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Abstract: Hypoxia-induced chemoresistance (HICR) is a well-recognized phenomenon, and in many
experimental models, hypoxia inducible factor-1α (HIF-1α) is believed to be a key player. We aimed
to better understand the mechanism underlying HICR in a triple negative breast cancer cell line,
MDA-MB-231, with a focus on the role of HIF-1α. In this context, the effect of hypoxia on the
sensitivity of MDA-MB-231 cells to cisplatin and their stem-like features was evaluated and the
role of HIF-1α in both phenomena was assessed. Our results showed that hypoxia significantly
increased MDA-MB-231 resistance to cisplatin. Correlating with this, intracellular uptake of cisplatin
was significantly reduced under hypoxia. Furthermore, the stem-like features of MDA-MB-231
cells increased as evidenced by the significant increases in the expression of ATP-binding cassette
(ABC) drug transporters, the proportion of CD44+/CD24− cells, clonogenic survival and cisplatin
chemoresistance. Under hypoxia, both the protein level and DNA binding of HIF-1α was dramatically
increased. Surprisingly, siRNA knockdown of HIF-1α did not result in an appreciable change to
HICR. Instead, signal transducer and activator of transcription 3 (STAT3) activation was found to
be important. STAT3 activation may confer HICR by upregulating ABC transporters, particularly
ABCC2 and ABCC6. This study has demonstrated that, in MDA-MB-231 cells, STAT3 rather than
HIF-1α is important in mediating HICR to cisplatin.
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1. Introduction

Hypoxia commonly occurs in solid tumors, as a result of their rapid proliferation that outpaces
the oxygen supply [1]. In response to hypoxia, cancer cells are known to upregulate a protein
called hypoxia inducible factor (HIF) [2]. HIF is a heterodimeric transcription factor comprised of
an oxygen regulated unit, HIF-1α, as well as a constitutionally expressed beta unit, HIF-1β. In the
presence of oxygen, HIF-1α is degraded by prolyl hydroxylase via ubiquitination and proteolysis [3].
Under hypoxia, HIF-1α is stabilized. After its dimerization with HIF-1β, the HIF heterodimer
translocates to the nucleus where it activates the transcription of various downstream targets,

Cancers 2017, 9, 137; doi:10.3390/cancers9100137 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
https://orcid.org/0000-0002-1901-263X
https://orcid.org/0000-0002-5123-5710
http://dx.doi.org/10.3390/cancers9100137
http://www.mdpi.com/journal/cancers


Cancers 2017, 9, 137 2 of 17

many of which are known to be involved in cancer progression, survival, aggressiveness and
chemoresistance [2–4]. To induce drug resistance, HIF has been demonstrated to reduce drug-induced
apoptosis and senescence [5,6] and to induce autophagy [7,8]. In view of its significance as a master
regulator of hypoxia-induced chemoresistance (HICR), HIF-1, especially its α subunit, is considered to
be a therapeutic target for cancer treatment [5–7,9–12].

While HIF has been shown to be the key mediator of HICR, a relatively small number of
publications have implicated other molecular mechanisms in conferring HICR. For instance, p53
can be inactivated in cancer cells in hypoxia, inducing resistance to p53-mediated apoptosis [13–15].
It has also been shown that hypoxia can induce the activation of a number of signaling pathways,
including those of phosphoinositol-3-kinase (PI3K), nuclear factor kappa-B (NFκB), cycloxygenase-2
(COX-2), activator protein-1 (AP-1), c-Jun, Pim-1, apoptosis inhibitory protein (IAP-2) and signal
transducer and activator of transcription 3 (STAT3) protein, and these hypoxia-induced biochemical
alterations may contribute to drug resistance under hypoxic conditions [13,16–24]. However, in most of
these studies, the role of HIF-1α relative to that of these signaling pathways was not directly assessed.
Specifically, it is not clear if these pathways are key mediators of HICR that is independent of HIF-1α.

In this study, we aimed to understand the mechanism underlying HICR in triple negative breast
cancer (TNBC), since TNBC tumors are known to frequently carry a hypoxic phenotype and HIF-1α
is known to be frequently over-expressed in these tumors [25]. Cisplatin, a platinum used as part of
the standard chemotherapy regimen for TNBC patients [25,26], was used in this study. Our findings
suggest that STAT3, instead of HIF-1α, is the key player of HICR to cisplatin in MDA-MB-231, a TNBC
cell line. This study has demonstrated that, while HIF-1α is recognized to be an important mediator
for HICR, exceptions exist.

2. Results

2.1. Hypoxia Induces Resistance to Cisplatin in MDA-MB-231 Cells

Using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolim bromide) assay to quantify
the number of viable cells, we found that hypoxia significantly increased the resistance of MDA-MB-231
cells to cisplatin (Figure 1A,B), increasing the inhibitory concentration at 50% (IC50) from 17 µM (as seen
under normal conditions) to 330 µM at 48 h after cisplatin treatment (Figure 1B). Similar results were
obtained when trypan blue assay was used to assess the number of viable cells (Figure 1C,D). As shown
in Figure 1E, we performed clonogenic survival assays; with cisplatin treatment, we found that cells
cultured under hypoxia had a significantly higher number of colonies than cells grown under the
normal condition. Of note, without cisplatin treatment, there was no significant difference in the
clonogenic potential between cells grown in hypoxia or normal conditions (Supplementary Materials
Figure S1). Correlating with our observation that hypoxia induces chemoresistance in MDA-MB-231
cells, we found that the cell uptake of cisplatin under hypoxia was significantly less than that under the
normal condition (Figure 1F). The intracellular cisplatin level was measured by using an ion-coupled
plasma mass spectrometer, as detailed in Materials and Methods.
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Figure 1. Hypoxia confers chemoresistance to cisplatin in MDA-MB-231 cells. Drug sensitivity of cells 
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diphenyltetrazolim bromide assay) for (A) 24 h and (B) 48 h treatment with cisplatin. (*) denotes a 

significant difference compared to the normoxic group at each individual cisplatin concentration 

