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Abstract: Anaplastic large cell lymphoma expressing anaplastic lymphoma kinase (ALK+ ALCL)
is a distinct subtype of non-Hodgkin lymphoma. In this review, we discuss the historical findings
that led to its classification as a unique disease, despite its varied clinical presentation and histology.
We discuss the molecular mechanisms underlying ALK+ ALCL pathology and the questions that
remain in the field. Finally, we visit how decades of ALK+ ALCL research has yielded more precise
drugs that hold promise for the future.
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1. Anaplastic Large Cell Lymphoma in Historical Context

Anaplastic Large Cell Lymphoma (ALCL) represents 10–15% of non-Hodgkin lymphoma in
children but can manifest throughout adulthood [1]. Though it is a rare disease, its impact should not
be overlooked. Relapses and chemotherapy-related toxicities present a tremendous burden to patients,
their families and the healthcare system.

Like many other malignancies, ALCL was initially defined not by its genotype, but by its
phenotype. Its identification began with the cloning of the diagnostic antibody Ki-1, which recognizes
a surface protein on a subset of Hodgkin and non-Hodgkin lymphomas [2]. The Ki-1 antibody was
consistently reactive against poorly classified non-Hodgkin lymphomas that collectively exhibited
abundant cytoplasm, large irregular nuclei and a tendency toward intrasinusoidal invasion. These tumors
had diverse morphologies, including common type, lymphohistiocytic, small-cell and Hodgkin-like
variants, but were unified in their reactivity with Ki-1 and often expressed T cell antigens. Collectively,
they were termed ALCL [3]. The target of Ki-1 was later identified as CD30, a cytokine receptor from
the tumor necrosis factor receptor family [4]. Though CD30 can be expressed on Reed-Sternberg cells
characteristic of Hodgkin lymphoma, in the context of non-Hodgkin lymphoma, its expression became
pathognomonic for ALCL. Based on growing clinical and cytological evidence for a distinct disease,
ALCL was included in the Kiel lymphoma classification [5].

A molecular understanding of ALCL began with the observation that a large subset of ALCL cases
harbored a t(2;5) (p23;q35) chromosomal translocation [6]. Subsequent cloning of the translocation
identified two genes: nucleophosmin 1 (NPM1) and a new kinase that was named anaplastic lymphoma
kinase (ALK) [7]. ALK is a receptor tyrosine kinase whose expression is normally restricted to neural
progenitor cells during development [8,9]. The t(2;5) translocation yields an abundantly expressed
chimeric protein containing the oligomerization motif of NPM1 and the kinase domain of ALK [7,8,10].
The NPM-ALK homodimer cross-phosphorylates itself leading to its persistent kinase activation [11,12].
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The NPM-ALK fusion is by far the most common translocation product in ALCL [13], though several
other oncogenic ALK fusion partners with similar mechanisms have been identified [14]. Based on
this additional genetic evidence, the World Health Organization (WHO) recognized ALK+ ALCL in
2008 [15].

Per the revised WHO lymphoma classification in 2016, four distinct entities of ALCL currently
are recognized: (1) ALCL, ALK+, (2) ALCL, ALK-negative, (3) primary cutaneous ALCL and (4)
breast implant-associated ALCL [16]. These classifications are based on a combination of clinical,
histopathological and genetic attributes. For example, ALK+ and ALK-negative ALCL are systemic
diseases with multi-nodal involvement usually of intra-abdominal and mediastinal lymph nodes,
whereas primary cutaneous ALCL and breast implant-associated ALCL are more localized and less
aggressive [1]. The latter two diseases rarely, if ever, express ALK. However, typical features of most
ALK+ and ALK-negative ALCL tumors include the presence of “hallmark cells,” which are large
cells with kidney-shaped nuclei and a peri-nuclear eosinophilic region, and the essentially universal
expression of the CD30 antigen.

Though there is strong evidence that NPM-ALK is critical in the lymphomagenesis of ALK+
ALCL, one cannot ignore the above observation that a large subset of ALCL, particularly in older
adults, lacks ALK expression. One study suggests that aberrant expression of oncogenes near the
t(2;5) breakpoint, prior to the translocation, promotes cell growth [17]. This could potentially explain
some of the morphological and transcriptional consistencies between ALK+ and ALK-negative ALCL.
However, more recent studies show that ALK-negative ALCL tumors often contain translocations
involving IRF4/DUSP22 [18,19], TP63 [20] and less frequently ROS and TYK2, which are related to
ALK and JAK kinases, respectively [21]. In addition, gain of function mutations in JAK1 and STAT3
genes have been reported in ALK-negative cases [21]. In sum, these alternative mechanisms better
explain the pathogenesis of ALK-negative ALCL.

