
computers

Article

Analytical and Numerical Evaluation of Co-Scheduling
Strategies and Their Application

Ruslan Kuchumov * and Vladimir Korkhov

����������
�������

Citation: Kuchumov, R.; Korkhov, V.

Analytical and Numerical Evaluation

of Co-Scheduling Strategies and Their

Application. Computers 2021, 10, 122.

https://doi.org/10.3390/computers

10100122

Academic Editor: Seyedali Mirjalili

Received: 19 August 2021

Accepted: 27 September 2021

Published: 2 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Applied Mathematics and Control Processes, Saint Petersburg State University,
7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia; v.korkhov@spbu.ru
* Correspondence: kuchumovri@gmail.com

Abstract: Applications in high-performance computing (HPC) may not use all available computa-
tional resources, leaving some of them underutilized. By co-scheduling, i.e., running more than one
application on the same computational node, it is possible to improve resource utilization and overall
throughput. Some applications may have conflicting requirements on resources and co-scheduling
may cause performance degradation, so it is important to take it into account in scheduling decisions.
In this paper, we formalize the co-scheduling problem and propose multiple scheduling strategies
to solve it: an optimal strategy, an online strategy and heuristic strategies. These strategies vary in
terms of the optimality of the solution they produce and a priori information about the system they
require. We show theoretically that the online strategy provides schedules with a competitive ratio
that has a constant upper limit. This allows us to solve the co-scheduling problem using heuristic
strategies that approximate this online strategy. Numerical simulations show how heuristic strategies
compare to the optimal strategy for different input systems. We propose a method for measuring
input parameters of the model in practice and evaluate this method on HPC benchmark applications.
We show the high accuracy of the measurement method, which allows us to apply the proposed
scheduling strategies in the scheduler implementation.

Keywords: co-scheduling; HPC; scheduling theory; stochastic optimization

1. Introduction

A number of scientific fields rely on high-performance computing (HPC) for running
simulations and data analysis applications. For example, ref. [1] reviews the deployment
of quantum chemistry methods on HPC platforms, ref. [2] describes flood simulation
applications in the civil engineering field running on HPC architectures, and [3] considers
the scheduling problem for cybersecurity applications. Scheduling plays a critical role in
HPC systems, as HPC schedulers are a primary interface between users and computational
resources. They ensure the minimal queue wait time, fairness of resource allocation and
high resource utilization. In addition to this, with growing scales of computational clusters,
they must ensure a low power consumption [4], a low computational cost [5] when they
are deployed in cloud, and support for complex scientific workflows [6].

Commonly used batch schedulers in HPC, for example, SLURM [7] or SGE [8], work by
computing a schedule as a sequence of reservations of cluster resources to each task for
a given amount of time. The parameters of each task (time duration, number of nodes,
amount of memory) are provided by the user during task submission. When execution of
the task reaches the time limit, the task is terminated, so the user has to resubmit the task
with a longer time duration. Due to this, users very often over-estimate time requirements.
For example, the survey in [9] reports that 69% of submitted tasks use less than 25% of
their requested time. Although scheduling algorithms can be adapted to account for over-
estimated time [10], the problem of over-estimation of other resources still remains. The
same survey reports that only 31% of tasks use more than 75% of the requested memory.

Computers 2021, 10, 122. https://doi.org/10.3390/computers10100122 https://www.mdpi.com/journal/computers

https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-8927-2111
https://orcid.org/0000-0003-2458-3194
https://doi.org/10.3390/computers10100122
https://doi.org/10.3390/computers10100122
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/computers10100122
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers10100122?type=check_update&version=3

Computers 2021, 10, 122 2 of 23

An alternative approach to reservation-based scheduling, called co-scheduling, has
started to appear recently in the scientific literature. The idea behind this approach is
that multiple tasks may be scheduled to run simultaneously on the same computational
node, when they do not interfere with each other. This allows one to increase cluster
utilization and overall task throughput (e.g., [11–13]). Each cluster node has multiple dif-
ferent resources that are rarely fully utilized at the same time by a single application. Such
resources may include memory cache size, memory bus bandwidth, network bandwidth,
computational units in CPU, accelerator cards, etc. Usually, applications reach maximum
utilization (a bottleneck) on one of these resources, which limits the use of other resources.
Additionally, resource utilization can be controlled by the scheduler using technologies
such as cache partitioning [14] or voltage scaling [15]. Applications that have bottlenecks
on different resources can be potentially scheduled together as they would not interfere
with each other.

Deciding which tasks can be executed simultaneously with minimal interference in
advance requires the model of task performance degradation. In practice, this model is not
easy to obtain, as it can only be estimated from the experiments. In addition to this, it must
be reproducible when task behaviour changes due to different factors, such as different
input parameters and hardware configurations, or it may even change randomly when the
task is running non-deterministic algorithms. Instead, due to these limitations, in this paper
we approach this problem as an online scheduling problem, where scheduling decisions
are made dynamically based on the observed information about each task performance.
We propose a method of measuring task processing speed in for the runtime that can be
used for providing a feedback value to the scheduler.

To show the feasibility of the proposed approach, we have formalized the co-scheduling
problem in terms of the scheduling theory. We have considered deterministic and stochastic
problem definitions and proposed several scheduling strategies, including the optimal
strategy, that can be used to solve the problem. These strategies vary in terms of the opti-
mality of the solution they produce and in terms of the information about each task that is
available to them. We have compared each strategy with the optimal strategy by deriving
the analytics bound on the competitive ratio for an online strategy and by estimating it
using numerical simulations for non-deterministic strategies.

The main contributions of this paper are summarized as follows:

1. We have formalized the deterministic co-scheduling problem in terms of scheduling
theory and proposed the optimal strategy and an online strategy (referred to as FCS)
to solve it. We have analytically derived an upper boundary limit for the competitive
ratio of the FCS strategy.

2. We have formalized the stochastic co-scheduling problem and proposed search-
based strategies for solving it. Using numerical simulations, we have shown how
competitive ratios of these strategies are affected by applications and the changes in
task processing speed.

3. We have proposed a method of measuring task processing speed in the runtime.
Using benchmarks that mimic HPC applications, we have shown a high accuracy of
the method in different co-scheduling environments.

The rest of the paper is organized as follows. First, in Section 2, we give an overview
of the existing work related to co-scheduling. Section 3 defines a taxonomy of scheduling
problems and formalizes a deterministic co-scheduling problem. In Section 4, we present
optimal and online strategies and their comparison for this problem. In Section 5, we for-
malize a stochastic co-scheduling problem and present strategies for solving it. In Section 6,
we propose a method for measuring task processing speed and experimentally show its
accuracy. In Section 8, we describe experiments with numerical simulations and present
their results. Finally, Sections 9 and 10 provide practical considerations about strategy
implementation and brief concluding remarks.

Computers 2021, 10, 122 3 of 23

2. Related Work

The problem of scheduling computational tasks on shared resources has started to
appear recently in the scientific literature in the HPC field. For example, there are workshop
proceeding papers [16] dedicated to the co-scheduling problem of HPC applications. These
particular papers, along with others, are mostly focused on the feasibility of this approach
in general and providing proof of concept implementations. In [17], the authors showed
that by sharing nodes between two distributed applications instead of running these appli-
cations on dedicated nodes may improve performance by 20% in terms of both execution
time and system throughput. In [11], this approach is referred to as job striping and it was
shown to produce a more than 22% increase in system throughput in benchmark and real
applications. In [12], the authors presented scheduler implementation that applied the
co-scheduling strategy and reported an up 35% increase in throughput. The papers [13,18]
report makespan decreases of up to 26% and 55% correspondingly due to the co-scheduling
of two applications. In our work, however, we focus mostly on the theoretical part of the
co-scheduling problem. For example, in our previous paper [19], we have showed how
makespan may decrease due to co-scheduling as a function of application slowdown.

There are also theoretical publications focused on modeling the co-scheduling problem.
Some authors in their publications approach it as an offline scheduling problem, where
all task data are available at the start and an optimal schedule can be constructed in
advance. Among these publications are [14,20,21], where the authors solve the offline
scheduling problem with resource constraint. They model the CPU cache partition size as
a controllable task resource and define task speedup as a function of the cache partition
size. These speedup functions are assumed to be known in advance and they are used for
constructing an optimal schedule.

The problem of measuring task speedup profiles that can later be used for offline
scheduling is described, for example, in [18,22]. In the first paper, the authors used a
machine learning approach for constructing a model of application slowdown as a function
of CPU performance counters values. The training dataset was obtained by measuring
performance counters and execution times of applications in ideal conditions and in pairs
with other applications. The authors fitted different models on the training data from
27 benchmark applications and reported that the best model (random forest) provided
an 80% prediction accuracy for unseen applications. The second paper presents a similar
approach but with a different machine learning model. The authors fitted a support
vector machine model of makespan decrease (a boolean value) as a function of the metrics
measuring CPU, memory and IO intensities. The constructed models in both papers were
used to decide whether or not tasks from the queue can be co-scheduled (in pairs) on the
same cluster nodes.

