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Abstract: There is an increasing focus on the tumor microenvironment in carcinogenesis. Integrins are
important receptors and adhesion molecules in this environment and have been shown to be involved
in cell adhesion, proliferation, differentiation and migration. The present study aimed to evaluate
the effect of stromal integrin β3-deficiency on tumor growth, angiogenesis, interstitial fluid pressure
(PIF), fibrosis and metastasis in a murine breast cancer (4T1) and a prostate tumor (RM11) model.
We showed that stromal integrin β3-deficiency led to an elevation in PIF that correlated to a shift
towards thicker collagen fibrils in the 4T1 mammary tumor. In the RM11 prostate carcinoma model
there was no effect of integrin β3-deficiency on PIF and collagen fibril thickness. These findings
support the notion that changes in the collagen scaffold influence PIF, and also indicate that there
must be important crosstalk between the stroma and tumor cells, in a tumor cell line specific manner.
Furthermore, stromal integrin β3-deficiency had no effect on tumor growth or angiogenesis in both
tumor models and no effect on lung metastasis in the 4T1 mammary tumor model. In conclusion, the
stromal β3 integrin influence PIF, possibly via its effect on the structure of the collagen network, in a
tumor cell line dependent manner.
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1. Introduction

For many years the primary focus and target in cancer research has been on tumor cells.
Lately, however, there has been an increasing focus on the role of the tumor microenvironment in
carcinogenesis. The tumor microenvironment, as other normal tissues of the body, contains endothelial
cells, pericytes, immune cells, fibroblasts and extracellular matrix (ECM). All these components are
important contributors to carcinogenesis [1,2].

Disorganization of the tissue architecture is characteristic for tumors. The ECM is characterized
by increased fibrosis, and thus tumor stiffness [2,3]. Furthermore, the blood vessels in the tumor
microenvironment are dysfunctional and leaky, and the lymph vessels are defective or absent. These
factors are suggested to contribute to the increased interstitial fluid pressure (PIF) found in most solid
tumors [4]. According to the Starling hypothesis, an enhanced PIF can act as a functional barrier and
lead to impaired uptake of anticancer drugs into the tumors [4].

Integrins are heterodimeric membrane receptors that sense and integrate the information from
ECM proteins, cytokines, growth factors, immunoglobulins and matrix degrading proteases [5]. They
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mediate information between cells and the extracellular matrix, and between cells, both outside-in and
inside-out, affecting cell adhesion, proliferation, cell survival, differentiation and migration [6].

The combination of the 18α- and 8β–subunits defines the ligand specificity and signaling
properties of the particular integrin [5]. The present study has focused on the β3 integrin subfamily.
The β3 integrin subfamily consists of αIIbβ3 and αvβ3. While integrin αIIbβ3 is mainly expressed on
platelets and megakaryocytes [7], integrin αvβ3 is normally expressed on many cell types including
endothelial cells, smooth muscle cells, fibroblasts, monocytes, osteoclasts as well as platelets [7,8].
Integrin αvβ3 is found in adult epithelia and can be highly upregulated in certain tumor cells [7,9].
The integrin αvβ3 is upregulated in tumor-associated blood vessels, and has been proposed to be
involved in regulation of angiogenesis [10]. The αvβ3 integrin associates with PDGF-Rβ and VEGF-R2,
and these receptors play a role in cell survival and proliferation [11,12]. The expression of β3 integrins
is also associated with the ability of tumors to metastasize [7,13,14], and some preclinical studies have
shown that metastases can be reduced by integrin αvβ3-antagonists [15–19].

Thus, the αvβ3 integrin has been implicated in both tumor progression and metastasis, but
with variable, and even contradictory results, in both experimental as well as clinical studies using
αvβ3-antagonists [20–30].

Mice lacking stromal integrin expression can provide functional insight into the specific integrin
of choice and we therefore chose an integrin β3 knockout mouse model to study the function of the
β3 integrin in carcinogenesis. The specific aim of the present study was to investigate the effect of
stromal integrin β3-deficiency on tumor growth, angiogenesis, interstitial fluid pressure, fibrosis and
metastasis, in two different types of allografted murine carcinomas, the 4T1 metastatic breast and the
RM11 prostate carcinoma.

2. Methods

2.1. Cell Lines

The murine mammary carcinoma cell line 4T1 was obtained from the American Type Culture
Collection (Rockville, MS, USA). The prostate cell line RM11 was a kind gift from Associate Professor
Thomas S. Griffith (University of Minnesota, Minneapolis, MN, USA). The cells were grown in
RPMI-1640 medium (HEPES solution for RM11 cells) supplemented with 10% Fetal Bovine Serum
(Sigma-Aldrich, Steinheim, Germany), 100 units/mL penicillin, 100 µg/mL streptomycin, 1%–2%
L-glutamine (all from Bio-Whittaker, Walkersville, MD, USA), with an addition of 1% sodium pyruvate
for the RM11 cells. All cells were grown as a monolayer in a humidified incubator at 37 ˝C, in 5% CO2

and 95% air, and were seeded and used at log phase in all experiments.

