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Abstract: Lung cancer is a malignant lung tumor with various histological variants that arise from
different cell types, such as bronchial epithelium, bronchioles, alveoli, or bronchial mucous glands.
The clinical course and treatment efficacy of lung cancer depends on the histological variant of the
tumor. Therefore, accurate identification of the histological type of cancer and respective protein
biomarkers is crucial for adequate therapy. Due to the great diversity in the molecular-biological
features of lung cancer histological types, detection is impossible without knowledge of the nature
and origin of malignant cells, which release certain protein biomarkers into the bloodstream. To date,
different panels of biomarkers are used for screening. Unfortunately, a uniform serum biomarker
composition capable of distinguishing lung cancer types is yet to be discovered. As such, histological
analyses of tumor biopsies and immunohistochemistry are the most frequently used methods for
establishing correct diagnoses. Here, we discuss the recent advances in conventional and prospective
aptamer based strategies for biomarker discovery. Aptamers like artificial antibodies can serve
as molecular recognition elements for isolation detection and search of novel tumor-associated
markers. Here we will describe how these small synthetic single stranded oligonucleotides can be
used for lung cancer biomarker discovery and utilized for accurate diagnosis and targeted therapy.
Furthermore, we describe the most frequently used in-clinic and novel lung cancer biomarkers, which
suggest to have the ability of differentiating between histological types of lung cancer and defining
metastasis rate.
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1. Introduction

Lung cancer is the most common cancer and the leading cause of cancer-related deaths worldwide,
with approximately 1.8 million new cases and 1.6 million deaths in 2012 [1–4]. The five-year survival
rate of patients with lung cancer is approximately 13–15% [5]. Diagnosis of lung cancer at late stages
is a determining factor of high mortality from the disease. It is primarily explained by metastases
from lung into the central nervous system as observed in 54% cases [6,7]. Therefore, early lung cancer
detection is necessary for reducing the high mortality rate. Understanding the biological mechanisms
of tumor development and biomarker expression typical for lung cancer and specific for all histological
types is crucial for accurate diagnosis, treatment, and drug development.

2. Histology of Lung Cancer Types

Lung cancer is a malignant lung tumor that may stem from bronchial epithelium, bronchioles,
alveoli, and bronchial mucous glands. It is characterized by post-treatment relapses, metastasis, and a
variety of histological types. In 2015, the new World Health Organization (WHO) classification of
lung tumors was published [8]. The two main lung cancer types are small-cell lung carcinoma (SCLC)
and non-small-cell lung carcinoma (NSCLC) (Figure 1). Approximately 80% of lung cancer cases are
NSCLC, which have diverse molecular-biological features and clinical course forms of the disease [8,9]:
adenocarcinoma, adenosquamous carcinoma, squamous cell carcinoma, large cell carcinoma, and large
cell neuroendocrine carcinoma.
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growth, metastasis at early stages, and release of specific biomarkers and hormones. At present, there 
are two points of view on SCLC histogenesis. According to the first hypothesis, SCLC arises from cells 
of the diffuse endocrine system, i.e., the amine precursor uptake decarboxylation (APUD)-system 
(Figure 2); the second suggests this type of lung cancer originates from the endodermbronchial lining 
layer [10]. CA: carcinoma. 

Among the other subtypes of NSCLC, adenocarcinoma arises from glandular cells of bronchial 
mucosa and now represents the dominant histological subtype among the other lung cancer types 
(Figure 2). Squamous lung cancer arises from the modified bronchial epithelial cells (Figure 2) and is 
characterized by one of the following specific differentiation features: keratinization, keratin pearl 
formation, or the presence of intercellular bridges. Аdenosquamous carcinoma is a type of cancer 
that contains two types of cells: squamous cells (thin, flat cells that line certain organs) and gland-like 
cells [9]. Large cell neuroendocrine carcinoma is a malignant epithelial tumor, which is comprised of 
large polygonal cells that do not show any obvious evidence of histological differentiation. The cases 
include large cell neuroendocrine carcinoma, basaloid carcinoma, lymphoepithelioma-like 
carcinoma, and clear cell carcinoma. The tumor arises from neuroendocrine cells of the respiratory 
tract lining layer or smooth muscle cells of its wall (Figure 2). Large-cell carcinoma is a heterogeneous 
group of undifferentiated malignant neoplasms that lack the cytologic and architectural features of 
small cell carcinoma and glandular or squamous differentiation. Large-cell carcinoma is categorized 
as a subtype of NSCLC that originates from epithelial cells of the lung [11]. 

Figure 1. The new World Health Organization (WHO) classification of lung cancer histological types.
The various types of lung cancer have different origins and histological features (Figure 2). Small-cell
lung carcinoma (SCLC) is characterized by small size cells, absence of differentiation, fast tumor growth,
metastasis at early stages, and release of specific biomarkers and hormones. At present, there are two
points of view on SCLC histogenesis. According to the first hypothesis, SCLC arises from cells of the
diffuse endocrine system, i.e., the amine precursor uptake decarboxylation (APUD)-system (Figure 2);
the second suggests this type of lung cancer originates from the endodermbronchial lining layer [10].
CA: carcinoma.