In this paper, we propose a different approach, where task performance degradation
is measured over the runtime and co-scheduling decisions are made dynamically. We
consider that the approach of offline scheduling may produce unreliable models, as it
cannot account for all factors affecting the application performance, which are important
for offline scheduling. First, there may be dependencies on input parameters. Application
behaviour may change drastically when it is processing a small dataset that fits into CPU
caches compared to a large dataset that does not fit into CPU caches. Second, changes in
system configuration may also affect application performance. For example, cluster nodes
may share the same interconnect network and applications running on these nodes (sepa-
rately) may affect each other [23]. Third, tasks may have stochastic resource requirements,
for example, when they are running non-deterministic algorithms [10]. In addition to this,
online scheduling allows for better controlling co-scheduling, when, for example, only
certain parts of applications can be co-scheduled.

The dynamic co-scheduling problem for HPC applications is not covered in the sci-
entific literature to the same extent as offline scheduling and implementation-related
problems. Among the available publications there is [15], where the authors propose using
a reinforcement learning algorithm for online co-scheduling of services and batch HPC

Computers 2021, 10, 122 4 of 23

workloads. Computational resources for HPC workloads in the described setup are pro-
vided as opportunistic resources when the service meets its target service level agreement
(query latency). The authors proposed dynamically scaling the CPU clock frequency of
the cores that run HPC workloads based on the values of CPU performance counters and
the feedback reported by the service. Using this approach allowed the authors to improve
server utilization by up to 70% compared to using dedicated servers for each workload.

A similar online scheduling problem is covered in the context of thread scheduling
in simultaneous multithreading (SMT) CPUs. For example, there are [24–26], dating back
to the year 2000. The general idea, proposed in these papers, is to dynamically measure
the instruction per cycle (IPC) values of each thread, when it is running alone on a core
and when it is running in parallel with other threads. Then, the ratio of these two values is
used for making scheduling decisions. The authors report decreases in the task turnaround
time (the sum of queue wait time and execution time) by 17% [24] and 7–15% [25]. In the
follow-up paper [27], the authors revisited this approach and showed that although the
turnaround time decrease may be high, the instruction throughput gain is smaller than 3%.
The authors showed this experimentally by measuring the instruction throughput of each
benchmark application thread in all possible combinations with other threads. Then, these
values were used to construct an optimal schedule which was compared to a naive strategy
of running all threads in parallel in the queue order.

Earlier in our research [19], we applied the same method as in [27] to show how
the makespan of a naive strategy of running all tasks simultaneously compares to the
optimal strategy. We have showed that the difference between makespan values increases
significantly as a function of tasks slowdown. We have also provided theoretical boundaries
for the task slowdown value when a naive parallel strategy cannot be applied.

In the literature, there are several approaches for controlling applications to implement
co-scheduling. In [14], cache partitioning technology was used for assigning each core
a specified amount of an available shared cache. When the application has a bottleneck
in cache access, restricting its size allows one to control the application processing speed.
In [15], the approach of changing voltage and frequency of individual CPU cores was used.
By scaling the frequency of the cores that run the same task, it is possible to change the task
processing speed. In [12], the authors used a different approach of migrating applications in
virtual machines between nodes. This approach allows one to implement task preemption,
so one task that is in conflict with other tasks could be suspended and migrated to a different
node. In the papers that propose offline scheduling strategies [18,22], the authors do not
control the resource allocation or processing speed of each task in runtime, but instead
decide on which task combinations to schedule in advance, before task processing starts.

In this paper, we propose scheduling strategies that rely on task preemption. A pre-
emption interface can be provided at the software level by the operating system scheduler
or by a hypervisor. Unlike CPU dynamic voltage control or cache partitioning technolo-
gies, preemption does not allow one to control the application execution speed, but as an
advantage, it does not require support at the hardware level.

In terms of scheduling strategies, this paper relates to the online scheduling strate-
gies for SMT CPUs in the aforementioned papers. We also propose using similar metrics
for measuring task processing speed and we are also relying on task preemption to im-
plement co-scheduling. Unlike thread scheduling, we are focusing on the higher level
schedulers (workflow managers or batch schedulers) that work on top of the operating
system scheduler. Due to this, we do not meet the requirement of having a very low
operational overhead, which allows us to apply more computation-intensive strategies;
furthermore, additional information about application runtime is available for making
scheduling decisions.

3. The Problem of Task Co-Scheduling

In classical scheduling theory, there are assumptions [28] that may limit its applicability
to the co-scheduling problem. At first, each task can be processed by at most one machine

Computers 2021, 10, 122 5 of 23

and each machine can process at most one task. Second, the task execution time does not
change in time. Third, the task execution time is known in advance. In the problem of
co-scheduling all of the propositions of classical scheduling theory are changed. That is,
a single machine may process more than one task, task processing speed changes due
to interference of other tasks and their required amount of work or processing time are
unknown. Nevertheless, in this paper, we will abide with conventional scheduling theory
notation and methods whenever possible.

In this paper, we will distinguish scheduling models and their strategies as deter-
ministic and stochastic following the notation from [29]. Deterministic scheduling models
assume that there is a finite number of tasks and information about each task (e.g., process-
ing time) is represented as an exact quantity. In stochastic scheduling models, information
about tasks is not known exactly in advance and represented as random variables. Some pa-
rameters of distributions of these random variables may be available before the task starts,
but the exact value (its realization) is only known when the task is completed.

Deterministic scheduling models can vary by the availability of the information about
each task. When all information about each task is known in advance, such models are
referred to as offline and their strategies are called offline strategies. Contrary to offline
models, there are online models, where the number of tasks and information about them
are unknown in advance. The scheduler becomes aware of the tasks only when they are
added to its queue. In the computer science field, a different notation of static and dynamic
strategies is commonly used instead of offline and online strategies (for example, in [5]).

Online scheduling models can be further divided as clairvoyant and non-clairvoyant
models [29]. Once the task is presented to the scheduler, the information related to the task
processing time can either be available, which makes the model clairvoyant, or unknown
until task completion, which makes the model non-clairvoyant.

Problem Formulation

In this section, we will formalize the task co-scheduling problem. We will only consider
the stationary problem definition, where the number of tasks, their processing speeds in
all combinations and required amount of work do not change over time. This assumption
limits the scope of theoretical methods that can be used. In practice, it may not always
hold, but the results obtained for a stationary system can be useful for time-dependent
systems as well.

We will use the following notation to formalize the scheduling problem. There are
n tasks (applications) denoted as T = {T1, . . . , Tn}. Each Ti requires bi work units to be
performed before its completion. Any subset of tasks from T can be ran simultaneously
on the same machine. We will refer to these subsets as task combinations. There are
m = 2n − 1 possible combinations (subtracting ∅ combination). We denote each combina-
tion as Sj, Sj ∈ 2T , where 2T is a set of all subsets of T (power set). |Sj| is the number of
tasks in Sj.

Tasks are run in combination at their own processing speeds (measured in work unit
per time units). Without loss of generality, we consider the speed of the task, when it was
running in ideal conditions (in the Sj = {Ti} combination), to be equal to 1. Otherwise, we
can divide the required task units of work (bi) by this speed. We denote ai,j as a speedup
(or acceleration) of the task Ti in combination Sj compared to ideal conditions. Due to
this assumption, we will refer to ai,j as speedup and speed interchangeably (except for the
sections related to experiments, where the difference between two terms matters).

Even though task speed cannot increase when it is run in combination with other
tasks compared to ideal conditions, hence values ai,j ≤ 1, we will still refer to these values
as speedup values. This fact can be generalized into a constraint on values ai,j, i.e., that the
task speed decreases with the increase in the number of tasks in combination:

ai,p ≤ ai,q, ∀(p, q) | Sp ⊂ Sq, i = 1, . . . , n (1)

Computers 2021, 10, 122 6 of 23

When Ti /∈ Sj, then ai,j = 0, and when Ti ∈ Sj, then 0 ≤ ai,j ≤ 1. All values of ai,j form
a matrix A with dimensions n by m. We will define the speed of a whole combination as a
sum of all task speeds in the combination (aj = ∑n

i=1 ai,j).
For the simplicity of the model definition, we assumed that all task combinations

are feasible and all are tasks run in a single-node environment. These assumptions do
not limit a general case, as task processing speed in combinations containing unfeasible
subsets of tasks can be set to zero. Environments with multiple nodes can be modeled
as a single-node environment containing combined resources of multiple nodes, without
affecting the introduced model definition.

We define a schedule as a sequence of pairs of task combinations and their time
interval lengths. We denote a pair at the position k in a schedule as (Sjk , xjk), where xjk is
the amount of time the combination Sjk is supposed to run until the scheduler switches
to the next pair at the position k + 1. The index jk refers to a subsequence of combination
indices j, i.e., jk ∈ {1, . . . , m} and k = 1, . . . , K, where K is the number of pairs in the
schedule. We will call this sequence of pairs a feasible schedule when each task completes
its required amount of work exactly, i.e., ∑K

k=1 ai,jk xjk = bi ∀i = 1, . . . , n.
In this paper, we will use makespan as the objective function for the scheduling

problem. We define the makespan of a schedule as the completion time of the last task. It
can also be written as a sum of the assigned time interval lengths: Cmax = ∑K

k=1 xjk . Since it
is a sum, we can reorder its terms and group together the terms corresponding to the same
combination and write it as:

Cmax =
m

∑
j=1

xj, where xj = ∑
k|jk=j

xjk , j = 1, . . . , m (2)

Now, we consider the problem definition, where preemption is allowed, that is, the
scheduler may suspend the execution of tasks from the current combination and continue
the execution of other tasks from the next combination. Preemption of combinations may
occur even if some of their tasks are not completed; due to this, in a feasible schedule some
combinations may be repeated multiple times.