(Student’s t test, p < 0.05). The viability of MDA-MB-231 cells was measured by trypan blue assay for 

cells treated with cisplatin (33.2 and 66.4 µM) for 48, 72 and 96 h under (C) normoxia and (D) hypoxia. 

(*) denotes a significant difference compared to lower cisplatin concentrations (33.2 µM) at each time 

point (Student’s t test, p < 0.05). (E) Clonogenic survival assay was conducted for cells treated with 

cisplatin (33.2 µM) under hypoxia or normoxia (24 h) in duplicate with plating of 500 cells. The 

number of colonies formed (% of control) from 500 cells was graphed. (F) Cisplatin cellular uptake 

was measured by an ion coupled plasma mass spectrometer (ICP-MS) for 24 h treatment with 

cisplatin. (*) denotes a significant difference between normoxic and hypoxic groups (Student’s t test, 

p < 0.05). Data are represented as mean ± SD (n = 3). 

2.2. Hypoxia Confers Stem-Like Features to Cells 

It has been previously published that hypoxic challenge can enrich the cancer stem cell (CSC) 

population in MDA-MB-231 [27]. As shown in Figure 2A, we identified a significant increase in the 

proportion of cells expressing the CD44+/CD24− immunophenotype, a well-documented CSC marker 

[28]. In further support of the concept that hypoxia promotes cancer stemness, we found that hypoxic 

Figure 1. Hypoxia confers chemoresistance to cisplatin in MDA-MB-231 cells. Drug sensitivity of cells
under normoxia or hypoxia was measured by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolim
bromide assay) for (A) 24 h and (B) 48 h treatment with cisplatin. (*) denotes a significant difference
compared to the normoxic group at each individual cisplatin concentration (Student’s t test, p < 0.05).
The viability of MDA-MB-231 cells was measured by trypan blue assay for cells treated with cisplatin
(33.2 and 66.4 µM) for 48, 72 and 96 h under (C) normoxia and (D) hypoxia. (*) denotes a significant
difference compared to lower cisplatin concentrations (33.2 µM) at each time point (Student’s t test,
p < 0.05). (E) Clonogenic survival assay was conducted for cells treated with cisplatin (33.2 µM) under
hypoxia or normoxia (24 h) in duplicate with plating of 500 cells. The number of colonies formed
(% of control) from 500 cells was graphed. (F) Cisplatin cellular uptake was measured by an ion
coupled plasma mass spectrometer (ICP-MS) for 24 h treatment with cisplatin. (*) denotes a significant
difference between normoxic and hypoxic groups (Student’s t test, p < 0.05). Data are represented as
mean ± SD (n = 3).

2.2. Hypoxia Confers Stem-Like Features to Cells

It has been previously published that hypoxic challenge can enrich the cancer stem cell (CSC)
population in MDA-MB-231 [27]. As shown in Figure 2A, we identified a significant increase in
the proportion of cells expressing the CD44+/CD24− immunophenotype, a well-documented CSC
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marker [28]. In further support of the concept that hypoxia promotes cancer stemness, we found
that hypoxic challenge resulted in a significant increase in the mRNA levels of ATP-binding cassette
(ABC) drug transporters (i.e., ABCC1–6 as well as ABCB1) (Figure 2B), previously shown to be CSC
markers [29].
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Figure 2. Hypoxia confers stem-like features to cells. The effect of hypoxia in the MDA-MB-231 cells
on (A) the enrichment of cells with CD44+/CD24− subpopulation after 24 and 48 h incubation under
hypoxia. (*) denotes a significant difference as compared to the normoxic group (Student’s t test,
p < 0.05) and (B) qRT-PCR results of ATP-binding cassette (ABC) drug transporters gene expression
after 48 h hypoxia normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and further
normalized to the normoxic group. (*) denotes a significant difference as compared to the normoxic
group (Student’s t test, p < 0.05). Data are represented as mean ± SD (n = 3).

2.3. HIF-1α Is Upregulated and Functionally Active in Response to Hypoxia

As expected, hypoxic challenge led to a substantial increase in the expression of HIF-1α protein
(Figure 3A). Moreover, the functional status of HIF-1α increased, as the DNA-binding of this protein
showed a significant and time-dependent increase, detectable as early as 2 h after the initiation of the
hypoxic challenge (Figure 3B). In accordance with these observations, vascular endothelial growth
factor (VEGF), a known downstream target of HIF-1α, also showed a time-dependent increase in its
secreted levels at 72 h under hypoxia (Figure 3C). As shown in Figure 3D, hypoxia also upregulated
the expression of several downstream targets of HIF-1α that have known anti-apoptotic functions,
such as survivin and BCL-2 (B-cell lymphoma 2). While we identified increases in the expression in
BAK (BCL-2 homologous antagonist/killer), cleaved caspase3 and cleaved PARP (poly (ADP-ribose)
polymerase), these changes were relatively subtle, suggesting a low degree of apoptosis induced by
hypoxia (Figure 3D).