Among the other subtypes of NSCLC, adenocarcinoma arises from glandular cells of bronchial
mucosa and now represents the dominant histological subtype among the other lung cancer types
(Figure 2). Squamous lung cancer arises from the modified bronchial epithelial cells (Figure 2) and
is characterized by one of the following specific differentiation features: keratinization, keratin pearl
formation, or the presence of intercellular bridges. Adenosquamous carcinoma is a type of cancer
that contains two types of cells: squamous cells (thin, flat cells that line certain organs) and gland-like
cells [9]. Large cell neuroendocrine carcinoma is a malignant epithelial tumor, which is comprised of
large polygonal cells that do not show any obvious evidence of histological differentiation. The cases
include large cell neuroendocrine carcinoma, basaloid carcinoma, lymphoepithelioma-like carcinoma,
and clear cell carcinoma. The tumor arises from neuroendocrine cells of the respiratory tract lining
layer or smooth muscle cells of its wall (Figure 2). Large-cell carcinoma is a heterogeneous group of
undifferentiated malignant neoplasms that lack the cytologic and architectural features of small cell
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carcinoma and glandular or squamous differentiation. Large-cell carcinoma is categorized as a subtype
of NSCLC that originates from epithelial cells of the lung [11].Cancers 2017, 9, 155  3 of 20 

 

 
Figure 2. Histogenesis of histological types of lung cancer. SM—Smooth Muscle; M—Macrophage; 
L—Lymphocyte; NC—Neuroendocrine Cell; EC—Epithelial Cell; SC—Secretory Cell. 
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It is well known that a unique combination of exogenous and endogenous factors influences
the occurrence and development of lung cancer in each individual. Therefore, lung cancer, like
other oncological diseases, is heterogeneous. Thus, in addition to various histological types, this
disease also has many molecular and pathological subtypes characterized by heterogeneous cellular
genetic and epigenetic changes and a different combination of protein biomarkers. However, at
present, data on protein signatures of molecular subtypes of histological types of lung cancer is
extremely limited, but a large number of genetic studies reflecting the probability of certain mutations
in genes are presented. In particular, mutations of EGFR (epidermal growth factor receptor) in lung
adenocarcinoma have been well studied. It was found that in patients with lung adenocarcinoma,
the probability of EGFR mutations increases linearly from age 3.7% (18–30 years) to 18.5% (81–100
years), and in female non-smokers, the probability of mutations is higher than in men [12,13]. In male
non-smokers, the probability of EGFR mutation is much higher than in smokers [12].

Identification of the correct histological type of lung cancer and their molecular subtypes is
necessary due to different treatment strategies. Tumor cells of each histological type release certain
protein biomarkers into the bloodstream and therefore play a key role in cancerogenesis. The use
of blood plasma to determine the origin and nature of the malignant cells for diagnosis requires
knowledge about expression of protein biomarkers, their specificity, sensitivity, and their release by
different types of lung cancer cells [14–16].

3. Methods Currently Employed to Diagnose Lung Cancer

Currently, lung cancer is detected mostly in the late stages due to such symptoms as coughing,
coughing up blood, shortness of breath, and chest pains. Unfortunately, the early stages of this disease
are often detected only by accident. Chest radiography and computer tomography are the most
commonly used methods for lung cancer diagnosis. However, as they can only identify visible and
irreversible changes in lung, there is a need for additional methods for early diagnosis. In order to
overcome this challenge, it is essential to discover novel, highly sensitive, and specific biomarkers [15].

4. Circulating Biomarkers of Carcinogenesis

Diagnostic significance of protein biomarkers is defined by their sensitivity and specificity.
Biomarker sensitivity is determined by the percentage of true positive results of analysis in a group
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of oncological patients, while biomarker specificity is determined by a percentage of true negative
results of analysis in a group of healthy people and patients with benign diseases. Unfortunately,
to date, 100% sensitive and specific biomarkers have not been found. Moreover, some cancer-specific
biomarkers were also found in plasma of healthy people.

For non-invasive detection of lung cancer biomarkers, biological materials such as tumor tissues,
blood, exhaled breath condensate, sputum, and urine are usually utilized. Exhaled breath condensate
is liquid received from the respiratory tract that consists of cytokines, proteins, and DNA [17]. It has
been established that the content of condensate from lung cancer patients differs from condensate of
healthy people, nevertheless, specific protein biomarkers have not been detected. Similarly, in sputum,
one of the most attractive non-invasive source of lung cancer biomarkers, specific markers are also yet
to be detected [18].

Thus, blood remains the most perspective source for biomarker discovery because cellular debris
penetrate into the bloodstream from the tumor. As a result, blood may be used as a minimally invasive
liquid biopsy. Blood is a complex matrix containing tumor-associated circulating lipids, proteins,
RNAs, miRNAs, DNAs, as well as cancer, immune, stromal, and endothelial cells [19].

Tumor-associated biomarkers are biological molecules that can be detected and serve as indicators
of pathogenic processes or pharmacological/pharmacodynamic response to treatment [20]. Different
oncomarkers can be used to distinguish normal and pathogenic processes [4]. An ideal biomarker
originates from neoplastic cells, is indiscernible in healthy and benign tissues, and can be identified by
simple methods in the available biological material (biological fluids). It should be sensitive, specific
and cost-saving.

Tumor biomarkers are divided into several types: genetic (mutations, changes in number
of copies, matrix RNA expression), epigenetic (changes in DNA methylation profile), proteomic
(changes in level and profile of protein expression), metabolic (changes in level and spectrum of low
molecular weight metabolites), DNAs and RNAs circulating in blood plasma, exosomal microRNAs
(miRNAs), synthesis profile and level of miRNAs, protein biomarkers, circulating tumor cells (CTCs),
and immune, stromal, and endothelial cells [17,18,20–26]. Overall, proteins are the most suitable
biomarkers for lung cancer diagnosis because of their involvement in cellular processes. A panel of
biomarkers (in particular, CYFRA 21-1 (cytokeratins), EPCAM (epithelial cell adhesion molecule),
ProGRP (pro-gastrin-releasing peptide), CEACAM (carcinoembryonic antigen), and others are used
for screening various malignancies including lung cancer. However, in practice, this system often fails
in providing sufficient sensitivity and information of value for optimal screening. For example, for the
diagnosis of lung cancer, CEACAM sensitivity and specificity is 69% and 68% respectively, while
that for CYFRA 21-1 was 43% and 89%, respectively [27]. Diagnostic sensitivity of plasma ProGRP in
distinguishing SCLC was estimated to be approximately 84%, and specificity 95% [28]. For comparison,
CT has a sensitivity is about 94% with low specificity and high false-positive rate in the detection of
lung cancers [29].