4. Deterministic Co-Scheduling Strategies

In this section, we will cover optimal and online scheduling strategies for solving
the co-scheduling problem. The optimal strategy is an offline strategy as it requires all
information about tasks to be known at the start. The online strategy that we will consider
in this section works under the assumption that the required amount of work is not
available to the scheduler at any time point. In the scheduling theory framework, such a
strategy would fall into the non-clairvoyant category.

Since the online scheduling strategy works with incomplete information, it may
produce sub-optimal solutions. To show the effectiveness of this strategy, we will compare
the makespan value that it produces with respect to the optimal makespan value. For
this, we will derive the formula for the competitive ratio, i.e., the ratio between these two
makespan values. The upper bound of the competitive ratio provides us with an estimation
of the worst case. At the end of the section, we will show an example of the worst case,
where an upper bound can be reached.

4.1. Optimal Strategy

The problem of finding the schedule with the minimal makespan value can be reduced
to finding values of xj ≥ 0, j = 1, . . . , m which have the minimum sum and produce a
feasible schedule, i.e., ∑m

j=1 ai,jxj = bi ∀i = 1, . . . , n
This gives us a linear programming problem:

minimize ∑m
j=1 xj

subject to Ax = b
x ≥ 0

(3)

Computers 2021, 10, 122 7 of 23

Solving this problem gives us a vector x∗ of an optimal time distribution between
combinations. A schedule can be reconstructed from x∗ by running each combination Sj
for x∗j time (if x∗j > 0) in any order. In this case, the schedule would be feasible and it will
have the minimum makespan. In this paper, we will refer to this strategy as an optimal
(OPT) strategy and its makespan value as COPT

max .
This optimal strategy is considered an offline strategy, as it requires all information

(matrix A and vector b) to be known in advance before running any tasks. Due to this,
it cannot be used in practice but can still be used as a reference point for evaluating
other strategies.

4.2. Online Strategy

Let us consider the online (non-clairvoyant) formulation of this problem, when the
amount of work required for the completion of each task (i.e., vector b) is unknown. The
values of matrix A are still known at time 0. To solve this, we propose using an online
strategy that always runs in combination with the maximum speed. We will refer to this
strategy in the present paper as FCS—Fastest Combination Speed first.

The FCS strategy algorithm is shown in pseudocode in Listing 1. The algorithm
iterates until completion of all tasks (C 6= T). At each iteration, it searches a combination
of active tasks with the maximum sum of the task processing speed. In case there are
multiple combinations with the same speed, it will choose the first one in the order of
j = 1, . . . , m. After such a combination is found, it is run until tbe completion of any of its
tasks. In the pseudocode, this step is represented by the function run_until_completion,
which runs the combination and returns a set of tasks that have been completed. After this
function is presented, a set of completed tasks is updated and the algorithm proceeds to
the next iteration.

Listing 1. Pseudocode for the algorithm of FCS strategy.

input :
Se t of n t a s k s T = {T1, . . . , Tn}
Set of m t a s k s combinations Sj ∈ 2T , j = 1, . . . , m
Task speed values ai,j, i = 1, . . . , n, j = 1, . . . , m

C ← ∅ // Set of completed t a s k s
while C 6= T

S∗ ← ∅
a∗ ← 0
for j ∈ {1, . . . , m}

i f Sj ∩ C 6= ∅ then
continue

r ← 0
for i ∈ {1, . . . , n}

r ← r + ai,j
i f r > a∗ then

a∗ ← r
S∗ ← Sj

C ← C ∪ run_until_completion(S∗)

4.3. Competitive Ratio of the FCS Strategy

To evaluate the FCS strategy, we will derive an upper bound on its competitive
ratio (ρ):

ρ =
CFCS

max

COPT
max

(4)

The problem of finding an upper bound of ρ boils down to finding values of the matrix
A and vector b for which ρ is the maximum value. Matrix A and vector b have constraints
on their values as defined in Section 3.

Computers 2021, 10, 122 8 of 23

We denote the total amount of work of all tasks as D = ∑n
i=1 bi. By combining this

with the maximum speed will create the index j∗ and its speed would be equal to a∗,
i.e., aj∗ = a∗ = maxj=1,...,maj. To simplify notation, we will refer to the parameters of the
schedule produced by the FCS strategy with u subscript and parameters of the optimal
schedule with v subscript, that is, Cu = CFCS

max and Cv = COPT
max .

In general, the FCS schedule and optimal schedule have forms as shown in Figure 1.
Both schedules perform the same amount of work, so the areas under the left and right
plots (time multiplied by the processing speed) are the same. The FCS schedule runs in
combination with the maximum speed a∗ until the completion of any of its tasks. We
denote the duration of the first combination run as u∗. After this combination finishes,
the schedule proceeds with the remaining combinations of active tasks until all the work
is completed. We denote au as an average speed of all the remaining combinations until
the end of the schedule (at the time point Cu), so au ≤ a∗. Similarly, the optimal schedule
runs combinations at the average speed av, performing D units of the total work until
completion at time point Cv.

D1

a*

au

u* Cu time

comb.
speed

D2

FCS a*

av

Cv time

comb.
speed

D=D1+D2

OPT

Figure 1. General forms of schedules produced by FCS (left) and OPT (right) strategies.

Lemma 1. Schedules with au = 1 and av = a∗ have the maximum competitive ratio, which is
equal to

ρ = a∗ − u∗(a∗ − 1)
D

(5)

Proof. Since both FCS and optimal schedules complete the same amount of work D,
we can write

D = a∗u∗ + (Cu − u∗)au = Cvav (6)

Then, the competitive ratio can be written as

ρ =
Cu

Cv
=

av(D− u∗(a∗ − au))

auD
(7)

To prove the lemma, we can analyze its derivatives on the variables au and av that are
affected by strategy decisions.

∂ρ

∂au
= − av(D− a∗u∗)

D(u∗)2

∂ρ

∂av
=

D− u∗(a∗ − au)

Dau

(8)

The feasible region of these values is defined as 1 ≤ au ≤ a∗, 1 ≤ av ≤ a∗. ∂ρ
∂av

has

no special points within the feasible region (otherwise, Cu = 0). ∂ρ
∂av

has a single feasible
special point, which exists only if D = a∗u∗, i.e., all of the work is completed in the j∗

combination. In this case, ρ would take its minimum value (ρ = 1) as both schedules would
be the same.

Computers 2021, 10, 122 9 of 23

Within the feasible region, dρ
dau

< 0 and dρ
dav

> 0. So, the maximum value of ρ is reached
at the borders of the region, when au has the minimum value (i.e., au = 1) and av has the
maximum value (av = a∗).

By substituting the values au = 1, av = a∗ in (7), we can derive the formula (5) for the
competitive ratio.

Function ρ is, in general, an unbounded function, as its derivatives do not have any
special points within the feasible region. For example, for a fixed u∗ = 1 (which requires
D > 1 to be feasible)m it can become arbitrarily large in the direction of D and a∗, as its
derivatives would be positive.

In the proof of the following theorem, we will consider only the schedules that have
the form as defined by the lemma. That is, the optimal strategy runs combinations at the
average speed a∗ and the FCS schedule runs the remaining combinations (after the one a∗

speed) with an average speed of 1. Along with the feasibility constraints, this form allow us
to obtain bounds on the value of D as a function of a∗. Using these bounds in competitive
ratio formula, in turn, will give us its upper bound.

Theorem 1. Competitive ratio of the FCS strategy is at most 2.

Proof. To find the upper bound on ρ, we will only consider the schedules with au = 1,
av = a∗, as shown by the lemma.

We denote the index of the first combination of the FCS schedule as j∗, and let us
assume without loss of generality that first k > 0 tasks finish in the Sj∗ combination, i.e.,

u∗ =
b1

a1,j∗
= · · · = bk

ak,j∗
(9)

The remaining tasks Tk+1, . . . , Tn run until completion in FCS in combination with
the speed au = 1. As FCS at every iteration selects combinations with the largest speed,
any combination of Tk+1, . . . , Tn (including the ones that were not selected by FCS) would
have a speed no greater than 1; otherwise, they would be selected by FCS and then au > 1.
So, we can write that

aj =
n

∑
i=1

ai,j =
n

∑
i=k+1

ai,j = 1, ∀j | Sj ∈ 2{Tk+1,...,Tn} (10)

Consider v = (v1, . . . , vm)T as a time distribution that forms an optimal schedule (i.e.,
Cv = ∑m

j=1 vj) and B is a set of combination indices with a non-zero time B = {j | vj > 0}.
The optimal schedule runs all of the combinations at the maximum speed av = a∗,

which is only possible when aj = a∗, ∀j ∈ B. Additionally, as the optimal schedule cannot
include combinations containing only the tasks Tk+1, . . . , Tn as their speed is not greater
than 1 (as showed in (10)). So, any combination in B contains tasks from both {T1, . . . , Tk}
and {Tk+1, . . . , Tn} sets.

