset into 3 clusters based on the similarity of user 

profiles. Figure 3 shows the clusters formed, i.e., cluster 0, cluster 1, and cluster 2.  

 

Figure 3. Result of k-means clustering for 943 users in MovieLens 100k. 

Based on Figure 3, the distribution of user data after clustering is in cluster 0 with 319 

users (33.83%), cluster 1 with 336 users (35.63%), and cluster 2 with 288 users (30.54%). 
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Meanwhile, the distribution of rating data is in cluster 0 with 32,906 ratings (32.91%), clus-

ter 1 with 34,370 ratings (34.37%), and cluster 2 with 32,724 ratings (32.72%%). The sparsity 

and density of each cluster are 93.87% and 6.13% (in cluster 0), 93.92% and 6.08% (in clus-

ter 1), and 93.24% and 6.76% (in cluster 2). Table 2 shows the details of the statistical data 

before and after the clustering process. 

Table 2. Dataset statistics before and after the clustering process. 

Data Before Clustering 
After Clustering 

Cluster 0 Cluster 1 Cluster 2 

#users 943 319 336 288 

#ratings 100,000 32,906 34,370 32,724 

% users 100% 33.83% 35.63% 30.54% 

% ratings 100% 32.91% 34.37% 32.72% 

sparsity of ratings 93.70% 93.87% 93.92% 93.24% 

density of ratings 6.30% 6.13% 6.08% 6.76% 

4.3. Result of MAE and RMSE 

This subsection aims to compare the results of the recommendation system perfor-

mance using a combination of memory-based and clustering methods with the memory-

based method (without clustering) in the previous study. The results of the recommenda-

tion system performance are measured based on the MAE and RMSE values. 

The experiment was performed by dividing the dataset of each cluster into several 

parts using the k-fold cross-validation method. In machine learning, the value of k is gen-

erally 5 or 10. Both of these values have been empirically proven to produce estimates of 

test error rates that are neither too high bias nor very high variance [35]. We select k = 5 

from these values to divide the dataset because k = 5 consumes less time than k = 10. In 

addition, many previous studies [1,3,9,10,12,16] in recommender systems split the dataset 

into 80%:20% as the training data and testing data. 

The value of k in this study is five. Hence, there are five training data (train_1, train_2, 

train_3, train_4, and train_5) and five testing data (test_1, test_2, test_3, test_4, and test_5). 

Therefore, there are five iterations performed in each cluster. The first iteration uses the 

train_1 and test_1 datasets, the second iteration uses the train_2 and test_2 datasets, re-

peated until the fifth iteration. The number of nearest neighbors ranges from 10 to 100. 

Table 3 compares the average MAE values before and after the clustering process in the 

MovieLens 100k dataset. 

Table 3. Comparison of the average MAE values before and after the clustering process. 

N 

MAE 

Before Clustering After Clustering 

UPCSim Cluster 0 Cluster 1 Cluster 2 

10 0.7669 0.7450 0.7469 0.7439 

20 0.7483 0.7321 0.7329 0.7320 

30 0.7410 0.7287 0.7303 0.7261 

40 0.7387 0.7194 0.7220 0.7180 

50 0.7369 0.7187 0.7194 0.7167 

60 0.7364 0.7162 0.7188 0.7159 

70 0.7359 0.7152 0.7167 0.7142 

80 0.7355 0.7148 0.7161 0.7138 

90 0.7347 0.7145 0.7156 0.7135 

100 0.7337 0.7139 0.7152 0.7131 

Average 0.7408 0.7219 0.7234 0.7207 
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Based on Table 3, the average of MAE values decreases as the number of nearest 

neighbors (N) grows. The average of MAE values after the clustering process reduces 

compared to before the clustering process. The decrease in the average of MAE values in 

cluster 0 is 1.89%, cluster 1 is 1.74%, and cluster 2 is 2.01%. It shows that the prediction 

accuracy after the clustering process experienced an average increase of 1.88% compared 

to before. 

Figure 4 shows a graphic illustration of the average MAE values before the clustering 

process (using the UPCSim algorithm) and after the clustering process (using the CB-UP-

CSim algorithm in each cluster). 

 

Figure 4. Comparison of the average MAE values in the UPCSim algorithm and the three clusters 

with the Movielens 100k dataset. 

Figure 4 illustrates that the average of MAE values generated in the UPCSim algo-

rithm and the combination of UPCSim and clustering (cluster 0, cluster 1, and cluster 2) 

decreases very sharply at the beginning of the curve. Meanwhile, at the end of the curve, 

the average of MAE values tends to be stable. In the same number of nearest neighbors, 

the average MAE values in each cluster shows a smaller value than the UPCSim algo-

rithm. It shows that the clustering process results in the performance of the recommenda-

tion algorithm increases, especially in rating prediction. 