Various approaches are used for biomarker discovery; in particular, mass spectrometry analysis is
commonly used for protein profiling of tumors and another popular method, which will be discussed,
is affinity-based enrichment using aptamers and other molecules.

5. Proteomic-Based Lung Cancer Biomarker Search

Mass spectrometry methods allow identification and analysis of thousands of proteins in biological
systems [30]. Mass spectrometry can provide valuable information such as the differences between
protein profiles of normal and tumor lung tissue. As such, Kang and coauthors established that the
main lung cancer biomarker is the β-chain of human HP (haptoglobin) [31], others also classified
SAA (serum amyloid A) [4], APOA1 (apolipoprotein A-1) [32], ANXA (annexin), VIM (vimentin),
NM (non-muscle myosin), CALM (calmodulin), CFL (cofilin),TMS (thymosin), and EGFR (epidermal
growth factor receptor) as lung cancer biomarkers [30] (Table 1).
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Table 1. Protein biomarkers of lung cancer defined using proteomic studies.

Lung Cancer Type Protein Biomarkers of Lung Cancer Reference

NSCLC, SCLC

AGER, C10orf116, ADD2, PRX,
LAMB3, SYNM, SPTA1, ANK1, HBE1,
HBG1, CA1, TNXB, MMRN2, HBA1,
CAV1, HBB, COL6A6, C1orf198,
CLIC2, SDPR, EHD2, APOA2,
NDUFB7, PRKCDBP, LAMA3, LBN

[33–35]

ACT, 3 IGFBP3, L-PGDS [35]

SAA [36]

SAA, HAP, HGF [36,37]

TTR [38,39]

SAA, AAG1/2, CLU, SSA, AAG1,
SAA, TTR [6,35,37,40,41]

APOA4, FIBA, LBN, SAA, CP, HP,
TTR, KRT2A, GLT1B, CK1, AKT,
MBL2, AAG1-2, FGA

[42]

GSN, HP, FCN3, CNDP1 [43]

Lung adenocarcinoma

CALCA, CPS1, CHGB, IVL, AGR2,
NASP, PFKP, THBS2, TXNDC17,
PCSK1, CRABP2, ACBD3, DSG2,
LRBA, STRAP, VGF, NOP2, LCN2,
CKMT1B, AKR1B10, PCNA, CPD,
PSME3, VIL1

[44–47]

Squamous lung cancer

SERPINB5, RPL5, PKP1, RPL10,
AKR1B10, AKR1C1, PCNA, RPS2,
AKR1C3, THBS2, ACBD3, VSNL1,
AHCY, IMMP10, PAK2, IVL, IARS,
PSMD2, GBP5, MCM6, NDRG1,
NOP58, S100A2, NRG1-2, CNDP1

[45,47]

UCRP, CER, UPA, MT1-MMP, SFN, TF,
ALB, S100A9, STMN, ENO, PLAU,
IGFBP7, MMP14, THBS1, TTR

[48]

NSCLC: non-small-cell lung carcinoma; SCLC: small-cell lung carcinoma.

Mass spectrometry helped discriminate the differences between protein profiles of
adenocarcinoma and squamous lung cancer. Nevertheless, despite numerous known tumor-associated
biomarkers, sensitivity of proteomic studies is insufficient—only 79% for the first and second stage of
lung cancer [49]. Low sensitivity is most likely related to the loss of a number of low copy proteins
which are present in tissues and blood in trace amount.

6. Protein Biomarkers Used in Lung Cancer Diagnosis

Early diagnosis of lung cancer could be based on detection of protein markers and autoantibodies
specific for each type of cancer [50]. In particular, screening studies conducted in the United States
where 1613 patients used EarlyCDT®-Lung test revealed lung cancer at stage I. The blood test detected
early lung cancer in asymptomatic patients with higher specificity than imaging tests [50]. A similar
level of specificity and sensitivity for lung cancer diagnosis using autoantibodies was achieved in the
studies conducted by Caroline J. Chapman [51]. Thus, high sensitivity and specificity levels make
the panel of autoantibodies an important addition to the standard methods for early diagnosis of
lung cancer.
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Despite the great advances made in lung cancer biomarker discovery, no data on biomarkers with
high enough specificity and sensitivity has been found. This is related to a number of reasons:
(1) inefficiency of techniques applied for biomarker search, (2) genetic heterogeneity of tumors,
(3) poor reproducibility of laboratory tests, (4) poor research design, (5) low concentration of analyzed
biomarkers, and (6) insufficient number of tissue banks for screening [25].

Nevertheless, lung cancer therapy has advanced mostly due to target treatment approaches.
However, it was found that effective therapy for each histological type of lung cancer requires prior
knowledge about specific molecular targets. This establishes the importance of both the diagnosis
of lung cancer as well as further identification of the histological type. Several biomarkers are
currently used for clinical lung cancer detection. However, a variety of proteins that may act as
novel tumor-associated markers are yet to be proven (Table 2).