If we take any combination in the optimal schedule Sj | j ∈ B and remove the tasks
that complete in Sj∗ , we will form another combination Sp = Sj ∩ {Tk+1, . . . , Tn} and
Sp 6= ∅. Combination Sp, by construct, has fewer tasks than Sj and Sp ⊂ Sj, so the speed
values of their tasks are bound by constraint (1), i.e., ai,j ≤ ai,p, i = 1, . . . , n. Additionally,
we have showed above that to any subset of Tk+1, . . . , Tn, including Sp which applies (10),
so we can write

n

∑
i=k+1

ai,j ≤
n

∑
i=k+1

ai,p = 1

∀j ∈ B, where p | Sp = Sj ∩ {Tk+1, . . . , Tn}
(11)

As vector v is an optimal feasible solution to the linear programming problem (3),
by substituting its values in the system Ax = b and adding together the rows corresponding
to {Tk+1, . . . , Tn} gives us:

Computers 2021, 10, 122 10 of 23

∑
j∈B

vj

n

∑
i=k+1

ai,j =
n

∑
i=k+1

bi (12)

Let us define D1 and D2 as D1 = ∑k
i=1 bi and D2 = ∑n

i=k+1 bi, so that D = D1 + D2.
This allows us to obtain bounds on D:

D = D1 + ∑j∈B vj ∑n
i=k+1 ai,j

≤ D1 + ∑j∈B vj
= D1 + Cv
= D1 +

D
a∗

D ≤ D1
a∗

a∗−1

(13)

The amount of time required for the completion of Sj∗ in the FCS schedule can also
be expressed from D1 as u∗ = D1

a∗ . Substituting u∗ and bounds on D in a competitive ratio
formula (5) gives us:

ρ = a∗ − u∗(a∗ − 1)
D

≤ 2− 1
a∗

(14)

which is less than 2 for any a∗ > 1.

The result of this theorem tells us that the competitive ratio is bounded to a constant
and it would not be greater than 2 for any number of tasks, the required amount of work
for each task or processing speed values. This also has a practical result, as the FCS strategy
can be transformed into a scheduling algorithm that implements a search of combinations
with the maximum speed.

Example 1. In this example, we will show a specific case of problem parameters for which the
competitive ratio tends to 2 with an increase in the number of tasks. For this, we will consider A
and b in such a form, that in FCS schedule tasks T2, . . . , Tn finish in the first iteration, and the
remaining task (T1) would run until completion alone. At the same time, we have to ensure that the
optimal schedule would run all task combinations at the same maximum speed.

For simplicity, we will consider tasks with speed values equal to one in all combinations except
for the combination with all tasks:

ai,j =

{
1, (Ti ∈ Sj) ∧ (|Sj| < n)
0, otherwise

, i = 1, . . . , n (15)

In this case, the maximum combination speed would be a∗ = n− 1, which is reachable only
for combinations with n− 1 tasks. We will use the following vector of task work requirements:

b1 > 0,
bi =

n−2
n−1 b1, i = 2, . . . , n

(16)

That is, the first task requires b1 units of work and the tasks require the same amount of work
which is less than b1. The fact that bi, i = 2, . . . , n are the same ensures that corresponding tasks
would finish simultaneously when they are co-scheduled. The choice for these values would be
explained later in the example.

Suppose that the FCS strategy at the first iteration selects the combination with {T2, . . . Tn}
tasks. This combination would be run until the completion of all of its tasks. After this combination
finishes, the only active task would be T1, which would be executed until completion at speed 1.
This gives the following makespan value:

CFCS
max =

n− 2
n− 1

b1 + b1 = b1
2n− 3
n− 1

(17)

On the other hand, the optimal strategy would select all of the combinations with n− 1 tasks
without the {T2, . . . Tn} combination. This can be shown by analyzing the linear programming
problem on the following basis:

Computers 2021, 10, 122 11 of 23

AB =

0 1 . . . 1
1 0 . . . 1
...

. . .
...

1 1 . . . 0

 (18)

This basis matrix has non-diagonal elements all equal to 1, and the diagonal elements are equal
to 0. The solution v that it produces has the following values for basis variables:

vB = A−1
B b =

1
n− 1

2− n 1 . . . 1

1 2− n . . . 1
...

. . .
...

1 1 . . . 2− n

b1
n−2
n−1 b1

...
n−2
n−1 b1

 =
1

n− 1

0
b1
...

b1

 (19)

The value of vector b in (16) was chosen so that B produces a feasible solution, i.e., vB =
A−1

B b ≥ 0 and that the ratio between b1 and bi, i = 2, . . . , n is the maximum. The optimality of
this solution can be obtained by showing that shadow costs (δj) for non-basis variables are positive
and thus cannot decrease the objective function:

δj = 1−
(

1 . . . 1
)

A−1
B

a1,j
...

an,j

 = 1−
|Sj|

n− 1
> 0 (20)

A general formula for shadow costs and its relation with the optimality of linear programming
are described in detail in [30]. Equations (19) and (20) show us that the basis AB produces a feasible
and optimal solution which has a objective function value

COPT
max = ∑ vB = b1 (21)

which gives the same value for competitive ratio as in (14):

ρ =
CFCS

max

COPT
max

=
2n− 3
n− 1

= 2− 1
n− 1

(22)

This tends to 2 with an increase in the number of tasks:

lim
n→∞

CFCS
max

COPT
max

= 2 (23)

5. Stochastic Co-Scheduling Strategies

The FCS strategy cannot be applied in practical implementations as it requires the
values of matrix A to be known before processing of any of the tasks begins. Instead, values
of A can be measured when a task combination is running. Since task combinations can be
preempted at any time, we can transform the FCS strategy into a searching algorithm that
finds the combination with the largest speed and then executes it until the completion of
any of its tasks.

To obtain the value of any column of matrix A, we need to run corresponding combi-
nations for at least some units of time to measure the speed of each task. As during this
process tasks are running and completing some units’ work, it is important to reduce the
execution of tasks in slower combinations. This makes it a problem of online optimization.
We assume additionally that speed measurements are not noisy.

The general idea of the online search algorithm is to iteratively run different task
combinations as determined by the acquisition function. When a combination is run, its task
speed values are being measured and then at the following iterations these data are used
to provide boundaries for the unknown values. The acquisition function matches a scalar
value to every combination based on these obtained boundary values of all combinations.

Computers 2021, 10, 122 12 of 23

Then, a search algorithm selects a combination with the highest value of an acquisition
function for running at the next iteration.

In this paper, we cover several scheduling strategies based on a search algorithm.
Although these strategies work with values of the matrix A and vector b not being available
at start, we present them as theoretical results that cannot be applied to the practical
problem without additional model modifications. The reasons for this is, first, we are
already working with a stationary problem, and, second, we introduced an additional
assumption of non-noisy measurements of task speed values. We still present these results
in this paper as they can be used as a basis for further model improvements.

5.1. Computing Boundaries for Incomplete Data

To estimate the missing values of matrix A, we will use constraint (1), which describes
that the processing speed of a task in a combination decreases when other tasks are added
to it. Due to this, the unknown speed of the task can be interpolated as a non-increasing
function of the number of tasks.

Suppose we know the speed of Ti in the combination of Sp and Sq and need to estimate
a value in combination Sj, where Sp ⊂ Sj ⊂ Sq. Since the speed is non-increasing, we have
ai,p ≤ ai,j ≤ ai,q. We will use a linear interpolation to find an approximate value, denoted
as ãi,j:

ãi,j = ai,q +
ai,p − ai,q

|Sp| − |Sq|

(
|Sj| − |Sq|

)
(24)

This linear dependency on the combination size can be noticed in the experimental
data (Figure 2), which we will describe later in this paper.

With the assumption that values are measured without any noise and monotonicity
constraints, we can claim that ai,j ∈ [ai,p, ai,q] almost surely. We will denote the com-
puted upper and lower boundary values as ai,j and ai,j, respectively. For the sums of the
corresponding values for all tasks in a combination, we will use aj, aj, ãj notation.

1 2 3 4 5 6 7 8 9

0.
2

0.
4

0.
6

0.
8

1.
0

bt

Combination size

Ta
sk

 s
pe

ed
up

1 2 3 4 5 6 7 8 9

0.
2

0.
4

0.
6

0.
8

1.
0

cg

Combination size

Ta
sk

 s
pe

ed
up

1 2 3 4 5 6 7 8 9

0.
2

0.
4

0.
6

0.
8

1.
0

sp

Combination size

Ta
sk

 s
pe

ed
up

1 2 3 4 5 6 7 8 9

0.
4

0.
6

0.
8

1.
0

fm

Combination size

Ta
sk

 s
pe

ed
up

1 2 3 4 5 6 7 8 9

0.
3

0.
5

0.
7

0.
9

rt

Combination size

Ta
sk

 s
pe

ed
up

1 2 3 4 5 6 7 8 9

0.
2

0.
4

0.
6

0.
8

1.
0

vp

Combination size

Ta
sk

 s
pe

ed
up

Figure 2. Box with whiskers plots of task speed as a function of combination size measured on
benchmark applications.