Table 4 compares the average RMSE values before and after the clustering process 

using the MovieLens 100k dataset. The average RMSE value in each cluster is always 

smaller than the RMSE generated before the clustering process. In other words, there is a 

decrease in the RMSE value after the clustering process compared to before the clustering 

process. The reduction in the average of RMSE values in cluster 0 is 1.45%, cluster 1 is 

1.27%, and cluster 2 is 1.65%. Thus, the recommendation performance generated after the 

clustering process obtained an average increase of 1.46%. 
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Table 4. Comparison of the average RMSE values before and after the clustering process. 

N 

RMSE 

Before Clustering After Clustering 

UPCSim Cluster 0 Cluster 1 Cluster 2 

10 0.9793 0.9548 0.9557 0.9532 

20 0.9541 0.9432 0.9451 0.9399 

30 0.9453 0.9354 0.9367 0.9340 

40 0.9427 0.9338 0.9348 0.9274 

50 0.9393 0.9261 0.9287 0.9235 

60 0.9389 0.9240 0.9250 0.9226 

70 0.9383 0.9229 0.9243 0.9211 

80 0.9381 0.9222 0.9241 0.9208 

90 0.9364 0.9208 0.9236 0.9207 

100 0.9359 0.9203 0.9233 0.9199 

Average 0.9448 0.9304 0.9321 0.9283 

Figure 5 shows the graphic illustration of the average RMSE value before the cluster-

ing process (using the UPCSim algorithm) and after the clustering process (in each clus-

ter). 

 

Figure 5. Comparison of the average RMSE values in the UPCSim algorithm and the three clusters 

with the Movielens 100k dataset. 

Figure 5 shows that the increase in the number of nearest neighbors affects the result-

ing RMSE values. The four scenarios exhibit a decline in the value of RMSE initially, then 

stabilize as the number of nearest neighbors grows. The RMSE value generated in each 

cluster shows a smaller value than the RMSE value before the clustering process. It shows 

that the clustering process affects the resulting recommendation performance. 

4.4. Result of Running Time 

In addition to measuring the MAE and RMSE values as recommendation metrics, 

this experiment also computed the resulting execution time to see the effect of the cluster-

ing process on the running time of algorithms. Table 5 presents the average running time 

before and after the clustering process. Please note that the running time calculated in this 

study is a combination of training and testing times. 
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Table 5. Comparison of running time before and after the clustering process. 

N 

Running Time (seconds) 

Before Clustering After Clustering 

UPCSim Cluster 0 Cluster 1 Cluster 2 

10 4.78 0.70 0.75 0.67 

20 4.82 0.81 0.85 0.75 

30 5.02 0.91 0.89 0.81 

40 5.27 0.89 0.95 0.86 

50 5.68 0.96 0.98 0.89 

60 5.99 0.98 1.00 0.87 

70 6.02 0.99 1.01 0.90 

80 6.10 1.01 1.03 0.92 

90 6.15 1.03 1.02 0.94 

100 6.28 1.07 1.06 0.94 

Average 5.61 0.94 0.95 0.86 

The running time after the clustering process in each cluster is faster than before the 

clustering process. The running time in cluster 0 shows 4.14 s faster, cluster 1 shows 4.12 

s faster, and cluster 2 shows 4.22 s faster. Overall, the average running time is 0.91 s (de-

creased by 4.16 s or 5.5 times faster than before the clustering process). It shows that the 

performance of the execution time after the clustering process is better than before the 

clustering process, in the sense that the clustering process helps speed up the execution 

time to generate recommendations. It occurs because the amount of data in each cluster 

executed is less than before the clustering process. 

We also measured the computation times for determining the optimal number of 

clusters using the Silhouette Coefficient and k-means clustering. Both methods need com-

putation times of 1.03 s and 30.32 milliseconds, respectively. 

4.5. Discussion 

In this study, we propose a recommendation algorithm that combines memory-based 

and clustering methods. The memory-based method considers user rating scores and user 

behavior scores to accommodate user preferences. Meanwhile, the clustering method is k-

means clustering by determining the number of clusters based on the Silhouette Coeffi-

cient to obtain the optimal number of clusters. 

Choosing the number of clusters has become a consideration by researchers. There 

are two methods available, i.e., extrinsic and intrinsic methods. The extrinsic methods 

need expert judgment, while the intrinsic methods use algorithms to find the best number 

of clusters. We chose the intrinsic method, i.e., the Silhouette Coefficient, because there is 

no expert involved in our work. In addition, our experiment also evaluates the results 

using another well-known intrinsic method (i.e., Davies Bouldin Index). Both intrinsic 

methods result in the same optimal number of clusters (i.e., k = 3). 