Some clinically used biomarkers such as CEACAM, CYFRA 21-1, and ProGRP have low
concentrations in serum, and therefore, each biomarker alone cannot be used for early lung cancer
diagnosis [52,53]. As such, they are used as a mixture. In particular, the combination of CEACAM and
CYFRA 21-1 could be used for detection of adenocarcinoma [54]. Statistically significant differences
between lung cancer patients and healthy people were found using a panel of CEACAM, CA125,
CYFRA 21-1, and NY-ESO (cancer-testis antigen) [45]. Other authors also used NSE (neuron specific
enolase), CEACAM, and CYFRA 21-1 for differentiation of histological subtypes of lung cancer [29].

Table 2. Conventional protein biomarkers of lung cancer.

№ Protein Biomarkers of Lung Cancer Reference

1 CEACAM (Carcinoembryonic
Antigen) [5,34,38,40,43,55–62]

2 CYFRA21-1 (Cytokeratin-19
fragments)

[5,8,26,34,38,43,55,56,58,61–
67]

3 CA125 (Cancer Antigen 125) [68]
4 PKLK (Plasma kallikrein) [51]

5 ProGRP
(Pro-gastrin-releasingpeptide) [17,56,69,70]

6 NSE (Neuron-specific enolase) [56,61,70–72]
7 TPA 6, 7, 8 [23,43]
8 NRG2, 100 [43]
9 CNDP [43]

10 APOB100 [43]

11 SCC (Squamous cell carcinoma
antigen) [73,74]

12 VEGF (Vascularendothelial growth
factor) [56]

13 EGFR (Epidermal Growth Factor) [50]

14 PIK3CA, HER2, BRAF, ROS, RET,
NRAS, MET, MEK1 [6,7]

15 HER2 [75]
17 C4.4A [20]
18 PSF3 [76,77]
19 FAM83B [54]
20 ECD, CTNNB , VIM, S100A4 [47]
21 S100A7 [32]
22 COX2 [78]
23 MUC1 [74,79]

The use of serum markers, namely LDH (lactate dehydrogenase), CRP (C-reactive protein),
CEACAM, NSE, and CYFRA 21-1, has enhanced accuracy of lung cancer diagnosis to 94.8% [42].
William L. Bigbee and coauthors suggest a panel of biomarkers—PRL (prolactin), TTR (transthyretin),
THBS1 (thrombospondin 1), SELE (selectin E), MIF (macrophage migration inhibitory factor), PLAT
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(plasminogen activator, tissue type), EGFR, ERBB2 (erb-b2 receptor tyrosine kinase 2), CYFRA
21-1, and serum APBA (2-dehydropantoate 2-reductase)for early lung cancer diagnosis with 77.1%
sensitivity and 76.2% specificity [80]. The combination of CEACAM, RBP (retinol-binding proteins),
SERPIN (serpin peptidase inhibitors), and SART (U4/U6.U5 tri-snRNP-associated protein 1)was also
used to diagnose lung cancer and classify patients in the independent validation set (sensitivity—77.8%;
specificity—75.4%) [81].

An overview of recent publications on early lung cancer diagnosis showed that combinations of a
variety of tumor-associated biomarkers could be more useful than using each of them separately [82].
Nevertheless, no composition for detection of lung cancer at early or premalignant stages has been
found [83].

7. Aptamer-Based Affinity Enrichment Methods for Lung Cancer Biomarker Discovery

In recent years, a new specific technique of biomarker discovery using aptamers, i.e., AptaBID, has
been developed [64]. Aptamers are small single-stranded DNA or RNA (30–100 nt) oligonucleotides
that form three-dimensional structures capable of binding certain targets. Specific binding of the
aptamers is conditioned by the dimensional structure, spatial charges distribution, phosphates and
the mismatch of bases, capable of electrostatic and van der Waals interactions and forming hydrogen
bonds [84]. Being highly selective, aptamers can quickly distinguish small differences in thousands
of proteins and therefore can be used in a wide variety of applications including molecular imaging,
drug delivery, therapy, diagnostics and biomarker discovery.

Despite the promising qualities aptamers possess for diagnostic and therapeutic purposes,
their widespread application is still limited due to problems and pitfalls that currently plague the
technology [85,86]. Conventional SELEX (Systematic Evolution of Ligands by EXponential Enrichment)
selection and its various modifications are time and labor consuming, and no universal and automatic
aptamer generation procedure has been established [85]. The main challenge is generation of efficient
aptamers for in vivo applications with high affinity to viable cells and tissues, long-lasting stability
in bloodstream, high selectivity, and low cross-reactivity. These “bottlenecks” could be overcome by
restricting selection to in vivo like conditions and increasing the chemical diversity of oligonucleotides
by addition of modified bases and chemical modifications, which introduce new functionalities to
aptamers. Nucleotide chemical modification can also help prevent aptamer degradation and excretion
from the bloodstream by renal filtration, increase circulation time, improve aptamer binding, and
potentially expand their use for therapy and diagnostics [85–87]. Current selection processes became
more efficient due to novel bio-separation technologies and high-throughput screening technologies.
Often, aptamers generated against purified or recombinant proteins do not show good binding in vivo
and sometimes have cross-reactivity [86,87]. Aptamers for diagnostic and therapeutic applications are
more effective when selected against complex targets (cells, viruses, bacteria, etc.), but identification of
their exact binding partner is often complicated and expensive. Specific biomarkers are isolated by
aptamer-mediated affinity purification using magnetic separation from whole cells (Figure 3a) or cell
lysates (Figure 3b). Purified proteins are identified using mass-spectrometry analyses (Figure 3).

Modifications of AptaBID approach were applied for aptamer facilitated detection of several lung
cancer protein biomarkers such as CTSD (cathepsin D)[61], VIM (vimentin), DEF (defensin) [62,88],
ANXA2 (annexin A2), ANXA5 (annexin A5), H2B (H2B histone family member M), and
CLU(clusterin) [62], LMN (lamin), and TUB (tubulin), ACT (actin) [88].