Computers 2021, 10, 122 13 of 23

Using this method, the value of ai,j can be obtained from multiple different pairs of
combinations of Sp and Sq. To remove this ambiguity, we will use Sp with the largest
number of tasks, such that Sp ⊂ Sj and Sq with the smallest number of tasks, such that
Sj ⊂ Sq. Then, among the possible Sp and Sq with the same size, we will use the one with
the minimal boundary interval width (ai,p − ai,q). An example when such ambiguity is
possible is shown in Figure 3.

|Sj|

a1,j

1

0

{T1}

{T1,T2,T3}

{T1,T2,T4}

{T1,T2}

1 2 3

a1,j

a1,ja1,j`

a1,j`

`a1,j
~

a1,j
~

Figure 3. An example of ambiguity in the interpolation of task speed values. Speed of T1 in Sj = {T1, T2}
can be obtained from {T1} and either {T1, T2, T3} or {T1, T2, T4}. Combination of {T1, T2, T4} tasks will be
used for interpolation of the mean value as it produces a smaller boundary interval.

5.2. Search Algorithm Acquisition Functions

Implementing a search algorithm requires defining an acquisition function that would
select the next task combination for evaluation. The acquisition function matches a single
value to every combination based on the confidence interval values of all combinations and
the decision on the previous iteration. Then, the search algorithm selects a combination of
the highest value of an acquisition function to run in the next iteration.

We have implemented three acquisition functions: probability of improvement, ex-
pected improvement and upper confidence bound. The improvement here refers to the
increase in task combination speed relative to the value from the previous iteration of the
search algorithm. The probability of the improvement function measures the likelihood
that the combination has a higher speed than the combination at the current iteration.
The expected improvement function accounts not only for the probability but also for
the value of the improvement. When the upper confidence bound function is used, the
search algorithm would always select the combination with the highest predicted speed
value next.

To use these acquisition functions as random functions, we will treat ai,j as random
variables. Additionally, we will assume that ai,j are independent and have a normal
distribution with the mean value ãi,j and variance σ2

i,j. As formally we cannot apply these
assumptions to the bounded and monotonic values, we will relax the constraints on these
values by defining variance as a function of interval bounds in the following way.

Since ai,j is a random variable with a normal distribution, it will exceed ãi,j +Φ−1(k)σi,j

with probability 1− k, where Φ−1(k) is a kth-quartile of a standard normal distribution. We
will denote the width of kth-quartile confidence interval as ∆i,j and compute it as

∆i,j = min{ai,j − ãi,j, ãi,j − ai,j} (25)

Computers 2021, 10, 122 14 of 23

This way, it will ensure that the confidence interval will increase when the distance
between the available data points increases and that its shape has a form where the
monotonicity constraint holds. As δi,j can only be positive, we limit k to 0.5 < k < 1; then,
we can write the variance of ai,j as

σi,j =
∆i,j

Φ−1(k)
(26)

Later in this paper, we will use k as a tuning parameter for the acquisition function.
As the task speed values have a normal distribution, we can claim that combination speed
values also have a normal distribution with a mean value of ãj = ∑i∈Sj

ãi,j and variance of

σ2
j = ∑i∈Sj

σ2
i,j.

We define the probability of improvement (PIj), expected improvement (EIj) and
upper confidence bound (UCBj) of a combination Sj in the following way:

PIj =

Φ
(ãj−a+

σj

)
σj 6= 0

0 σj = 0, and ãj < a+

1 σj = 0, and ãj ≥ a+
(27)

EIj =

(ãj − a+)Φ
(ãj−a+

σj

)
+ σjφ

(ãj−a+

σj

)
σj 6= 0

ãj − a+ σj = 0
(28)

UCBj = ãj + σj (29)

where Φ(x) is a standard normal cumulative distribution function, φ(x) is a standard
normal distribution density function and a+ denotes the estimated maximum value from
the previous iteration. A tuning parameter of these acquisition functions is the probability
of the task speed value being outside of the ãi,j ± δi,j interval, i.e., value k. With an increase
in parameter k, the value of combination speed variance (σ2

j) decreases.
Simulation results for different acquisition functions are described later in the paper

in Section 8.

6. Measuring Task Processing Speed in Experiments

When tasks running in parallel use shared resources, their performances may de-
crease as bandwidth for these resources is limited and it is being shared between tasks.
Examples of such shared resources may include memory bus, shared cache levels, disk
bandwidth, network card bandwidth, etc. Such situations can be observed when CPU
instruction requiring access to the shared resources may take more CPU cycles to complete,
i.e., the rate of finishing instructions (instruction per cycle, IPC) would decrease. IPC
is also not specific to any shared resources in particular, but shows the overall speed of
processing instructions .

Another reason for performance degradation due to co-scheduling is, when operating
the system scheduler, multiple threads are run on the same CPU core sharing cputime.
In this case, the IPC of active threads may not change, but their portions of cputime may
decrease, resulting in an increase in the overall execution time.

To measure task processing speed (in an absolute value), we propose using metrics
such as IPC multiplied by cputime as it is affected by both the operating system scheduler
and concurrent access to shared resources. The values of IPC and cputime can be measured
during tasks’ runtime with a low overhead by accessing CPU performance counters and
thread-specific data provided by operating systems (e.g., ProcFS in Linux).

When processing speed is measured in this way at time t, the unit of work would
be CPU instructions (inst(t)) and the unit of time would be CPU cycles cycl(t). Both of
them are provided by CPU performance counters for the time when the task was running
in the user space. Cputime cpu(t) over the sampling period ∆t would be an unitless

Computers 2021, 10, 122 15 of 23

value. Assuming that all of these values are cumulative, then we can write the formula for
estimating the task processing speed:

ν(t) =
inst(t)− inst(t− ∆t)
cycl(t)− cycl(t− ∆t)

cpu(t)− cpu(t− ∆t)
∆t

(30)

7. Benchmark Applications

To collect experimental data of task processing speed values, we have used the NAS
Parallel Benchmark (NPB) [31] and Parsec [32] test suites along with our own test appli-
cations. These benchmarks were chosen as they mimic the workload of applications that
are common for the HPC field and cover many different types of parallelism patterns’
granularities, inter-thread data exchange, synchronization patterns and have bottlenecks
on different types of resources (there are CPU-, memory- and IO-intensive applications).

Due to the assumption of the stationary scheduling problem, among these benchmarks
we have selected only those tasks that have constant or periodic speed profiles. The result-
ing list of benchmark tasks is presented in Table 1. Datasets of each benchmark were tuned
so that each task ran for the same amount of time and on the same computational resources.

Table 1. List of benchmark tasks used in experiments.

Name Suite Description

bt NPB Block Tri-diagonal solver
ft NPB Discrete 3D fast Fourier Transform
lu NPB Lower-Upper Gauss-Seidel solver
sp NPB Scalar Penta-diagonal solver
fm Parsec Frequent Pattern Growth algorithm (freqmine)
so Parsec HJM algorithm for pricing swap options (swaption)
vp Parsec Image processing pipeline (VIPS library)
sc Parsec Online clustering problem in data mining (streamcluster)
ff Decoding of video file (ffmpeg)
rt Ray tracing algorithm on CPU

For collecting experimental data, we used a single node with an Intel Xeon E5-2630
processor with 10 cores and two threads per core. In the experiments, each task was limited
to a certain number of threads by changing parallelism parameters in the benchmark
application. Threads were not bound to specific cores and could be migrated between cores
by the operating system scheduler (Linux CFS). In all of the experiments, each application
had enough memory and swap was never used.

Evaluation of Task Processing Speed Measurements

We used Linux perf (perf_event_open system call) to access CPU performance counters
to monitor the number of instructions and number of CPU cycles of each thread in its
runtime. Counters values were reported only for the instructions that were running in the
user space (as opposed to kernel space). The values of cputime in both the user space and
kernel space of each thread were obtained from ProcFS pseudo-filesystem provided by the
Linux kernel. These values were used to compute the processing speed of each thread of
the running benchmark application. Then, to find the processing speed of the task itself,
the values of different threads were averaged.

This approach still allows one to measure the processing speed of each task in the
user space and in the kernel space, but with less accuracy. When an instruction takes more
CPU cycles due to the shared access to the same resource from another task, the IPC value
would be affected. When the application issues an interruption for a system call that is
carried out is the kernel space, and it takes more time due to the concurrent access to the
shared resources, then this situation would be reflected only by the change in kernel-space
cputime. This was carried out deliberately to avoid using two separate processing speed

Computers 2021, 10, 122 16 of 23

metrics for the kernel space and user space. Additionally, it did not have any noticeable
effect on the overall results of experiments.

To show that formula (30) measures the speed of processing, we compared the change
of its average value with the change of the total processing time of each benchmark in
different conditions. At first, we measured an absolute value of the processing speed and
total execution time of each task in ideal conditions, and then again when it was running in
combination with other benchmark tasks. After that, we compared the ratio of processing
speed in ideal conditions to the processing speed in co-scheduling conditions with the ratio
of execution time in co-scheduling conditions to the execution time in ideal conditions.
These ratios should be equal for tasks that perform the same total amount of work units
(CPU instructions) regardless of the processing speed.