2.2. Animal Model

The BALB/c integrin β3-deficient (β3-KO) and wild type (WT) mouse strains was originally
gifts from Professor Kristofer Rubin (Uppsala University, Uppsala, Sweden). Female mice were used
for the mammary 4T1 model, and male mice for the prostate RM11 model. The animal experiments
were performed in accordance with the regulations of the Norwegian Animal Research Authority and
approved by the local ethical committee (project number 20124127).

2.3. Establishing Primary Tumors

A total of 3 ˆ 105 4T1 tumor cells in 0.15 mL PBS were injected into the mammary fat pads on each
side of the groin area. In the prostate tumor study, 2 ˆ 105 RM11 cells were injected subcutaneously
on both sides of the mouse flank. The 4T1 tumors were measured using a caliper on days 7, 10, 13
and 17, and RM11 tumors on days 14, 17 and 20 post-injection. The tumor volume was calculated
using the formula; tumor volume (mm3) = (π/6) ˆ a2 ˆ b, where a represents the shortest diameter
of the tumor and b represents the longest diameter of the tumor. All animals were anesthetized by
isoflurane (Isoba®vet. 100%, Schering-Plough A/S, Farum, Denmark) in combination with N2O and
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O2 during experiments. The animals were sacrificed during anesthesia. The experiments ended day
17 post-injection for the 4T1 tumors and day 20–21 for the RM11 tumors. The metastases study was
performed separately and is described below.

2.4. Interstitial Fluid Pressure

The tumor interstitial fluid pressure (PIF) was measured using the wick-in-needle technique
(WIN) [31]. Briefly, a standard 23-gauge needle with a side hole, filled with nylon floss and saline, was
inserted into the central part of the tumor and connected to a PE-50 catheter, a pressure transducer
and a computer for pressure registrations. After a period of stable pressure measurements, the fluid
communication was tested by clamping the catheter which should cause a transient rise and fall in
pressure. Measurements were accepted if the pre to post-clamping value was within ˘ 1 mmHg. The
PIF-measurements were performed on the last day of the experiment.

2.5. Electron Microscopy of Collagen Fibrils in the Tumor

A JEM-1230 Transmission Electron Microscope (TEM),(Jeol, Tokyo, Japan) was used to measure
the diameter of the collagen fibrils. The tissue samples were cut into approximately 1 ˆ 1 ˆ 1 mm
samples and fixed in 2.5% glutaraldehyde in 0.1 M phosphate buffer, and then washed in PBS. The
samples were post-fixed in 1% OsO4 in PBS and dehydrated in increasing concentrations of 70%, 95%
and 100% ethanol, and then propylenoxide, before being embedded in Agar 100 Resin and sectioned
at 60 nm. One section was used per tumor. At least five images from different areas of the tumors, and
3–6 images from different areas of dermis, were captured at a magnification ˆ100,000 and analyzed
using Image J 1.46 (National Institutes of Health, Beteshda, MD, USA). Because of uneven distribution
of collagen in the tissue, the images were taken from the areas of the tissue where collagen was found.

A Jeol JSM-7400F Scanning Electron microscope (SEM) was used to study the tumor collagen
scaffold architecture. The tumors were cut in 1 ˆ 1 ˆ 1 mm samples and fixed in 2.5% glutaraldehyde
in 0.1 M phosphate buffer, before being placed in 10% NaOH for 7 days with replacement every day.
The NaOH was then replaced with tap-water for 2–4 days and dehydrated in increasing concentrations
of 70%, 95% and 100% ethanol, and dried in a “critical point-dryer”. The tumor tissue was mounted
on an Au-stub and coated with a 10 nm layer of gold and palladium using a Jeol JFC-2300HR High
Resolution fine coater. Five images from different areas of the tumor were captured from each tumor
at a magnification ˆ10,000.

2.6. Immunohistochemistry and Immunofluorescence

Frozen 10 µm tumor sections were used for immunohistochemistry and immunofluorescence.
One section was used per tumor. To visualize tumor blood vessels, CD31 staining, a two-step indirect
method was used. Rat anti-mouse CD31 (dilution 1:200, AbD serotec, Morphosys UK Ltd., Oxford,
UK) was used as primary antibody and biotinylated rabbit anti-rat (dilution 1:200, Vectastain ABC kit,
peroxidase Rat IgG PK 4004, Vectors Laboratories, Inc., Burlingame, CA, USA) as secondary antibody.