CTSD is implicated in tumorigenesis and is hyper-expressed in lung cancer tissues and plasma [89].
ANX (annexin) are considered as targets of breast cancer, pancreatic cancer and laryngeal carcinoma
therapy alone and/or synergistically [90]. Ubiquitylated H2B in cancer cells plays an important
role in human malignancy [91]. VIM, a major constituent of the intermediate filament family
of proteins is involved in cancer initiation and progression, tumorigenesis, metastasis formation,
and epithelial-to-mesenchymal transition [92–94]. Its expression is increased in moderately and
well-differentiated adenocarcinoma and in giant cell carcinoma [92,95]. LMN of the nuclear
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lamina modulate cell proliferation, differentiation, as well as epithelial-mesenchymal transition
and migration [96,97]. It serves as a marker of good or poor patient survival depending on tumor
subtype [98,99]. TUB hyperexpression and their post-translational modifications are correlated with
poor prognosis and chemotherapy resistance of various cancers [100]. DEF through EGFR activation
and downstream signaling pathways, influence cell migration and proliferation [101] and are associated
with cancer invasiveness [102].
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Some proteins expressed by circulating tumor cells (CTC) have lung origin, and thus, aptamers
for these markers could be used to isolate specific CTC from blood [62]. Some of these cancer-related
targets were found in crude blood plasma of patients with NSCLC and SCLC and could be detected
with an electrochemical aptamer–based sensor [103]. Lung cancer cells express the same biomarkers,
and therefore corresponding aptamers could be used for histological structure characterization of lung
adenocarcinoma. The selected DNA aptamers showed binding to various tumor structures, such as
elastic fibers, tumor cells, blood vessels, and elastin, which play important roles in tumor formation
and growth [88].

Another powerful aptamer-based proteomic technology allowing large-scale comparison of
proteome profiles in small volumes of biological samples with low limits of detection, a broad dynamic
range, and high reproducibility has been suggested by Larry Gold and SomaLogic [104]. This approach
enables the discovery of novel biomarkers using Slow Off-rate Modified Aptamers (SOMAmers) for
affinity enrichment [104]. SOMAmers engage proteins and increase the range of epitopes available for
binding because of their more hydrophobic surfaces compared with conventional aptamers [82].

A highly multiplexed proteomic technology SOMAscan technology demonstrated the possibility
of sensitive proteomic assay of protein expression signatures in NSCLC using healthy adjacent and
distant tissues from surgical resections [82]. Thirty-six proteins with the largest mean fold-change
in protein expression between tumor and non-tumor tissue samples have been suggested as novel
protein biomarkers of NSCLC and were classified into biological processes associated with important
hallmarks of cancerogenesis: angiogenesis, growth and metabolism, inflammation and apoptosis,
and invasion and metastasis [82].
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8. Lung Cancer Diagnosis Using Aptamers

Cancer-related proteins can be detected using various sensors, most of them rely on
antibody-antigen interaction in a sandwich-like system that requires two different types of antibodies
for target identification. The main challenge in the development of reliable diagnostic sensors based
on antibodies is due to the fluctuation of their affinity depending on manufacture and batch. Synthetic
aptamers overcome these limitations as their properties at the same conditions depend only on
nucleotide sequence [105,106]. Another advantage of using aptamers over the conventional antibodies
is the possibility to modify them chemically with various labels, active groups, and nanoparticles,
which is important for biosensors design [105]. Some aptamers change their conformation after binding
to their target molecules, which makes the development of switchable aptasensors and fluorescence
quenching sensors possible, which could not be achieved with antibodies [107]. Thus, aptamers
are widely used for development of various diagnostic tools (optical, colorimetric, fluorescence,
electrochemical, microfluidic, PET (positron-emission tomography), CT (computed tomography),
NMR (nuclear magnetic resonance), MRI (magnetic resonance imaging), or ultrasound imaging
etc.) [105–107].

More than 20 different aptamers selected by a number of research groups all over the world
demonstrated their high sensitivity for lung cancer diagnosis in different sensor systems as well as a
unique potential for a targeted therapy (Table 3, Figure 4).

Aptamers selected to postoperative adenocarcinoma tissues have been utilized for detection
of circulating tumor cells in blood [62], characterization of histological structure of lung
adenocarcinoma [88], and electrochemical sensing of blood plasma biomarkers [103].

Aptamers to lung cancer were developed not only for diagnostics, but also for cancer treatment.
Aptamers alone demonstrate antitumor activity in cell cultures; S13, S50 inhibit proliferation [111],
LC-183 suppress cancer cell growth [113], and R50 cause apoptosis [112]. Aptamers are effective
targeting ligands; anti mucin-1 aptamer is suitable for carrying doxorubicin [114] and plasmid
DNA [115] to cancer cells in most adenocarcinomas. Aptamer GL21.T are used as carriers for selective
delivery of a miRNA to A 549 cells, processing by the RNA interference machinery, and silencing let-7
g target genes, thus suppressing let-7 g function. This conjugate reduced tumor growth in vivo in a
xenograft lung adenocarcinoma model [116]. Aptamers to NCL (nucleolin) have been used for targeted
delivery of siRNA chimeras for lung cancer therapy [118] and PET imaging in vivo in a xenograft lung
adenocarcinoma model [119].

Several aptamers against SCLC cells have high affinity and specificity in different assay formats
for cell lines and tissues from the patient samples. Conjugates of these aptamers with magnetic
and fluorescent nanoparticles effectively extracted SCLC cells from mixed cell media for isolation,
enrichment, and sensitive detection [108]. Other aptamers to SCLC SBC3 cell line with good selectivity
are suitable for fluorescence microscopy and flow cytometry analyses. Unfortunately, their exact
protein targets have not yet been determined.
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Table 3. Aptamers for lung cancer diagnostics and therapy.