Benchmark tasks that we used perform the same number of CPU instructions regard-
less of the available resource bandwidth they have, i.e., the amount of work units does not
change when benchmarks are running in different combinations (this was shown in our
previous paper [33]). This property may not hold when a task performs active waiting on
its resources in the user space. In this case, the proposed experiments cannot be used as the
number of reported CPU instructions increase when the task was waiting on a resource
and not advancing its state. For some benchmarks that use OpenMP for parallelization,
we had to ensure that active waiting on thread synchronization primitives was disabled.

We ran these experiments in the following way. For each separate benchmark task that
we were measuring, we generated a set of all the possible combinations with other tasks. In
these combinations, some tasks may be repeated multiple times, and the number of tasks
in each combination could be from 1 to 10. We did not measure all of the combinations, as
there are a lot of them and we needed to run each task until completion; instead, we ran
300 of the randomly sampled combinations. For each run, we made sure that the task we
were measuring finished the first, otherwise we would measure it in multiple combinations
and its speed would not be consistent.

We ran experiments for situations when each task requires the same number of threads
and when tasks require a random number of threads. For the same number of threads,
we ran two cases, one where each task used two threads and one where they used six
threads. In the first case, there were enough CPU cores to run all threads without cputime
being shared, and in the second case cputime was shared between threads. When cputime
was not shared, its value remained constant and task speed changed only due to the
changes in IPC. When cputime was shared, its value may change in different scheduler
states and the task speed value would change accordingly. For the situation with the
random number of threads, each task may require two to six threads.

The results of experiments with a random number of threads per task are shown in
Figure 4. Since the plots for other experiments’ results look the same, we present them as
Table 2 with linear regression values. The results show that for all benchmarks tasks the
ratio of processing times in co-scheduling and ideal conditions matches exactly with task
speedup. That is, task speed measured using formula (30) in runtime is proportional to the
speed measured after completion (by dividing the work units by the total time).

Table 2. Linear regression models fitted on experimental data of processing speed ratio as a function
of time ratio. The table contains model coefficient and intercept values with R squared values. Data
are fitted for the measurement of each benchmark task run in combination with other benchmarks.

Task 2 Threads 6 Threads From 2 to 6 Threads
Model R2 Model R2 Model R2

bt 0.984 x + 0.017 0.9997 0.969 x + 0.03 1 0.97 x + 0.029 0.9999
cg 0.984 x + 0.013 0.9996 1.016 x − 0.038 0.9992 1.02 x − 0.042 0.9997
ft 0.995 x + 0.005 0.9996 0.958 x + 0.026 0.9998 0.963 x + 0.032 0.9996
sp 0.994 x + 0.007 0.9998 0.977 x + 0.018 0.9999 0.982 x + 0.017 0.9999
rt 1.015 x − 0.018 0.9943 0.974 x + 0.034 0.9993 0.983 x + 0.02 0.9982

Computers 2021, 10, 122 17 of 23

Table 2. Cont.

Task 2 Threads 6 Threads From 2 to 6 Threads
Model R2 Model R2 Model R2

fm 0.993 x + 0.006 0.9999 0.995 x − 0.003 0.9999 0.995 x + 0.005 0.9989
sc 0.958 x + 0.039 0.9986 0.837 x + 0.22 0.9995 0.858 x + 0.188 0.997
vp 1.02 x − 0.008 0.9958 1.016 x + 0.035 0.9501 0.999 x + 0.005 0.9986
ff 0.925 x + 0.065 0.9963 0.843 x + 0.165 0.9956 0.974 x + 0.07 0.9986
so 1.111 x − 0.114 0.9868 0.984 x + 0.025 0.9992 0.984 x + 0.035 0.9964

1 2 3 4 5

1
2

3
4

5

cg

1.0 1.5 2.0 2.5 3.0 3.5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

fm

1.0 1.5 2.0 2.5 3.0 3.5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

ft

1.0 1.5 2.0 2.5 3.0

1.
0

1.
5

2.
0

2.
5

3.
0

rt

1.0 2.0 3.0 4.0

1.
0

2.
0

3.
0

4.
0

sp

1 2 3 4 5

1
2

3
4

5

vp

Mean speed vs. total time relative to ideal conditions
Random (unif(2,6)) threads per task

T
im

e
ra

tio
 (

co
−

sc
he

du
lin

g
/ i

de
al

)

Speed ratio (ideal / co−scheduling)

Figure 4. Scatter plots of processing time ratio versus processing speed ratio for some benchmark
tasks. Each point corresponds to task measurement in a combination with other tasks. Red line is
region where ratios are equal.

8. Numerical Simulation Results

To evaluate the search algorithm and FCS strategy and to compare them with an
optimal strategy, we implemented simulation software ([34]). It works by generating
random task speedup values in each combination (ai,j) and task work units (bi). Generated
values comply with the constraints defined in Section 3. These values are then used to find
the makespan of an optimal strategy by solving the linear programming problem and the
makespan of FCS and online search strategies by running their simulations.

The values of bi were drawn from the uniform distribution from 100 to 200 work units.
The values of the task speed in ideal conditions were fixed to 1, so that the task speed in
any combination would be the same as the task speedup value. Task speedup values were
generated by the following procedure. It works by iterating over all combinations in the
order of increasing combination sizes, starting from 2. At each iteration, the maximum
allowed speedup of the task is found as a minimum speedup among the combinations
of smaller sizes. Then, this value is multiplied by a uniform random number generated
between α and 1. The resulting value gives a random speedup value that complies with
the monotonicity constraint (1).

Computers 2021, 10, 122 18 of 23

The aforementioned α constant corresponds to the maximum slope of the task speed
value when the size of the combination increases. We measured task speed as a function of
the combination size in experiments, and the results for some benchmarks are shown in
Figure 2. Each plot corresponds to a benchmark application running on six cores (out of
20) in combination with other benchmarks running on a random number of cores from 2
to 6. The data were collected in the following way. The combination with the maximum
number of tasks was picked at random and the speed of the target task was measured
in this combination. Then, a random task was removed from this combination and the
target task was measured in a new combination. This process was repeated until the target
task was the only task in the combination, i.e., it was running in ideal conditions. At least
30 combinations with the largest size were generated. Each plot shows how the distribution
speed value of the task changes depending on the combination size.

Task speedup and combination speedup values corresponding to different α values
are shown in Figure 5. The smaller values of α correspond to the smaller values of task
and combination speeds. While all task speed values decrease, their sum, i.e., combination
speed, may increase and may reach a peak value for combinations with fewer than n tasks.

In simulations, we used multiple different ranges of α values. Within each range, we
chose a value for each task uniformly at random. The range of α from 0.75 to 0.85 was
also simulated as it produces the task speed values that are closest to task speedup values
measured in the experiments.

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Combination size

M
ea

n
ta

sk
 s

pe
ed

up

2 4 6 8 10

0
1

2
3

4
5

6
7

Combination size

M
ea

n
co

m
bi

na
tio

n
sp

ee
du

p

alpha

0.4 0.5 0.6 0.7 0.8 0.9 0.95

Figure 5. Generated task speedup values and corresponding combination speedup values for
different speedup rate (alpha) parameters. Averaged values across all combinations with the same
size shown as a single data point.

We generated 50 problem instances (matrix A and vector b) as described above. Each
problem instance had 10 tasks, similar to the experimental setup. We did not vary the
maximum number of tasks, as possible curves of combination speed values (right plot in
Figure 5) could be generated by changing α; increasing the value of n only changes the
discretization of these curves.

For these generated problem instances, we simulated FCS and search-based strategies
(UCB, PI and EI) and computed their competitive ratios into the optimal strategy. In
the search-based strategies, each combination required at least 10 time units of runtime
to measure task speed values, which equals to 5–10% of the amount of work in ideal
conditions. This value was made deliberately large to exaggerate an effect of sub-optimal
decisions of the search algorithm.

Computers 2021, 10, 122 19 of 23

The results of the simulations for these systems are shown in Figures 6 and 7. The
competitive ratios of UCB, PI and EI strategies as a function of speedup value ranges (α)
for different values of variance parameter (k-quartile in (26)) are shown in Figure 6. For
the UCB strategy, it can be noticed that its competitive ratio decreases with an increase in
k, i.e., with a decrease in confidence interval width. The competitive ratios of PI and EI
strategies are not affected by the changes in k. The effect of the α on the competitive ratio
is not monotonic for all strategies and the larger deviation from the optimal strategies is
reached at the border values of α ranges.