Since STAT3 has been shown to stabilize HIF-1α upon hypoxia in Caki-1, a human renal carcinoma
cell line [30] and MCF-7, an estrogen receptor-positive breast cancer cell line [31], we asked if STAT3 is
activated in our experimental model. As shown in Figure 3D, hypoxic challenge induced a substantial
upregulation of phospho-STAT3 (pSTAT3), the active form of STAT3. Of note, in contrast to HIF-1α,
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HIF-1β did not change in response to hypoxia. This finding is in keeping with the concept that it is the
constitutively expressed subunit of HIF.
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To assess if HIF-1α plays a direct role in the observed biological changes induced by hypoxia, 

we knocked down the expression of HIF-1α using siRNA. As shown in Figure 4A, successful 
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detectable changes in the levels of cleaved caspase3 and cleaved PARP expression were identified. 

Figure 3. Hypoxia inducible factor-1α (HIF-1α) is upregulated and functionally active in response
to hypoxia. The effect of hypoxia on (A) the expression of HIF-1α protein for different time periods,
and (B) activation (DNA binding) of HIF1-α. (*) denotes a significant difference compared to the
normoxic group (Student’s t test, p < 0.05). (C) vascular endothelial growth factor (VEGF) production.
(*) denotes groups are significantly different from each other (one way ANOVA (analysis of variance)
followed by a post-hoc Tukey test, p < 0.05). (D) Expression of HIF-1α related proteins after 48 h
incubation under hypoxia and normoxia. Data are represented as mean ± SD (n = 3). Representative
results of three independent Western blot analyses are shown.

2.4. Hypoxia-Induced STAT3 Activation Is Independent of HIF-1α

To assess if HIF-1α plays a direct role in the observed biological changes induced by hypoxia,
we knocked down the expression of HIF-1α using siRNA. As shown in Figure 4A, successful
knockdown of HIF-1α was achieved. However, we did not observe appreciable changes in the
levels of survivin, BCL-2, and BAK, all of which are downstream targets of HIF-1α. Accordingly, no
detectable changes in the levels of cleaved caspase3 and cleaved PARP expression were identified.
Importantly, pSTAT3 was still expressed at a relatively high level, indicating that the hypoxia-induced
upregulation of pSTAT3 is not dependent on HIF-1α (Figure 4A).
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Since it has been reported that cisplatin can exert an inhibitory effect on HIF-1α [32], we will
further address the question of whether STAT3 activation induced by hypoxia is dependent on
HIF-1α. Thus, MDA-MB-231 cells were exposed to cisplatin at a relatively low concentration (32 µM)
under hypoxia for different time durations (i.e., 0–72 h). As shown in Figure 4B, in the absence
of cisplatin (i.e., without HIF-1α inhibition), we observed upregulations of HIF-1α and pSTAT3
upon hypoxic challenge. In comparison, with cisplatin treatment (i.e., with HIF-1α inhibition),
the hypoxia-induced upregulation of pSTAT3 was sustained, despite the suppression of HIF-1α
by cisplatin. The combination of both HIF-1α siRNA knockdown and cisplatin treatment revealed
similar results under hypoxia (Figure 4C). Taken together, it appears that hypoxia-induced STAT3
activation is not dependent on HIF-1α.
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Figure 4. Hypoxia-induced STAT3 (signal transducer and activator of transcription 3) activation
is independent of HIF-1α (hypoxia inducible factor-1α). Expression of HIF-1α related proteins
was measured following (A) HIF-1α/scrambled (Scr) siRNA treatment under hypoxia. Cells were
transfected with HIF-1α/Scr siRNAs under normoxia (24 h) and then kept under hypoxia (48 h),
(B) cisplatin treatment (33.2 µM) under hypoxia (24–72 h), and (C) HIF-1α/Scr siRNAs and cisplatin
treatment under hypoxia. Cells were transfected with HIF-1α/Scr siRNAs under normoxia (24 h)
and then treated with cisplatin (33.2 µM) under hypoxia (24 h). Representative results of three
independent Western blot analyses are shown. Densitometry analysis is shown in Supplementary
Materials Figure S2.

2.5. Simultaneous Inhibition of HIF-1α and STAT3 Proteins Is More Efficient in Suppressing the Acquisition of
Cancer Stemness Induced by Hypoxia

In view of the fact that HIF-1α and STAT3 are known to promote cell viability in face of adversity,
our collected data has led us to propose a model in which these two molecules work as two redundant
systems in maintaining cell viability and tumorigenicity under hypoxia. To provide evidence to support
this concept, we knocked down HIF-1α and STAT3 simultaneously (Figure 5B). If our model is correct,
one would expect to observe that the simultaneous inhibition of these two proteins is more efficient
in suppressing the acquisition of cancer stemness induced by hypoxia, as compared to inhibition
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with either protein alone. As shown in Figure 5C, simultaneous inhibition of both proteins resulted
in a significant downregulation of VEGF expression, as compared to the inhibition of either protein
alone. Moreover, we found that the simultaneous knockdown of both HIF-1α and STAT3 resulted
in a significant decrease in the proportion of cells expressing the CD44+/CD24− immunophenotype,
as compared to the inhibition of either protein alone (Figure 5D).
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the decrease was not substantially different from that of the single knockdown of STAT3. Of note, 