Aptamers Target Cells Protein Target Application Reference

Small cell lung cancer

HCA12
HCC03
HCH07
HCH01

Cell lines:
NCI–H69
NCI–H146
NCI–H128

Not determined

Formalin-fixed,
Paraffin-embedded

Tissue Array;
Extraction and
Detection with

Aptamer
Conjugated

Magnetic/Fluorescent
Nanoparticles

using fluorescence
microscopy and
flow cytometry

[108]

16-1 SBC3 cell line Not determined
Fluorescence

microscopy and
flow cytometry

[109]

Lung Adenocarcinoma

EJ7 ADE2 H23 cell line H23,
A549 cell line Not determined Flow cytometry [110]

S13, S50 EGFR-transfected
A549 cell line EGFR Antiproliferative

activity [111]

R50
A549 cells

transfected with
EGFR-GFP

NCL Apoptosis
induction [112]

LC-17 Post-operative
tissue TUB

Aptahistochemical
analyses of tissues

Isolation of
circulating tumor

cells

[62,88]

LC-18, Post-operative
tissue VIM, LMN

Aptahistochemical
analyses of tissues

Isolation of
circulating tumor

cells
Electrochemical

detection of protein
biomarkers in
human blood

plasma

[62,88,103]

LC-224 Post-operative
tissue

ACT methylated at
position 73

Aptahistochemical
analyses of tissues [88]

LC-110 Post-operative
tissue CLU H2B

Isolation of
circulating tumor

cells
[62]

LC-183 Post-operative
tissue CTSD

Isolation of
circulating tumor

cells
Inhibition of

growth of primary
cancer cell cultures

[62,113]

MA3 Cell lines: A549,
MCF-7 MUC1 Targeted delivery

of doxorubicin [114]

MUC-1
aptamer A549 cell line MUC1 Targeted delivery

of plasmid DNA [115]

GL21.T A549 (Axl+) cell
line AXL

Aptamer used as
carriers for

cell-targeted
delivery of a
miRNA with

tumor suppressor
function, let-7g;

miR-212

[116,117],

Other

aptNCL CL1-5 cell line NC L Targeted delivery
of siRNA chimeras [118]

AS1411 Multiple cancer cell
types NC L

PET imaging of
lung cancer with

Cu-64 labeled
aptamer

[119]

S1, S6, S11e, S15 NSLC Not determined [120]
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Aptahistochemistry for Identification of Lung Cancer Biomarkers

An important clinical method often used for diagnosis of tumor biomarkers is
immunohistochemistry. A commonly used marker to identify adenocarcinoma is TTF-1 (transcription
termination factor 1) [121], but in 70–90% cases of small cell lung cancer, expression of this marker is
present. Squamous cell carcinoma biomarkers such as TP63 (tumor protein p63), CK5/6 (cytokeratin
5/6), 34βE12 (high molecular weight cytokeratins) could also be identified in adenocarcinoma [121].
Immunohistochemistry of small cell lung cancer is required only in problematic cases; usually,
hematoxilin and eosin staining is sufficient for diagnosis. AE1/AE3 (pancytokeratin) is used to
demonstrate that the tumor is a carcinoma rather than a lymphoid lesion [9].

Immunostaining is based on histological identification of tumor biomarkers and abnormal blood
vessels by specific agents such as antibodies, but this method has some limitations such as: relatively
high cost, difficulties in quantifying results, probes in tissue immunohistochemistry-like staining,
as described in the research by Galina S. Zamay et al. [88]. They have shown that DNA-aptamers
previously selected to postoperative lung cancer tissue specifically bind to different structures of
tumor tissue including elastic fibers, tumor cells, blood vessels and elastin, having an important role
in the formation of tumors. Protein binding partners of the aptamers were identified using affinity
purification followed by mass spectrometry analyses, and validated with correspondent antibodies.
According to this data, LMN (lamin), VIM (vimentin), TUB (tubulin), and ACT (actin) detected with
the help of aptamers LC-18, LC-17, and LC-24 are involved in cancer progression and could act as lung
adenocarcinoma biomarkers [88].

9. Biomarkers of Different Histological Lung Cancer Types

In addition to the numerous biomarkers that are currently used for clinical lung cancer detection,
other proteins of new tumor-associated markers and their respective roles are also investigated (Table 2).
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For example, CEA (carcino embryionic antigen) is a 180-kDa glycoprotein as well as a carcinoembryonic
antigen of fetal embryonic development, in addition to this, it is also a biomarker as its concentration
level is increased in blood of patients with all lung cancer types (Figure 5) [48,79]. CEA is involved
in cell adhesion and modulation processes [57]. As a result, tumors with high expression of CEA
have high metastatic potential that may be caused by cell-cell adhesion between tumor and vessels
because CEA is involved in homo- and heterotypic interactions with other cells [72]. High levels of
CEA in serum is also correlated with brain metastases [122,123]. Serum levels of CEA may be useful for
assessment of prognostic information about the risk of recurrence and death from lung cancer [76,124].
Importantly, the level of CEA does not correlate with the stage of the disease [72].