Ki67 staining was used to visualize cell proliferation. Prior to Ki67 staining, the sections were
placed in an antigen retrieval solution made of citrate buffer for 25 min at 97 ˝C. A two-step indirect
method was used. Rat anti-mouse Ki67 antigen (M7249, clone TEC3, dilution 1:100, Dakocymation,
Denmark A/S, Glostrup, Denmark) was used as primary antibody and biotinylated goat anti-rat
(E0468, dilution 1:100, Dakocymation, Denmark A/S) as secondary antibody. 3,3’-Diaminobenzidine
tetrahydrochloride (Sigma-Aldrich) was used as a chromogen for both these immunostaining protocols,
and Richardson stain was used as counterstain.

In an organized pattern, representative images from 4T1 and RM11 tumors were captured with
a Nikon camera (Nikon Digital Sight, Nikon Corporation, Tokyo, Japan) at ˆ10 magnification. Five
images were captured from each 4T1 tumor and 1–3 images from each RM11 tumor, as these were
smaller in size. The average number of blood vessels (vessel/mm2) or proliferating cells (% of total
cells) was calculated.
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For α-SMA staining, monoclonal anti-actin α-smooth muscle–FITC-conjugated antibody (F3777,
dilution 1:200/1:300, Sigma-Aldrich) was used. For NG2 staining, rabbit anti-NG2 chondroitin
sulfate proteoglycan (AB5320, dilution 1:100, Merck Millipore, Darmstadt, Germany) was used as
primary antibody and goat anti-rabbit IgG, Alexa Fluor 488 conjugate (A-11034, dilution 1:300, Life
Technologies, Thermo Fisher Scientific, Waltham, MA, USA)/goat anti-rabbit IgG, Alexa Fluor 594
conjugate (111-585-144, dilution 1:300, Jackson Immunoresearch Laboratories, Inc., West Grove, PA,
USA) as secondary antibody.

Five representative images from each 4T1 tumor at ˆ20 magnification were acquired with an
Axioscope fluorescence microscope and a digital Axiocam MRm camera (Zeiss, Oberkochen, Germany).
To identify the amount of pixels positive for α-SMA and NG2, Fiji ˆ64 (National Institutes of Health,
Beteshda, MD, USA) was used. An individual threshold value was used for each picture to adjust
for background.

2.7. Metastasis

To allow for development of metastasis, female animals were injected with 5 ˆ 105 4T1 cells
in one mammary fat pad. The primary tumors were resected on day 15 or 16 post-injection due to
their size, and the surgical wound was closed by tissue glue. The experiment was terminated on
day 27 post-injection.

The liver and femur bone were removed and fixed in formalin immediately after sacrificing the
animal. After fixation the bone was decalcified in 10% EDTA, pH 7.2 during a period of 5 weeks. The
lungs were fixed using approximately 1 mL of Bouin’s solution (Gurr BDH Chemicals Ltd., Poole, UK)
injected into the trachea. The lungs were immediately dissected out, fixated in new Bouin’s solution,
washed in 70% ethanol, dehydrated and embedded in paraffin using standard procedures. Sections
were stained with H & E staining and examined by light microscopy.

In order to quantify lung metastases, 4 coronal sections from both lungs from each animal were
examined. From one of the animals only 1 lung was analyzed due to a total collapse of the second
lung. Total number of metastases per lung was counted, and the area per lung covered by metastases
was measured in mm2 (Nikon Digital Sight, Nikon Corporation).

2.8. Statistical Methods

For statistical analysis, Sigmaplot 12.5 (Systat Software Inc., Chicago, IL, USA ) was used. Either
the unpaired two-tailed t-test, or the Mann-Whitney rank sum test, was used to analyze statistical
differences between the two groups. Results were accepted as statistically different when p < 0.05 in
two-tailed testing. Graph Pad Prism 6 (GraphPad Software, Inc., La Jolla, CA, USA) was used to create
all figures. Data is given as mean ˘ SD, and number of measurements (n) refers to number of tumors
unless otherwise specified.

3. Results

3.1. Stromal Integrin β3-Deficiency and Tumor Growth

To evaluate the effect of stromal integrin β3 on tumor growth, 4T1 mammary tumor cells and RM11
prostate tumor cells were injected in BALB/c integrin β3 wild type (WT) and integrin β3-deficient
(β3-KO) mice, and tumor volumes were measured at different time points using a caliper.

At day 7, post-injection, the 4T1 tumor volume in β3-KO mice was significantly larger (89.5 ˘14.2
(SEM) mm3, n = 10) than in WT mice (52.9 ˘ 10.2 (SEM) mm3, n = 13). However, at days 10, 13 and 17
post-injection, there were no significant differences in tumor volume between the β3-KO mice and WT
mice (Figure 1A). Furthermore, there were no significant differences in RM11 tumor volume between
the β3-KO mice (n = 17) and WT mice (n = 22) on days 14, 17 and 20 post-injection (Figure 1B). Thus,
stromal integrin β3-deficiency did not influence tumor growth in 4T1 or RM11 allografts during the
later stages of tumor progression.
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Figure 1. The growth of 4T1 (A) and RM11 (B) tumors in WT and β3-KO mice measured every other 

third day. A total of 3 × 105 4T1 and 2 × 105 RM11 cells were injected into the fat pad and subcutaneously 

on the mouse flank, respectively. Mean ± SEM. * p < 0.05. 