Figure 5. Simultaneous inhibition of HIF-1α (hypoxia inducible factor-1α) and STAT3 (signal transducer
and activator of transcription 3) proteins is more efficient in suppressing the acquisition of cancer
stemness induced by hypoxia. (A) siRNA treatment diagram for (B–D). MDA-MB-231 cells were
transfected with HIF-1α and STAT3 siRNAs individually or combined under normoxia (24 h) and
then incubated under hypoxia (48 h), (B) Successful knockdown of HIF-1α and STAT3 as shown by
Western blot analyses, (C) vascular endothelial growth factor (VEGF) production, (D) Expression of
CD44+/CD24− were measured for cells with flow cytometry. (E) Viability of cells was measured by
MTT assay after cells were transfected with HIF-1α and STAT3 siRNA individually or combined under
normoxia (24 h) and then treated with cisplatin (66.4 µM) under hypoxia (48 h). (*) denotes a significant
difference between the groups (one way ANOVA (analysis of variance) followed by a post-hoc Tukey
test, p < 0.05). (F) qRT-PCR results of ABCC2 and ABCC6 expression in the MDA-MB-231 cells. Cells
were treated with scrambled (Scr), HIF-1α, and STAT3 siRNAs under normoxia (24 h), and then
incubated under hypoxia (48 h). The qRT-PCR results were normalized to glyceraldehyde 3-phosphate
dehydrogenase (GAPDH), and further normalized to the untreated hypoxic sample. (*) denotes a
significant difference as compared to the untreated hypoxic group (Student’s t test, p < 0.05). Data are
represented as mean ± SD (n = 3).

We also performed an MTT assay to compare single siRNA knockdown of either HIF-1α/STAT3
to the simultaneous knockdown of both proteins. As shown in Figure 5E, we found that the double
knockdown was efficient in decreasing the number of viable cells after cisplatin treatment, although
the decrease was not substantially different from that of the single knockdown of STAT3. Of note,
siRNA knockdown of HIF-1α under hypoxia did not substantially reverse the HICR to cisplatin
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(Supplementary Materials Figures S3–S5). In addition, stabilization of HIF-1α in normoxia using cobalt
chloride did not induce resistance to cisplatin (Supplementary Materials Figure S6).

We postulated that the HICR to cisplatin in MDA-MB-231 cells may be due to an upregulation of
ATP-binding cassette (ABC) drug transporters (i.e., ABCC1, ABCC2, ABCC5 and ABCC6), as these
molecules have been implicated in cisplatin resistance in other cell types [33,34]. Thus, we investigated
the effect of siRNA knockdown of HIF-1α or STAT3. As shown in Figure 5F, only the knockdown of
STAT3 resulted in a significant reduction in the mRNA expression levels of ABCC2 and ABCC6 under
hypoxia; in contrast, the knockdown of HIF-1α did not appreciably change the expression levels of
these transporters. As for ABCC1 and ABCC5, we observed a decreased level of gene expression after
STAT3 knockdown, although the levels of reduction were not statistically significant (Supplementary
Materials, Figure S7).

3. Discussion

Hypoxia-induced chemoresistance (HICR) has been observed in a number of human cancer
models [22,35,36] including TNBC [37–39]. While the mechanism is not well understood, the role of
HIF-1α has been highlighted [5–7,9–11,38,40–45]. To induce chemoresistance under hypoxia, it has
been shown that HIF reduces drug-induced apoptosis and senescence [5,6] and induces autophagy [7,8].
In this study, we aimed to expand on our understanding of HICR. We employed an experimental
model in which a TNBC cell line, MDA-MB-231, was treated with cisplatin, which is a front-line
chemotherapeutic agent used to treat TNBC patients [25,26]. Consistent with the published results of
several studies using a variety of cancer cell lines and cisplatin under hypoxic conditions [21,35,46–48],
we found that hypoxia significantly induced cisplatin resistance in MDA-MB-231 cells. Importantly,
these findings correlated with a reduced cellular uptake of cisplatin and increased stem-like features
in these cells, as evidenced by the significant increase in the expression level of ABC transporters
and the significantly higher proportions of cells expressing CD44+/CD24−. To our knowledge,
this hypoxia-induced increase in stem-like features have been described in previously published
studies of human cancer cells [49–51]. Overall, we believe that our experimental model is valid and
appropriate to study HICR in cancer cells.

HIF-1α is considered to be a major factor in HICR [5–7,9–11,38,40–45]. In a wide range of
different tumor types, HICR was shown to be reversed by HIF-1α inhibition [5,6,9,10,38,41–43,45].
Our findings regarding the role of HIF-1α in HICR to cisplatin in MDA-MB-231 cells is however
rather unexpected. Specifically, while we found that HIF-1α was effectively upregulated by hypoxia,
siRNA knockdown of this protein did not significantly modulate the level of chemoresistance to
cisplatin, nor the expression levels of a panel of apoptotic proteins, suggesting the involvement
of other mechanisms that are independent of HIF-1α in the context of hypoxia-induced cisplatin
resistance. In concert with the published data, upregulation of HIF-1α is not sufficient to increase
chemoresistance [15,22], since stabilization of HIF-1α in normal conditions using cobalt chloride did
not induce cisplatin chemoresistance.