9.1. Small Cell Lung Cancer

SCLC arises from neuroendocrine cells of the APUD-system (amine precursor uptake and
decarboxylation system) [67] and has two of the main biological features of these cells—production of
L-DOPA-decarboxylase (L-3,4-dihydroxyphenylalanine- decarboxylase) and NSE (Figure 5a). L-DOPA
decarboxylase is the gene encoding for the enzyme that catalyzes the biosynthesis of dopamine in
humans [125]. NSE is a glycolytic neuron specific isoenzyme of enolase with two almost identical
39-kDa polypeptides produced in the central and peripheral neurons and malignant tumors of
neuroectodermal origin; NSE is specific only for SCLC [42]. Adrenocorticotropic hormone, serotonin,
antidiuretic hormone, calcitonin, growth hormone, melanocyte-stimulating hormone, and estrogen are
also produced in SCLC.
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The other well-known biomarker of SCLC is ProGRP (pro-gastrin-releasing peptide). High levels
of ProGRP were found in the blood of patients with SCLC and medullary thyroid cancer (>200 pgmL−1).
Blood plasma of healthy people and patients with benign diseases have ProGRP concentrations of 35
pgmL−1 and 45–103 pgmL−1 respectively. ProGRP has organ specificity and does not correlate with
the stage of lung cancer. ProGRP is more specific than NSE; unfortunately, the use of this biomarker
for further studies is complicated due to its instability and difficulty of identification. Sensitivity and
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specificity of ProGRP were 80% and 90%, respectively, while NSE showed fewer rates of sensitivity
and specificity —64% and 43%. However, 27% of patients with SCLC had increased levels of NSE and
normal levels of ProGRP [22]. According to this data, the simultaneous detection of ProGRP and NSE
should improve the sensitivity and specificity of SCLC diagnosis (Figure 5a).

9.2. Squamous Lung Cancer

Squamous lung cancer arises from modified bronchial epithelial cells. One of the most distinctive
features of squamous lung cancer is high levels of fragmented cytokeratin CK-19 subunit—CYFRA
21-1 (Figure 5b). CK-19 is a protein component of intermediate fibers of epithelial cells [126]. The level
of CYFRA 21-1 is increased during the malignization process of normal epithelial cells. CYFRA 21-1 is
highly expressed in serum of patients with a metastatic form of squamous lung cancer. In contrast to
this, high concentrations of CYFRA 21-1 are not typical for SCLC [48,60,127].

The other specific protein for squamous lung cancer is SCCA (squamous cell carcinoma antigen),
a 48-kDa protein which is found in increased levels in squamous lung cancer [58,127,128]. SCCA is
an inhibitor of serine proteases such as human CELA (chymotrypsin), CAPN1 (calpain 1), and CTSL
(cathepsin L) [129]. It also inhibits apoptosis of tumor cells and stimulates invasion and metastasis [130].

9.3. Adenocarcinoma

Adenocarcinoma arises from glandular cells of bronchial mucosa and expresses several protein
markers (Figure 5c).

Diagnosis of adenocarcinoma is often based on identification of molecular markers of mutations,
in particular EGFR, ERCC (DNA excision repair protein), RRM 1 (ribonucleoside-diphosphate
reductase), KRAS (KRAS proto-oncogene), TS (thymidylate synthetase), and EML4-Alk (anaplastic
lymphoma kinase receptor tyrosine kinase) [78]. Recently, protein PSF3 (DNA replication complex
GINS) has become popular as a biomarker of adenocarcinoma [75,77,131]. PSF3 is a member of
the heterotetrameric complex GINS (“go-ichi-ni-san” complex, from the first letters of the Japanese
numbers 5-1-2-3) comprising SLD5 (Systemic RNA interference defective protein 5), PSF1 (GINS
complex subunit 1), PSF2 (GINS complex subunit 2), and PSF3 (GINS complex subunit 3). This
complex associates with proteins, which in turn regulate both the initiation and the progression
of DNA replication [132]. To date, an overexpression of PSF3 in adenocarcinoma has been clearly
established, which leads us to conclude that its level should be higher in blood plasma. However, data
on the level of PSF3 in blood has yet to be reported. In addition to these biomarkers, several novel lung
adenocarcinoma-associated proteins have been found using aptamers, such as LMN (lamin) and VIM
(vimentin), DEF (neutrophil defensin) and TUB (tubulin), ACT (cytoplasmic actin), CTSD (cathepsin
D), CLU (clusterin), NCL (nucleolin), and MUC1 (mucin-1). According to recent studies, identification
of such proteins would improve the diagnosis of adenocarcinoma.

9.4. Large Cell Carcinoma

Large cell carcinoma is a malignant epithelial tumor that comprises large polygonal cells showing
no obvious evidence of histological differentiation. Large cell carcinoma is characterized by small,
scattered groups of large non-differentiated, polimorphic, and often dual- or multi-core cells [11]. Data
on specific biomarkers of this histological type of lung cancer have not been found (Figure 5d).

9.5. Adenosquamous Carcinoma

Adenosquamous carcinoma is characterized by the features of squamous cell carcinoma and
adenocarcinoma simultaneously. Consequently, it has a protein biomarker of both histotypes—MUC
(mucin) [58].
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9.6. Large Cell Neuroendocrine Carcinoma

Large cell neuroendocrine carcinoma (LCNEC) is extremely rare. There are difficulties related to
its diagnosis and treatment. LCNEC showed overexpression of TOP SST (topoisomerasis somatostatin
precursor), and ERCC1 (excision repair 1, endonuclease non-catalytic subunit) [133].

9.7. Protein Biomarkers to Main Histological Types of Lung Cancer

Despite the length at which clinically used protein biomarkers have been studied, the data shows
that their levels in patients’ blood with different histological types of lung cancer varies. Table 4
presents comparative levels of well-known lung cancer biomarkers in blood plasma of patients with
NSCLC, SCLC, and healthy people.

Table 4. Comparative levels of lung cancer biomarkers in blood plasma of patients with non-small-cell
lung carcinoma (NSCLC) and small-cell lung carcinoma (SCLC) and healthy people.