2. ALK Biology in the Crosshairs of Medicine

Chemotherapy remains the predominant treatment for patients with ALCL. As a rare disease,
conducting clinical trials that carefully assess different treatment strategies for ALK+ ALCL is relatively
difficult. Furthermore, overall survival rates are quite high for the standard chemotherapy regimens,
in particular for ALK+ ALCL in children and young adults; however, late relapses are relatively
common even in this group. The drawbacks of chemotherapy—its toxicities leading to sterility and
secondary malignancies among other impairments—are also well recognized. These side effects are
particularly important in the pediatric population [1]. Therefore, the sands are shifting in favor of
more targeted approaches based on the two hallmark features of ALK+ ALCL: CD30 expression
and ALK activity. CD30 is normally expressed on activated immune cells, but it is also universally
expressed in ALCL with ALK shown to promote activation of the CD30 gene [22]. Brentuximab
vedotin is a monoclonal antibody against CD30 that delivers a microtubule inhibitor specifically to
CD30+ cells. It received FDA approval as a frontline single-agent therapy in ALCL [23]. Similarly,
ALK itself provides an ideal target for therapy. It is not expressed in normal tissues outside of
development [13], and thus is a cancer-specific kinase. Moreover, ALK drives essentially all oncogenic
and metastatic pathways in ALK+ ALCL [24], the foremost being STAT3 [25,26]. Multiple generations
of ALK inhibitors are at various stages of clinical development. These inhibitors are studied mostly in
the context of more prevalent ALK+ cancers for which clinical trials are easier to populate, particularly
ALK+ lung carcinoma [27]. However, ALCL-inclusive trials and case series of ALCL patients treated
with the first-generation ALK inhibitor crizotinib have yielded remarkably positive results, particularly
in the pediatric population [28–30]. In a recent study by the Children’s Oncology Group (COG),
21 out of 26 pediatric patients exhibited a complete response to ALK inhibition using crizotinib as a
front-line monotherapy [31]. We anticipate that a current COG-sponsored trial testing crizotinib in
combination with chemotherapy will demonstrate even higher efficacy (NCT01606878). Another arm of
the ongoing COG-sponsored clinical trial combines chemotherapy with brentuximab vendotin. Similar
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to the chemotherapy/crizotinib combination arm, the chemotherapy/brentuximab combination is
anticipated to yield high efficacy exceeding that of the agents administered alone.

Despite the preliminary successes reported for ALK kinase inhibition in ALK+ ALCL, it is worth
noting that resistance mutations similar to those seen in other ALK+ cancers have been reported
both in patients [30] and in vitro [32,33]. Not surprisingly, these ALK kinase mutations alter the
sensitivities of ALCL cells to various ALK inhibitors [34]. Amin et al. [33] demonstrated that several of
their ALK-resistant sub-clones had robust up regulation of NPM-ALK gene copy number reflected in
elevated mRNA and protein expression levels. These inhibitor-resistant sub-clones were paradoxically
addicted to ALK inhibitor, as removal of inhibitor resulted in cell death. The authors attribute this
phenomenon to unbalanced ALK activity that is toxic upon inhibitor removal. Therefore, a cocktail of
ALK inhibitors, as compared to a single inhibitor, may prove to be most effective if used upfront to
preempt selection for resistant clones that would lead to relapse.
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Figure 1. Multiple therapeutic pathways in ALK+ ALCL can be combined for optimized treatment.
Anti-CD30 treatment with brentuximab vedotin is FDA-approved [23]. ALK inhibitors such as the
first-generation drug crizotinib are in various stages of clinical development with strong preliminary
clinical results in ALCL [28–30]. PD-1 checkpoint blockade resulted in complete remission for a patient
with chemotherapy-resistant and ALK inhibitor-resistant ALCL relapse [35]. Experimental treatment
using the PDGFR inhibitor imatinib resulted in a full remission of a patient in relapse [36]. *STAT3
inhibition is an area of active research in ALCL and other cancers but remains experimental, limited so
far in ALCL to pre-clinical studies.