HIF-1α independent mechanisms of drug resistance in hypoxia are rarely reported. We have found
similar observations published in only four studies [15,18,22,52]. In all of these studies, inhibition of
HIF-1α either using siRNA, short hairpin RNA interference (shRNAi) or a dominant negative construct
did not lead to a significant reduction in HICR. Instead of HIF-1α, a number of other mechanisms
were highlighted as potential ‘substitutes’ for HIF-1α in conferring chemoresistance, including AP-1
induction, p53 suppression and mitochondrial inhibition [15,18,22,52]. None of these four studies
employed TNBC in their experimental models. To our knowledge, the role of HIF-1α in conferring
HICR in TNBC has not been previously studied in detail. In view of the fact that most published studies
support the importance of HIF-1α in conferring HICR, we considered two possible explanations for
this apparent discrepancy. First, we considered that the role of HIF-1α is variable depending on the
cell types used in the study. Second, the exact chemotherapeutic agents used in the study are likely to
be relevant. For instance, cisplatin is known to have inhibitory effect on HIF-1α function [32].
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The high activation level of STAT3 under hypoxia, an oncoprotein strongly implicated in
chemoresistance in cancer cells [34,53–55], has led us to hypothesize that STAT3 sustained the
chemoresistant phenotype despite the effective experimental abrogation of HIF-1α. STAT3 activation
has been recognized as one of the mechanisms that confer chemoresistance in hypoxic condition [21].
In another study using ovarian cancer cells treated with cisplatin under hypoxia, the authors also
highlighted the role of STAT3 in this context [21], however whether HIF-1α is important was not
examined. In support of the importance of STAT3 in this context, we found treatment of cells
with STAT3 siRNA to be highly effective in reversing hypoxia-induced chemoresistance to cisplatin,
whereas HIF-1α siRNA was relatively ineffective. The importance of STAT3, relative to that of
HIF-1α, was highlighted by the observation that the simultaneous inhibition of these two proteins did
not result in a significantly higher reversal of chemoresistance compared to STAT3 inhibition alone.
Of note, we admit that a potential shortcoming of this study is the inclusion of only one STAT3 siRNA.
Nonetheless, this specific STAT3 siRNA species was validated in one of our earlier studies [56].

The inter-relationship between the expression of HIF-1α and STAT3 has been previously studied.
Relatively extensive evidence has been published in support of the concept that STAT3 regulates
the expression/function of HIF-1α [31]. Furthermore, it has been shown that STAT3 works with
HIF-1α; for instance, STAT3 is known to be part of the HIF-1α-DNA complex, which mediates the gene
transcription functions of HIF-1α [57]. Nonetheless, not much is known as to whether the expression
and/or activation of STAT3 is regulated by HIF-1α. In our model, the observation that STAT3 remained
highly activated after the siRNA knockdown of HIF-1α strongly suggests that STAT3 activation in
response to hypoxia is not dependent on HIF-1α. This is in parallel with the results of a previous study,
which has shown the same phenomenon in MDA-MB-231 cells [57]. Nonetheless, this conclusion may
be specific to cell types and/or experimental conditions, since pSTAT3 upregulation independent of
HIF-1α has been previously reported in a human hepatoma cell line [58] while STAT3 down-regulation
secondary to HIF-1α knockdown has also been found in human colon cancer cells [59].

The multi-drug resistance related protein (MRP) family of the ATP-binding cassette (ABC) drug
transporters (ABCC1-13), breast cancer resistance protein BCRP (ABCG2) and ABCB1 (MRD1, p-gp)
are the best-known transporters mediating the multi-drug resistance phenotype. Whereas it has been
clearly established that ABCB1 and ABCG2 do not confer resistance to platinum compounds, selected
numbers of the MRP family have been implicated in resistance to cisplatin [33].

Our data has led us to hypothesize that STAT3 activation may confer chemoresistance under
hypoxia via its upregulation of a selected number of ABC drug transporters, particularly those
members that have been implicated in resistance to cisplatin [33]. STAT3 knockdown resulted in
significantly lower level of expression of ABC drug transporters involved in cisplatin resistance
(i.e., ABCC2 and ABCC6); however, knockdown of HIF-1α did not change the expression levels of
these transporters under hypoxia. These results may explain why STAT3 knockdown is more effective
in reversing hypoxia-induced cisplatin resistance as compared to HIF-1α in MDA-MB-231.

Of note, reduced intracellular cisplatin accumulation due to hypoxia-induced upregulation of
ABC drug transporters is one of the many mechanisms responsible for the development of cisplatin
resistance. For instance, an increased level of the antioxidant glutathione (GSH) is another known
hypoxia-induced adaptation for protecting tumor cells against oxidative stress and can confer drug
resistance to cisplatin by its inactivation [60].

We would like to point out that we performed most of the described experiments using another
TNBC cell line, SUM149, but we found that the results were not entirely consistent with those of
MDA-MB-231. Thus, the results described here are either specific to MDA-MB-231 and/or the
knowledge generated may be applicable to only a subset of TNBC tumors.

How STAT3 confers HICR also may be related to its ability to upregulate CD44, a marker of cancer
stemness [61,62]. Previous studies have shown that STAT3 can function as a modulator for CD44
expression in aggressive breast cancer cells and promote the CSC phenotype [62]. Notably, it has been
demonstrated that CD44+ breast cancer stem cells had a relatively high level of STAT3 activation [63].
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Furthermore, STAT3-mediated tamoxifen resistance also has been shown in the CD44+/CD24−/low

subpopulation of MCF-7 breast cancer stem cells characterized by their high mammosphere formation
capacity [61].