The results showed that combining memory-based and clustering methods could im-

prove the prediction performance by reducing MAE by 1.88% and RMSE by 1.46% com-

pared to the baseline method (UPCSim). In addition, the performance of the recommen-

dation processing time after clustering improved 5.5 times faster than before clustering. It 

occurs because users with the same preferences are in one cluster, and the similarity cal-

culation only considers data in one cluster without processing data in other clusters. 

Furthermore, we also evaluated the performance of UPCSim and CB-UPCSim in an-

other dataset (i.e., MovieLens 1M). Testing in MovieLens 1M dataset produces the average 

MAE and RMSE values of 0.6993 and 0.8921 for UPCSim and then 0.6857 and 0.8784 for 

CB-UPCSim. The testing results on the larger dataset show that CB-UPCSim also outper-

forms UPCSim, reducing MAE and RMSE by 1.94% and 1.53%, respectively. In addition, 
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the larger dataset (MovieLens 1M) results in lower MAE and RMSE than the MovieLens 

100k. It shows that the CB-UPCSim yields a low prediction error in a larger dataset, which 

is our research advantage. 

Recently, some studies [36–38] also proposed sophisticated collaborative filtering to 

improve recommendation performances. The study conducted by [36] suggested new col-

laborative filtering using cognitive similarity. Their experimental results show that for the 

lower number of nearest neighbors (k) (i.e., k = 10 and k = 20), CB-UPCSim outperforms 

cognitive similarity. It becomes the advantage of our method because fewer nearest neigh-

bors will need less computation time. However, for the higher k (i.e., k = 30 and k = 50), 

cognitive similarity outperforms our method and becomes the advantage of the cognitive 

similarity method. We still need further study to compare both algorithms for higher k 

(i.e., k = 60 up to k = 100) because the cognitive similarity did not measure them. In addi-

tion, Nguyen et al. [37] use word embedding to improve their proposed collaborative fil-

tering. Hence, implementing word embedding in CB-UPCSim can be another option to 

obtain better performance. Furthermore, Logesh et al. [38] presented user-based collabo-

rative filtering using a new bio-inspired clustering ensemble (BICE). This method was 

evaluated to large-scale datasets (i.e., Yelp and TripAdvisor). The clustering process in 

BICE will also be the next consideration to obtain the optimal cluster in CB-UPCSim. 

Although the proposed system can improve recommendation performance (both rat-

ing prediction and processing time), it still has drawbacks where the similarity calculation 

has to work serially. This similarity calculation starts from calculating the user rating 

score-based similarity, calculating the user behavior score-based similarity, and finally 

calculating both similarity weightings. The computation time of our system consists of the 

overhead computation time and the prediction computation time. The overhead compu-

tation time of this research is the pre-processing data time that includes the dataset read-

ing (130.11 milliseconds), attribute reduction (20.05 milliseconds), and attribute conver-

sion (16.35 milliseconds). This overhead is usually out of the researchers’ consideration 

because only the prediction computation time will be taken into account in the operational 

system. Meanwhile, the prediction computation time consumes 0.91 s (the average run-

ning time from Table 4). 

Besides the similarity calculation working serially, there are three other limitations 

in our proposed method. First, our method only uses MovieLens with sizes 100k and 1M. 

Further research must investigate MovieLens with sizes 10 M, 20 M, and 25 M. Second, in 

the pre-processing stage, we convert three attributes of user profile data (gender, occupa-

tion, and location) into a numeric type, transform the gender (M, F) into (1, 2) and convert 

the occupation into 1 to 21. We may explore other conversion techniques to gain a better 

performance. At the same time, there is a conversion from the location to the first digit of 

location. We assume that the conversion into two digits of location will increase the pre-

diction result. Finally, in the post-processing, we only measure the rating prediction error 

without measuring the quality of top-N recommendations. 

5. Conclusions 

This paper focuses on improving recommendation performance from a previous sim-

ilarity algorithm involving user behavior scores. We propose a combined clustering and 

memory-based method by using k-means clustering and UPCSim. The clustering method 

based on the user profile similarity can speed up the processing time of the recommenda-

tion system by 4.16 s. In addition, the method can increase the system performance with 

a decline of MAE and RMSE by 1.88% and 1.46% in the MovieLens 100k dataset. In a larger 

dataset (MovieLens 1M), our method yields better prediction performance. 

For further research, the system development can consider parallel processing to cal-

culate the similarity between users and explore other clustering methods to improve rec-

ommendation performance. Moreover, the pre-processing stage can be extended by con-

sidering two digits of location, and the post-processing can involve measurement of the 

top-N recommendation. 
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