Tumor-Associated
Protein NSCLC SCLC Normal

LDH 525.079 ± 24.817 ng
mL−1 [134]

209.880 ± 161.322 ng
mL−1 [134] <245 ng mL−1 [134]

CRP 25.079 ± 24.817 ng mL−1

[134]
14.935 ± 21.078 ng

mL−1 [134] <8 ng mL−1 [134]

CEA

51.493 ± 77.529 ng mL−1

[134]
78.5 ng mL−1 [23]
≥ 100 ng mL−1 [65]

25.074 ± 40.957 [134]

<5.0 ng mL−1

5.0 ng mL−1 [23,61]
<20.9 ng mL−1

6.5 ng mL−1 [66]

NSE

13.638 ± 5.571 ng mL−1

[134]
>6.4 ng mL−1 [19]

5–35 ng mL−1

17.95 ng mL−1 [61]
0–170 ng mL−1 [23]

62.972 ± 63.012 [134]
50.8 ng mL−1 [61]

15–173 ng mL−1 [23]

15.7–17.1 ng mL−1

15.2 ng mL−1

13 ng mL−1 [65]

CYFRA21-1
12.447 ± 15.814 ng mL−1

[134]
81.7 ng mL−1 [23]

6.418 ± 9.567 ng mL−1

[134]

<3.3 ng mL−1 [134]
3.3 ng mL−1 [35]

3.3 ng mL−1 [61,65]
0.5 ng mL−1 [65]
2.0 ng mL−1 [23]

SCCA 0.22–3.79 ng mL−1 [61]
0.5–1.7 >2 ng mL−1 [135] 0.15 ng mL−1 [61] 1.5 ng mL−1 [23]

TPS 0–3842 ng mL−1 [136] 12.5–773 ng mL−1 [23] 34.9 ng mL−1 UL−1 [23]

ProGRP <35 pg mL−1 [22] >200 pg mL−1 [22] <35 pg mL−1 [22]

Protein biomarkers of two main histological types of NSCLC, adenocarcinoma and squamous
lung cancer and their respective levels in blood plasma are compared to a healthy control group and
summarized in Table 5.
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Table 5. Comparative levels of well-known lung cancer biomarkers in blood plasma of patients with
adenocarcinoma and squamous lung cancer and healthy people.

Tumor-Associated
Protein Adenocarcinoma Squamous Carcinoma Normal

CEA
30.76 ng mL−1 [61]

0.6–588 ng mL−1 [23]
3.5–11.1 ng mL−1 [66]

4.49 ng mL−1 [134]
0.8–587 ng mL−1 [23]

<5.0 ng mL−1

5.0 ng mL−1 [23,61]
<20.9 ng mL−1

6.5 ng mL−1 [66]

NSE 17.95 ng mL−1 [134] 16.83 ng mL−1 [134]
15.7–17.1 ng mL−1

15.2 ng mL−1

13 ng mL−1 [23]

CYFRA21-1
4.00 ng mL−1 [61]

5.79 ± 6.75 ng mL−1 [63]
1.3–4.4 ng mL−1 [66]

10.34 ng mL−1 [61]

<3.3 [134]
3.3 ng mL−1 [23,61]

0.5 ng mL−1 [23]
2.0 ng mL−1 [66]

SCCA 0.22 ng mL−1 [61]
0.5–1.7 >2 ng mL−1 [66] 3.79 ng mL−1 [61] 1.5 ng mL−1 [66]

TPS 10–3842 ng mL−1 [23] 0–3000 ng mL−1 [23] 34.9 ng mL−1 [23]

Thus, the analysis of clinical biomarkers has shown that the use of six of the most specific protein
biomarkers will help improve early diagnosis of lung cancer and allow differentiating between lung
cancer histological types. These are summarized in Table 6.

1. CEA is a biomarker specific for all lung cancer types;
2. NSE is a biomarker of NSCLC, and a marker of metastasis;
3. CYFRA21-1 is a general biomarker for screening for lung cancer, and a biomarker of squamous

lung cancer in metastatic form;
4. SCCA is a biomarker of squamous lung cancer;
5. PSF3 is a biomarker of adenocarcinoma;
6. ProGRP is a biomarker of SCLC;
7. SCCA and mucin are biomarkers of adenosquamous carcinoma;
8. SST is a biomarker of large cell neuroendocrine carcinoma.

Table 6. A panel of biomarkers specific for SCLC, adenocarcinoma, squamous lung cancer, and large
cell lung cancer.

Biomarker CEA
ngmL−1

NSE
ngmL−1

ProGRP
pgmL−1 PSF3 CYFRA21-1

ngmL−1
SCCA

ngmL−1

Small Cell
CA 25.07 ± 41.1 50.8–173 >200 normal 6.42 ± 9.57 0.15

AdenoCA 0.6–588 17.95 ~35 overexpression 1.3–5.79 0.22–2.0
SquamousCA 0.8–587 16.83 ~35 normal 10.34 3.79
Large Cell

CA 51.5–100 4.6–17.95 ~35 normal 1.3–5.79 0.22–2.0

Healthy 5–20.9 13–17.1 ~35 normal 0.5–1.3 1.5

10. Conclusions

The great phenotypic diversity of each histological lung cancer type and the absence of highly
specific and sensitive biomarkers make lung cancer diagnosis rather difficult. Panels of various
biomarkers have been recently applied and are becoming more popular as this technique improves
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early lung cancer detection. In this review, we suggest the use of a panel consisting of eight
tumor-associated biomarkers—CEA, CYFRA21-1, ProGRP, CEA, PSF3, MUC, SCCA, and SST—allow
us to differentiate between each histological type of lung cancer and to define the metastasis rate.
In addition to conventional biomarker discovery methods, aptamer-based detection of several lung
cancer biomarkers, such as LMN and VIM, DEF, and TUB, could be helpful for accurate diagnostics.
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