4. Materials and Methods

4.1. Cell Culture

TNBC cell line, MDA-MB-231 was obtained from ATCC (Manassas, VA, USA) and maintained in
Roswell Park Memorial Institute medium (RPMI) 1640 medium supplemented with 10% fetal bovine
serum (Invitrogen, Karlsruhe, Germany), 100 units/mL penicillin, and 100 mg/mL streptomycin in
a humidified incubator under 95% air and 5% CO2 at 37 ◦C. For the hypoxic condition, cells were
cultured in a CO2 incubator maintained at 94% N2, 5% CO2 and 1% O2. MDA-MB-231 cells were plated
at 25–30% confluence and cultured until they reached 60–70% confluence for different treatments.
The chemotherapeutic agent cisplatin (cis-diamminedichloroplatinum(II) (CDDP) (purity 99%), #H878,
AK Scientific Inc., Union City, CA, USA) was freshly prepared in water as a stock solution (3.3 mM)
and further diluted with the RPMI 1640 medium to reach the indicated concentrations.

4.2. Small Interfering RNAs (siRNAs) Complex Preparation

HIF-1α siRNAs (Hs_HIF1α_5 FlexiTube siRNA, #SI02664053, Qiagen, Hilden, Germany) [64],
scrambled (Scr) siRNAs (Negative Control siRNA, #1027310, Qiagen), STAT3 siRNAs (Hs_STAT3_7
FlexiTube siRNA, #SI02662338, Qiagen) [56] and Lipofectamine™ 2000 Transfection Reagent
(Invitrogen, Carlsbad, CA, USA), were used to make complexes with a (siRNA:polymer) ratio of
1:1 (weight/weight) in OptiMEM media (Life Technologies, Grand Island, NY, USA) according to the
manufacturer’s instructions. Complexes were added to the cells at 50 nM siRNA concentrations. Cells
were transfected with siRNA complexes at 50–60% confluence.

4.3. Trypan Blue Assay

MDA-MB-231 cells (7× 104 cells/well) were seeded in 24-well plates (1 mL in each well) overnight,
then exposed to cisplatin at the indicated concentrations and incubated under normoxia or hypoxia.
Then the floating and adherent cells (harvested by trypsinization) were collected separately at different
time points and re-suspended in trypan blue solution (0.4%) (Sigma-Aldrich, Oakville, ON, Canada)
and the number of viable and dead cells was counted in a hemocytometer under a light microscope.
At least 100 cells were counted for each sample. The percentage of viable cells is presented as the mean
± SD for three independently performed experiments.

4.4. MTT Assay

MDA-MB-231 cells (1 × 104 cells/well) were seeded in 96-well plates overnight and then
exposed to increasing concentrations of cisplatin (3.32–332 µM) for 24 and 48 h under hypoxia
or normoxia. For siRNA transfection studies, cells (7 × 104 cells/well) were seeded in 24-well
plates overnight. Then, cells at 50–60% confluence were transfected with siRNA complexes prior to
cisplatin treatment for 24 h under normoxia. Cellular viability was assessed by the reduction of MTT
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolim bromide, Sigma-Aldrich, Oakville, ON, Canada)
to formazan crystals. Briefly, MTT solution (5 mg/mL) was added to incubated cells for 4 h at 37 ◦C
prior to assessment. Then the medium was replaced by N,N,dimethyl sulfoxide (DMSO) to dissolve the
crystals formed. Optical density was measured spectrophotometrically using a plate reader (Synergy
H1 Hybrid Reader, Biotek, Winooski, VT, USA) at 570 nm. The cellular activity ratio was represented
relative to control.
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4.5. Colony Formation Assay

MDA-MB-231 cells (35 × 104 cells/flask) were seeded in 25 cm2 flasks overnight. The day after,
the culture medium was replaced with either drug-free medium (for non-treated controls) or medium
containing cisplatin. Drug exposure was performed either under normoxia or hypoxia for 24 h.
Cells were then washed once in 1× phosphate buffered saline (PBS), harvested by trypsinization,
counted using a hemocytometer, and then re-plated at three different densities of 500, 1000, and 2000
cells/well in duplicate in six-well plates under normoxia. After an additional seven to 10 days of
culture, cells were stained with a crystal violet solution (#HT90132, Sigma-Aldrich, St. Louis, MO,
USA), and surviving colonies consisting of ~50 or more cells were counted with a Protein Simple,
Alpha Imager HP. In another set of experiments, cells were first transfected with siRNA complexes
for 24 h under normoxia and then treated with cisplatin under hypoxia for another 24 h and then the
above procedure was repeated.

4.6. Flow Cytometry Analyses for CD44+/CD24− Expression

Single cell suspensions for flow cytometry were achieved by passing the cells through a 40 µm
cell strainer (BD Falcon, BD Biosciences, Franklin Lakes, NJ, USA) and staining with CD44-APC
(#559942) and CD24-PerCP-Cy5.5 (#561647) from BD Pharmingen in Hanks’ buffer supplemented
with 2% fetal bovine serum (FBS) according to the manufacturer’s instructions. All stained cells were
run in a BD FACS Canto II (BD Biosciences, San Jose, CA, USA), and data were analyzed using FCS
Express 5.0 software (De Novo Software, Glendale, CA, USA). To assess the changes in the expression
of CD44+/CD24− under hypoxia, as compared to normoxia, gates were first established for positivity
stained normoxic cells with antibodies of CD44 and CD24 using unstained normoxic cells as a negative
control. Then, the stained normoxic group was chosen as a control and the same gating was adopted
to measure the expression of CD44+/CD24− in hypoxic cells or other treatments.