Furthermore, multipronged treatment strategies involving ALK inhibition, anti-CD30 therapy and
other agents should yield more durable clinical responses (Figure 1). Remarkably, a patient with ALK+
ALCL that developed resistance to both chemotherapy and ALK inhibition experienced complete
remission upon T-cell checkpoint blockade therapy targeting PD-1 [35]. Similar results were seen in an
ALK+ ALCL patient treated with imatinib [36], which though developed as a BCR-ABL kinase inhibitor
also inhibits enzymatic activity of PDGFRA, PDGFRB, and c-KIT kinases Importantly, PDGFRB was
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shown to be a direct target of JUN/JUNB complex downstream of NPM-ALK, and imatinib efficacy
was shown to have a positive correlation with PDGFRB expression in mice bearing ALK+ ALCL
tumors [36]. These single case observations coupled with the recently proven efficacy of ALK inhibition
monotherapy strongly suggest that rationally designed, potentially individualized combination
therapies with ALK inhibition at their backbone should prove highly effective. Existing and new
experimental models of ALK+ ALCL [37] should demonstrate the efficacy of such combinations. In the
meantime, many groups are using high-throughput approaches to identify novel drug targets in
ALK+ ALCL [24]. We present two recent examples. First, a phosphoproteomic screen identified the
Wiskott-Aldrich syndrome protein (WASp) as a direct NPM-ALK substrate [38]. WASp is a central
regulator of actin polymerization, with well-characterized roles in normal T cells. Phosphorylation
of WASp by NPM-ALK enhances ALCL tumor growth and invasion, and WASp is required for
tumor growth. Given that an inhibitor to the closely related protein N-WASP has been reported [39],
a new line of investigation into WASp inhibition in models of ALCL could prove beneficial. Second,
a CRISPR-based loss of function screen revealed the cytokine receptor IL-31Rβ as an additional
drug target in ALK+ ALCL [40]. It is of note that IL-31R has a previously demonstrated role in the
pathogenesis of cutaneous T cell lymphoma [41,42] and follicular B cell lymphoma [43]. This suggests
that targeting the IL-31/IL-31R axis, either with antibodies that block the receptor-ligand interaction or
with small molecule inhibitors of the downstream signaling pathways (predominately STAT3), could
be additionally beneficial.

3. Targeting STAT3 in ALK+ ALCL

One of the emerging stories stemming from the molecular characterization of NPM-ALK function
is a consistent role for STAT3 signaling in the pathogenesis of ALCL. STAT3 is phosphorylated in
normal cells by members of the JAK family in response to cytokine-cytokine receptor interaction.
Phospho-STAT3 translocates into the nucleus, and functions as a transcriptional activator. Several lines
of evidence support its role in ALCL. First, STAT3 is required for ALK-mediated tumorigenesis in
lymphoma [26]. Second, a striking correlation exists between ALK-dependent and IL-2-dependent
transcriptional changes in ALK+ ALCL [44]. Third, convergent mutations of JAK1 and/or STAT3 itself
in ALK-negative ALCL also result in STAT3 activation [21]. STAT3 is thus an attractive drug target
(Figure 1). However, targeting STAT3 has proven difficult [45] and so other potential targets in this
pathway have garnered attention.

In dissecting the role of the JAK/STAT pathway in ALK+ ALCL, a controversy has emerged as to
whether NPM-ALK can bypass JAK to phosphorylate STAT3 directly. If JAK3, or other members of the
family, were an intermediary of NPM-ALK signaling, then it would function as a suitable drug target.
Initial evidence suggested that this was indeed the case. JAK3 was found to be constitutively active in
ALCL cells and to physically interact with NPM-ALK [46–48]. Accordingly, JAK inhibition revealed a
dose-dependent loss of STAT3 activity [46]. However, these reports were in contrast to a previous study
in which an NPM-ALK mutant unable to bind JAK3 could still phosphorylate STAT3 [49]. A potential
explanation for this discrepancy is that the JAK inhibitors used in the Amin et al. [46] study had
off-target binding to the kinase domain of ALK thus ultimately reducing STAT3 phosphorylation
independently of JAK3. This explanation was further supported by later work which showed that
the JAK3 inhibitors used in the Amin et al. [46] study could directly inhibit NPM-ALK kinase activity
in vitro and that JAK3 was, in fact, unnecessary for STAT3 phosphorylation [50].

Recent technological advances should help resolve this controversy and further elucidate
targetable pathways in ALK+ ALCL. First, with many ALK inhibitors now available as research tools,
a thorough analysis of JAK kinase function upon ALK inhibition could be conducted. If NPM-ALK
phosphorylates STAT3 via JAK, then treatment with structurally different ALK inhibitors should
always simultaneously reduce phosphorylation of JAKs and STAT3. Second, using CRISPR-based
genome editing tools, JAK knockout ALCL cells could be generated to determine the contribution
of JAKs to NPM-ALK function and ALCL cell growth. Finally, to identify additional drug targets
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potentially outside of the NPM-ALK-JAK/STAT pathway, a more general CRISPR-screen could be
completed in ALK+ ALCL cells.

4. Conclusions

In summary, ALCL initially appeared as an enigmatic disease. However, as the clinical,
histological, and genetic evidence mounted, a distinct entity of T cell lymphoma for the ALK-expressing
subtype emerged. The pathogenesis of ALK-negative ALCL strongly parallels that of the ALK+ subtype
in that intracellular cytokine signaling pathways are often engaged. Based on these findings, new
and more precise therapies have been developed. It appears likely that such precision medicine will
become the mainstay of treatment in ALCL.
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