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

UCB

Speedup rate parameter

C
om

pe
tit

iv
e

ra
tio

[0.45,0.55]

[0.55,0.65]

[0.65,0.75]

[0.75,0.85]

[0.85,0.95]

1.
32

1.
34

1.
36

1.
38

1.
40

1.
42

1.
44

PI

Speedup rate parameter

C
om

pe
tit

iv
e

ra
tio

[0.45,0.55]

[0.55,0.65]

[0.65,0.75]

[0.75,0.85]

[0.85,0.95]

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

EI

Speedup rate parameter

C
om

pe
tit

iv
e

ra
tio

[0.45,0.55]

[0.55,0.65]

[0.65,0.75]

[0.75,0.85]

[0.85,0.95]

Variance parameter (k−th quartile)

0.55 0.65 0.75 0.85 0.95 0.99

Figure 6. Competitive ratio of search algorithms with different acquisition functions. Values are
presented for each range of alpha values and confidence intervals’ tuning parameters.

1.
2

1.
4

1.
6

1.
8

2.
0

Competitive ratio for
optimal variance parameter

Speedup rate range (alpha)

C
om

pe
tit

iv
e

ra
tio

[0.45,0.55] [0.55,0.65] [0.65,0.75] [0.75,0.85] [0.85,0.95]

Strategy

FCS UCB EI PI

Figure 7. Comparison of the lowest competitive ratio values for each slowdown rate range.

Figure 7 compares the minimal competitive ratio (which is achieved at k = 0.99) as a
function of the α range. As expected, search-based strategies performed worse than the
FCS strategy. The maximum competitive ratio of 2.6 was reached by the UCB strategy for

Computers 2021, 10, 122 20 of 23

α ∈ [0.45, 0.55]. For the lower ranges of α, the difference between search-based strategies
was less pronounced. Based on these simulation results, we can claim that the PI strategy
produced better results for all the tested ranges of task speed values. UCB and EI showed
worse competitive ratios for larger speedup rate ranges.

9. Discussion

Considering the assumptions of the model, the PI strategy can be used for scheduler
implementations, according to simulations. In practice, the model definition must first be
improved to account for noisy measurements and the change of task speed values in time.
Search-based strategies can be easily adapted to take into account theses assumptions by
changing acquisition functions, but showing that the competitive ratio of the FCS strategy
obtained in this paper holds for these assumptions is not trivial.

The implementation of search-based scheduling strategies relies on the ability of the
operating system scheduler to control task preemption. That is, it should provide an
interface for suspending and continuing an execution of running tasks. In Linux, it is
possible by using a freezer control group, which is available in kernel releases starting from
version 2.6. Stochastic strategies need a preemption interface to iterate over different
combinations while measuring the processing speed of each task. To measure these
values reliably (within a given confidence interval), some non-interruptible time interval is
required, during which tasks would be able to fill CPU caches with their data and perform
several computational operations. The problem of minimizing the duration of this time
intervals can be considered, but this is outside of the scope of this paper.

The disadvantage of the proposed approach is that there is an exponential number of
task combinations (m = 2n − 1), which results in O(2n) computational complexity of all of
the strategies, including FCS. However, the number of combinations, in practice, can be
reduced due to the following reasons. All tasks that can potentially be run simultaneously
must be in a runnable state when the scheduler starts, so that their processing speed can
be measured. As the main memory of the node is limited, it limits the number of tasks in
combination. Some task combinations can be infeasible, even if they have a small number
of tasks. These practical restrictions can be represented in the model by changing a set
of combinations from 2T to a custom set of the subset. This would reduce the number of
subsets, but would not affect the results obtained in the paper.

The same model of co-scheduling and proposed strategies can be applied to the
environments with a single computational node or with multiple computational nodes.
In multi-node environment, task combinations may span multiple nodes, but this does
not affect the model as constraints imposed on processing speed values do not change.
The task processing speed in any combination can be measured in the same way and
task preemption implementation would not change as well (given that it is triggered
simultaneously on multiple nodes). The model assumption that all tasks must be in a
runnable state must also hold for multi-node environments. It can be a limitation for
practical implementations as well as it would mean that mapping of all tasks threads or
processes to nodes must be computed in advance, before any task scheduling strategies
would start. The alternative that does not have this assumption and would allow one to
implement co-scheduling is to introduce live migrations of the task processes between
nodes. This approach may have practical limitations and strategies proposed in the paper
cannot be trivially transformed to account for it.

Other scheduling strategies that potentially may lead to practical results can also be
considered within this model definition and assumptions. For example, values of the total
amount of work for each task (vector b) may be considered as known quantities. In practice,
this can be achieved by analysing historical data of previous runs of the same task. With
the assumptions that each task processes constant amount of work units, these values can
be reliably used for making scheduling decisions.

It is possible to implement the proposed strategies as an extension to a batch scheduler
(e.g., as a SLURM extension) or as a stand-alone scheduler, which would work on top

Computers 2021, 10, 122 21 of 23

of the existing batch scheduler. The latter approach may require a user-writable control
group to implement task preemption. Alternatively, task preemption can be implemented
using signals, which does not require interventions from privileged system users. Linux
performance (perf) counters can be used for measuring the task processing speed, which in
general does not require any privileged access. There are no restrictions on the applications
that can be run using this scheduling approach, as it does not require any code or binary
file modifications. The implementation of the scheduler is outside of the scope of this paper
and will be addressed in future work.

10. Conclusions

In this paper, we defined a model for solving the co-scheduling problem and proposed
multiple scheduling strategies: an optimal strategy, an online strategy (FCS) and heuristic
strategies (EI, PI and UCB). The optimal solution was found by reducing the problem to a
linear programming problem, which requires all task processing speeds and amounts of
work to be known in advance. The FCS strategy is defined with the assumption that only
the task processing speed is available, while required work units are unknown. Heuristic
strategies work with the assumption that no information is available at start, but the task
processing speed can be measured over the task runtime.

We showed theoretically that the FCS strategy produces schedules that are at most
two times worse than the optimal strategy. This allowed us to solve the co-scheduling
problem using heuristic strategies that approximate FCS. We defined these strategies as
implementations of stochastic optimization algorithms with different acquisition functions.
To apply these optimization algorithms, we defined a non-deterministic version of the
co-scheduling problem by treating each task processing speed value as a random variable
and relaxing constraints on its value by defining its variance.

We used numerical simulations to compare all strategies with an optimal strategy
and to show how heuristic strategies behave for tuning parameters with different values
and problem inputs. The results showed that the PI strategy produced lower values of
completive ratios than the EI and UCB strategies for almost all problem input data.

We also proposed a method for measuring a task’s processing speed over its runtime
and evaluated it using benchmark HPC applications in different environments. We showed
that this method measures values with high accuracy, which allows one to apply the
proposed scheduling strategies in scheduler implementations.

There are multiple possible directions for improving this work in both theoretical
and practical aspects that we plan to address in future work. For example, an additional
constraint of task precedence can be considered, which would make the model applicable
to solving workflow scheduling problems. The stochastic definition of the problem can
also be improved by accounting for noisy measurements of the task processing speed and
for their change in time. We are also working on the scheduler implementation that would
manage task co-scheduling running on top of an existing batch scheduler.

Author Contributions: Conceptualization, R.K. and V.K.; methodology, R.K.; software, R.K.; valida-
tion, R.K.; formal analysis, R.K.; investigation, R.K.; resources, V.K.; data curation, R.K.; writing—
original draft preparation, R.K.; writing—review and editing, V.K.; visualization, R.K.; supervision,
V.K.; project administration, V.K.; funding acquisition, V.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by RFBR grant number 19-37-90138.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Computers 2021, 10, 122 22 of 23

References
1. Calvin, J.A.; Peng, C.; Rishi, V.; Kumar, A.; Valeev, E.F. Many-Body Quantum Chemistry on Massively Parallel Computers.

Chem. Rev. 2020, 121, 1203–1231. [CrossRef] [PubMed]
2. Sharif, M.B.; Ghafoor, S.K.; Hines, T.M.; Morales-Hernändez, M.; Evans, K.J.; Kao, S.C.; Kalyanapu, A.J.; Dullo, T.T.; Gangrade, S.

Performance Evaluation of a Two-Dimensional Flood Model on Heterogeneous High-Performance Computing Architectures.
In Proceedings of the Platform for Advanced Scientific Computing Conference, Geneva, Switzerland, 29 June–1 July 2020.
[CrossRef]

3. Rudy, J.; Rodwald, P. Job Scheduling with Machine Speeds for Password Cracking Using Hashtopolis. In Advances in Intelligent
Systems and Computing; Springer International Publishing: Cham, Switzerland, 2020; pp. 523–533. [CrossRef]

4. Geist, A.; Reed, D.A. A survey of high-performance computing scaling challenges. Int. J. High Perform. Comput. Appl. 2016,
31, 104–113. [CrossRef]

5. Wu, F.; Wu, Q.; Tan, Y. Workflow scheduling in cloud: A survey. J. Supercomput. 2015, 71, 3373–3418. [CrossRef]
6. Rodriguez, M.A.; Buyya, R. A taxonomy and survey on scheduling algorithms for scientific workflows in IaaS cloud computing

environments. Concurr. Comput. Pract. Exp. 2016, 29, e4041. [CrossRef]
7. Yoo, A.B.; Jette, M.A.; Grondona, M. Slurm: Simple linux utility for resource management. In Proceedings of the Workshop on

Job Scheduling Strategies for Parallel Processing, Seattle, WA, USA, 24 June 2003; Springer: Berlin/Heidelberg, Germany, 2003;
pp. 44–60.