4.7. RNA Extraction, cDNA Synthesis, Quantitative Reverse Transcription Polymerase Chain
Reaction (qRT-PCR)

Total RNA extraction was performed with the Qiagen RNeasy Kit (#74104 Qiagen) according
to the manufacturer’s protocol. A total of 1 µg of RNA was reverse transcribed using oligo-dT and
superscript II (Life Technologies, Grand Island, NY, USA) according to the manufacturer’s protocol.
Then 1 µL of the resulting cDNA mixture was added to the Platinum SYBR Green qPCR SuperMix-UDG
with Rox (Life Technologies, Grand Island, NY, USA) and amplified with target gene-specific primers
(as shown in Table 1) on the Applied Biosystems 7900HT (Carsbad, CA, USA; The Applied Genomics
Centre, Edmonton, AB, Canada). All genes of interest were normalized to glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) transcript expression levels. For analysis of changes in gene expression
under hypoxia, fold changes in gene expression were calculated using the 2−∆∆CT method. Individual
fold-changes for each of the hypoxic samples were calculated by subtracting the ∆CT (gene expression
cycle threshold (CT) normalized to the endogenous control, GAPDH) for each sample from the average
∆CT for the normoxic group to obtain ∆∆CT and was entered into the formula 2−∆∆CT to obtain the
fold changes.

Table 1. Primer sequences.

Gene Forward Primers Reverse Primers

ABCC1 5′-CTCTATCTCTCCCGACATGACC-3′ 5′-AGCAGACGATCCACAGCAAAA-3′

ABCC2 5′-CCCTGCTGTTCGATATACCAATC-3′ 5′-TCGAGAGAATCCAGAATAGGGAC-3′

ABCC4 5′-AGCTGAGAATGACGCACAGAA-3′ 5′-ATATGGGCTGGATTACTTTGGC-3′

ABCC5 5′-AGTCCTGGGTATAGAAGTGTGAG-3′ 5′-ATTCCAACGGTCGAGTTCTCC-3′

ABCC6 5′-AAGGAGGTACTAGGTGGGCTT-3′ 5′-CCAGTAGGACCCTTCGAGC-3′

ABCB1 5′-TTGCTGCTTACATTCAGGTTTCA-3′ 5′-AGCCTATCTCCTGTCGCATTA-3′

GAPDH 5′-GGAGCGAGATCCCTCCAAAAT-3′ 5′-GGCTGTTGTCATACTTCTCATGG-3′
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4.8. Western Blot

To measure the expression level of different proteins, MDA-MB-231 cells (20 × 104 cells/well)
were seeded in six-well plates overnight. Then cells were transfected with siRNAs for 24 h under
normoxia. Then after 48 h incubation under hypoxia, cells were washed with cold 1× PBS and lysed
using radioimmunoprecipitation assay buffer (RIPA) lysis buffer that was supplemented with 0.1
mM phenylmethylsulfonyl fluoride (PMSF) (Sigma-Aldrich), a protease Inhibitor Cocktail Set III,
Animal-Free—Calbiochem (#535140, Millipore, Billerica, MA, USA), and a phosphatase Inhibitor
Cocktail Set II (#524625, Millipore). The lysate was then incubated on ice for 30 min, which was
followed by centrifugation at 17,000 g for 20 min to remove genomic DNA. Protein quantification was
determined by the bicinchoninic acid (BCA) protein assay kit (Pierce, Rockford, IL, USA), and equal
amounts of protein (35–40 µg) were loaded in 4–15% Tris-Glycine gradient gel (#456-1084, Biorad,
Pleasanton, CA, USA). After gel electrophoresis, proteins were transferred to a nitrocellulose membrane.
Membranes were probed with antibodies against HIF-1α (#3716s, Cell Signaling Technologies, Danvers,
MA, USA), Hypoxia Inducing Factor-1β (HIF-1β) (#sc-8076, Santa Cruz Biotechnologies, Dallas, TX,
USA), survivin (#2808s, Cell Signaling Technologies), and B-cell lymphoma 2 (BCL-2) (#sc-130308,
Santa Cruz Biotechnologies), cleaved poly (ADP-ribose) polymerase (c-PARP) (#9544s, Cell Signaling
Technologies), PARP (#9542, Cell Signaling Technologies), phospho-STAT3 (Tyr705) (p-STAT3) (#9131,
Cell Signaling Technologies), Total-STAT3 (T-STAT3) (#8768s, Cell Signaling Technologies), c-Myc
(#5605s, Cell Signaling Technologies), cleaved caspase-3 (#9661s, Cell Signaling Technologies), caspase-3
(#9662s, Cell Signaling Technologies), BCL-2 homologous antagonist/killer (BAK) (#3814s, Cell
Signaling Technologies), p53 (#554293, BD Pharmingen, BD Biosciences), GAPDH (# sc-47724, Santa
Cruz Biotechnologies) and β-actin (#sc-47778, Santa Cruz Biotechnology). Proteins were then detected
using peroxidase-conjugated anti-mouse IgG (#7076, Cell Signaling Technologies) or anti-rabbit IgG
(#7074, Cell Signaling Technologies) and visualized by enhanced chemiluminescence (Pierce ECL
Western Blotting Substrate, #32106, Thermo Scientific, Rockford, IL, USA).

4.9. Vascular Endothelial Growth Factor Enzyme-Linked Immunosorbent (VEGF Elisa) Assay

The level of secreted VEGF was determined by the Quantikine Human VEGF Immunoassay kit
(#SVE00, R&D Systems, Minneapolis, MN, USA). Briefly, cells were left untreated or transfected by
siRNA under normoxia for 24 h and then kept under hypoxia for additional 48 h. The supernatant was
then removed and analyzed for VEGF levels in pg/mL according to the manufacturer’s instructions.

4.10. HIF-1α DNA Binding Activity

HIF-1α DNA binding activity was measured in a nuclear extract by HIF-1α transcription factor
assay Abcam Kit (#ab133104, Abcam, Cambridge, UK). Briefly, cell lysates for samples incubated
under normoxia or hypoxia for different incubation times were collected. The HIF transcription factor
complex present in the nuclear extract was then detected according to the manufacturer’s instructions.

4.11. Flow Cytometric Detection of Apoptosis Using Annexin V-FITC and Propidium Iodide

Annexin V-FITC (Fluorescein IsoThioCyanate) and propidium iodide (PI) from BD Biosciences
(FITC Annexin V Apoptosis Detection Kit I, #556547, BD Pharmingen™) was used to measure apoptotic
cells by flow cytometry according to the manufacturer’s instructions. Briefly, both floating and
adherent cells were harvested, adherent cells were collected by adding a warm solution of 10 mM
ethylenediaminetetraacetic acid (EDTA) in PBS, the cells were centrifuged at 500 g for 5 min, washed
with ice cold 1× PBS twice and re-suspended in 400 µL 1× binding buffer containing 5 µL Annexin
V-FITC and 5 µL PI for 15 min at room temperature in the dark. Fluorescence was induced on a
Beckman Coulter Cytomics Quanta SC MPL flow cytometer (10,000 events per sample). Spectral
compensation was performed using Cell Lab Quanta analysis software. The number of viable and
apoptotic cells were quantified by events in the quadrants. The results were expressed as the percentage
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of apoptotic cells at the early stage (PI negative and Annexin V positive, lower right quadrant),
apoptotic cells at the late stage (PI positive and Annexin V positive, upper right quadrant), necrotic
cells (PI positive and Annexin V negative, upper left quadrant) and viable cells (PI negative and
Annexin V negative, lower left quadrant).

4.12. Cell Uptake

Cellular uptake of cisplatin was quantified by using an ion coupled plasma mass spectrometer
(ICP-MS, Agilent Technologies, Tokyo, Japan). MDA-MB-231 cells (50× 104 cells/flask) were seeded in
25 cm2 flasks overnight. Cells were exposed to cisplatin (166 µM) for 24 h under normoxia and hypoxia.
On following day, the medium was aspirated, the cells were rinsed with cold PBS, detached using
trypsin-EDTA, aliquoted in duplicate in 1.5 mL micro-centrifuge tubes and pelleted by centrifugation
at 500 g for 5 min. One of each duplicate cell pellet was digested with 20% (v/v) HNO3 overnight
at 60 ◦C and analyzed for Pt(II) content by ICP-MS. The other duplicate was lysed using RIPA lysis
buffer that was supplemented with 0.1 mM phenylmethylsulfonyl fluoride (PMSF) (Sigma-Aldrich),
a protease Inhibitor Cocktail Set III, Animal-Free—Calbiochem (#535140, Millipore), and a phosphatase
Inhibitor Cocktail Set II (#524625, Millipore) and quantified for protein content using the BCA protein
assay kit (Pierce, Rockford, IL, USA). The cell uptake is expressed as ng cisplatin/µg cell protein.

4.13. Statistical Analysis

The statistical analysis was performed by Graphpad Prism (version 5.00, Graphpad Software Inc.,
La Jolla, CA, USA). Statistical analysis was performed either using unpaired Student’s t test or one-way
ANOVA (analysis of variance) with Tukey post-test analysis. Statistical significance is denoted by
(p < 0.05). All graphs represent the average of at least three independent experiments with triplicates,
unless mentioned otherwise in the text, or graphs. Results were represented as mean ± standard
deviation (SD).

5. Conclusions

Our findings have shown that STAT3 activation, but not HIF-1α, appears to mediate HICR to
cisplatin in MDA-MB-231 cells. Additional studies in other TNBC cell lines and primary samples
are required to validate the overexpression of STAT3 (rather than HIF-1α) as a biomarker of
chemoresistance to cisplatin or as a therapeutic target to improve TNBC chemosensitivity to cisplatin.

Supplementary Materials: The following are available online at www.mdpi.com/2072-6694/9/10/137/s1.
Figure S1: There was no significant difference in clonogenic potential between cells grown in hypoxia or normoxia
in the absence of cisplatin. Figure S2: Bar graph illustrating quantification of the Western blot densitometry analysis
for Figure 4C. Figure S3: Successful knockdown of HIF-1α is not effective in the reversion of hypoxia-induced
cisplatin resistance in the MDA-MB-231 cells. Figure S4: Successful knockdown of HIF-1α is not effective in the
reversion of hypoxia-induced cisplatin resistance in the MDA-MB-231 cells regardless of scheduling. Figure S5:
Successful knockdown of HIF-1α with siRNA under hypoxia did not enhance cisplatin-induced apoptosis
regardless of scheduling in the MDA-MB-231 cells. Figure S6: Stabilization of HIF-1α in normoxia using cobalt
chloride as a hypoxia mimetic agent failed to induce cisplatin resistance. Figure S7: qRT-PCR results of ABCC1
and ABCC5 expression in the MDA-MB-231 cells after HIF-1α, and STAT3 knockdown.
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