8. Gentzsch, W. Sun Grid Engine: Towards creating a compute power grid. In Proceedings of the First IEEE/ACM International
Symposium on Cluster Computing and the Grid, Brisbane, QLD, Australia, 15–18 May 2001. [CrossRef]

9. Uchroński, M.; Bożejko, W.; Krajewski, Z.; Tykierko, M.; Wodecki, M. User Estimates Inaccuracy Study in HPC Scheduler.
In Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2018; pp. 504–514.
[CrossRef]

10. Gainaru, A.; Aupy, G.P.; Sun, H.; Raghavan, P. Speculative Scheduling for Stochastic HPC Applications. In Proceedings of the
48th International Conference on Parallel Processing, Kyoto, Japan, 5–8 August 2019. [CrossRef]

11. Breslow, A.D.; Porter, L.; Tiwari, A.; Laurenzano, M.; Carrington, L.; Tullsen, D.M.; Snavely, A.E. The case for colocation of
HPC workloads. In Concurrency and Computation: Practice and Experience Preprint; John Wiley & Sons: Hoboken, NJ, USA, 2012;
pp. 232–251. [CrossRef]

12. Breitbart, J.; Pickartz, S.; Lankes, S.; Weidendorfer, J.; Monti, A. Dynamic Co-Scheduling Driven by Main Memory Bandwidth
Utilization. In Proceedings of the 2017 IEEE International Conference on Cluster Computing (CLUSTER), Honolulu, HI, USA,
5–8 September 2017. [CrossRef]

13. Zacarias, F.V.; Petrucci, V.; Nishtala, R.; Carpenter, P.; Mossé, D. Intelligent Colocation of Workloads for Enhanced Server Efficiency.
In Proceedings of the 2019 31st International Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD), Campo Grande, Brazil, 15–18 October 2019; pp. 120–127.

14. Pottier, L. Co-Scheduling for Large-Scale Applications: Memory and Resilience. Ph.D. Thesis, Université de Lyon, Lyon,
France, 2018.

15. Li, Y.; Sun, D.; Lee, B.C. Dynamic colocation policies with reinforcement learning. ACM Trans. Archit. Code Optim. (TACO) 2020,
17, 1–25. [CrossRef]

16. Trinitis, C.; Weidendorfer, J. Co-Scheduling of HPC Applications; IOS Press: Amsterdam, The Netherlands 2017; Volume 28.
17. de Blanche, A.; Lundqvist, T. Node Sharing for Increased Throughput and Shorter Runtimes—An Industrial Co-Scheduling Case

Study. In Proceedings of the 3rd Workshop on Co-Scheduling of HPC Applications (COSH 2018), Manchester, UK, 23 January 2018.
[CrossRef]

18. Xiong, Q.; Ates, E.; Herbordt, M.C.; Coskun, A.K. Tangram: Colocating HPC Applications with Oversubscription. In Proceedings
of the 2018 IEEE High Performance extreme Computing Conference (HPEC), Waltham, MA, USA, 25–27 September 2018.
[CrossRef]

19. Kuchumov, R.; Korkhov, V. An Analytical Bound for Choosing Trivial Strategies in Co-scheduling. In International Conference
on Computational Science and Its Applications; Lecture Notes in Computer Science; Springer International Publishing: Cham,
Switzerland, 2021; pp. 381–395. [CrossRef]

20. Aupy, G.; Benoit, A.; Dai, S.; Pottier, L.; Raghavan, P.; Robert, Y.; Shantharam, M. Co-scheduling Amdahl applications on
cache-partitioned systems. Int. J. High Perform. Comput. Appl. 2018, 32, 123–138. [CrossRef]

21. Aupy, G.; Benoit, A.; Goglin, B.; Pottier, L.; Robert, Y. Co-scheduling HPC workloads on cache-partitioned CMP platforms. Int. J.
High Perform. Comput. Appl. 2019, 33, 1221–1239. [CrossRef]

22. Zacarias, F.V.; Petrucci, V.; Nishtala, R.; Carpenter, P.; Mossé, D. Intelligent colocation of HPC workloads. J. Parallel Distrib. Comput.
2021, 151, 125–137. [CrossRef]

23. Jokanovic, A.; Sancho, J.C.; Rodriguez, G.; Lucero, A.; Minkenberg, C.; Labarta, J. Quiet Neighborhoods: Key to Protect Job
Performance Predictability. In Proceedings of the 2015 IEEE International Parallel and Distributed Processing Symposium,
Hyderabad, India, 25–29 May 2015. [CrossRef]

24. Snavely, A.; Tullsen, D.M. Symbiotic jobscheduling for a simultaneous multithreaded processor. In ACM SIGOPS Operating
Systems Review; Association for Computing Machinery: New York, NY, USA, 2000; pp. 234–244. [CrossRef]

http://doi.org/10.1021/acs.chemrev.0c00006
http://www.ncbi.nlm.nih.gov/pubmed/33305957
http://dx.doi.org/10.1145/3394277.3401852
http://dx.doi.org/10.1007/978-3-030-48256-5_51.
http://dx.doi.org/10.1177/1094342015597083
http://dx.doi.org/10.1007/s11227-015-1438-4
http://dx.doi.org/10.1002/cpe.4041
http://dx.doi.org/10.1109/ccgrid.2001.923173
http://dx.doi.org/10.1007/978-3-319-91446-6_47.
http://dx.doi.org/10.1145/3337821.3337890
http://dx.doi.org/10.1002/cpe.3187
http://dx.doi.org/10.1109/cluster.2017.59
http://dx.doi.org/10.1145/3375714
http://dx.doi.org/10.14459/2018md1428535
http://dx.doi.org/10.1109/hpec.2018.8547644
http://dx.doi.org/10.1007/978-3-030-87010-2_28.
http://dx.doi.org/10.1177/1094342017710806
http://dx.doi.org/10.1177/1094342019846956
http://dx.doi.org/10.1016/j.jpdc.2021.02.010
http://dx.doi.org/10.1109/ipdps.2015.87
http://dx.doi.org/10.1145/384264.379244

Computers 2021, 10, 122 23 of 23

25. Parekh, S.; Eggers, S.; Levy, H.; Lo, J. Thread-Sensitive Scheduling for SMT Processors; Technical Report 2000-04-02; University of
Washington: Seattle, WA, USA, 2000.

26. Jain, R.; Hughes, C.J.; Adve, S.V. Soft real-time scheduling on simultaneous multithreaded processors. In Proceedings of the 23rd
IEEE Real-Time Systems Symposium, RTSS 2002, Austin, TX, USA, 3–5 December 2002; pp. 134–145. [CrossRef]

27. Eyerman, S.; Michaud, P.; Rogiest, W. Revisiting symbiotic job scheduling. In Proceedings of the 2015 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), Philadelphia, PA, USA, 29–31 March 2015; pp. 124–134.
[CrossRef]

28. Gawiejnowicz, S. Models and Algorithms of Time-Dependent Scheduling; Springer: Berlin/Heidelberg, Germany, 2020; p. 538.
[CrossRef]

29. Pinedo, M.L. Scheduling. Theory, Algorithms, and Systems; Springer: Boston, MA, USA, 2012; p. 676; [CrossRef]
30. Matousek, J.; Gartner, B. Understanding and Using Linear Programming; Springer: Berlin/Heidelberg, Germany, 2006; p. 226.

[CrossRef]
31. Bailey, D.; Harris, T.; Saphir, W.; Van Der Wijngaart, R.; Woo, A.; Yarrow, M. The NAS Parallel Benchmarks 2.0; Technical Report,

Technical Report NAS-95-020; NASA Ames Research Center: Moffett Field, CA, USA, 1995.
32. Bienia, C. Benchmarking Modern Multiprocessors. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 2011.
33. Kuchumov, R.; Korkhov, V. Collecting HPC Applications Processing Characteristics to Facilitate Co-scheduling. In Proceed-

ings of the International Conference on Computational Science and Its Applications, Cagliari, Italy, 1–4 July 2020; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 168–182.

34. Kuchumov, R.; Korkhov, V. Co-Scheduling Numerical Simulation Source Code. 2021. Available online: https://gitlab.com/
mildlyparallel/co-scheduling-simulations (accessed on 30 September 2021).

http://dx.doi.org/10.1109/REAL.2002.1181569
http://dx.doi.org/10.1109/ISPASS.2015.7095791
http://dx.doi.org/10.1007/978-3-662-59362-2
http://dx.doi.org/10.1007/978-1-4614-2361-4;
http://dx.doi.org/10.1007/978-3-540-30717-4
https://gitlab.com/mildlyparallel/co-scheduling-simulations
https://gitlab.com/mildlyparallel/co-scheduling-simulations

	Introduction
	Related Work
	The Problem of Task Co-Scheduling
	Deterministic Co-Scheduling Strategies
	Optimal Strategy
	Online Strategy
	Competitive Ratio of the FCS Strategy

	Stochastic Co-Scheduling Strategies
	Computing Boundaries for Incomplete Data
	Search Algorithm Acquisition Functions

	Measuring Task Processing Speed in Experiments
	Benchmark Applications
	Numerical Simulation Results
	Discussion
	Conclusions
	References