3.2. Integrin β3-Deficiency in Stromal Cells Has No Effect on Blood Vessels, α-SMA or Cell Proliferation 

It has previously been indicated that angiogenesis is influenced by stromal integrin αvβ3 [10]. 

CD31-immunostaining showed a large number of blood vessels in the tumor sections. However, there 

were no significant differences in blood vessel density in neither 4T1 nor RM11 carcinomas between 

β3-KO mice (n = 5) and WT mice (n = 5) (Figure 2A,C). Furthermore, there were no significant differences 

in blood vessel diameter in 4T1 (n = 4) and RM11 (n = 5) tumors between the two groups (Figure 2B,D). 

Immunostaining of the proliferation-marker Ki67 in 4T1 tumors showed no significant difference in 

the amount of proliferating cells in carcinomas obtained from β3-KO or WT mice (Figure 3). This was 

expected due to similar tumor growth rate. 

 

Figure 2. Microvascular density (A,C) and diameter (B,D) in orthotopic 4T1 (n = 4 and n = 5) and 

subcutaneous RM11 (n = 5) tumors were calculated using immunohistochemical detection of CD31.  

No statistical differences in tumor blood vessel density (4T1 p = 0.86, RM11 p = 0.14) or diameter  

(4T1 p = 0.36, RM11 p = 0.69) were found. Mean ± SD. 

Figure 1. The growth of 4T1 (A) and RM11 (B) tumors in WT and β3-KO mice measured every
other third day. A total of 3 ˆ 105 4T1 and 2 ˆ 105 RM11 cells were injected into the fat pad and
subcutaneously on the mouse flank, respectively. Mean ˘ SEM. * p < 0.05.

3.2. Integrin β3-Deficiency in Stromal Cells Has No Effect on Blood Vessels, α-SMA or Cell Proliferation

It has previously been indicated that angiogenesis is influenced by stromal integrin αvβ3 [10].
CD31-immunostaining showed a large number of blood vessels in the tumor sections. However,
there were no significant differences in blood vessel density in neither 4T1 nor RM11 carcinomas
between β3-KO mice (n = 5) and WT mice (n = 5) (Figure 2A,C). Furthermore, there were no significant
differences in blood vessel diameter in 4T1 (n = 4) and RM11 (n = 5) tumors between the two groups
(Figure 2B,D). Immunostaining of the proliferation-marker Ki67 in 4T1 tumors showed no significant
difference in the amount of proliferating cells in carcinomas obtained from β3-KO or WT mice (Figure 3).
This was expected due to similar tumor growth rate.
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Figure 2. Microvascular density (A,C) and diameter (B,D) in orthotopic 4T1 (n = 4 and n = 5) and
subcutaneous RM11 (n = 5) tumors were calculated using immunohistochemical detection of CD31.
No statistical differences in tumor blood vessel density (4T1 p = 0.86, RM11 p = 0.14) or diameter (4T1
p = 0.36, RM11 p = 0.69) were found. Mean ˘ SD.
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detection of Ki67 in 4T1 (n = 4) tumors (A) obtained from WT and β3-KO mice. No statistical difference 

was found (p = 0.76). Mean ± SD. Representative images from both genotypes are shown (B,C). Scale 

bars indicate 100 µm. 

α-SMA immunofluoresscent stained tumor sections were used to quantify the relative amount 

of activated fibroblasts in the tumors. There were no differences in expression of α-SMA in 4T1 (n = 5) 

(Figure 4A–C) or in RM11 tumors (n = 4) (Figure 4D–F) between β3-KO compared to WT mice. 
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= 0.76) or RM11 (p = 0.34) tumors were found. Mean ± SD. Representative images of α-SMA-staining 

(green) from both genotypes in 4T1 (B,C) and RM11 (E,F) tumors are shown. Scale bars indicate 50 µm. 

Blood vessels in tumors have fewer and more abnormal pericytes than in normal tissue, and the 

pericyte receptor NG2 was determined as a measure of pericytes in the vasculature of the tumors. 

Quantification of NG2 did not demonstrate any differences in expression in 4T1 (n = 5) (Figure 5A–C) 

or RM11 tumors (n = 4 and n = 6) (Figure 5D–F) in β3-KO and WT mice (p > 0.05). 

  

Figure 3. Percentage of proliferating cells of total cells was calculated using immunohistochemical
detection of Ki67 in 4T1 (n = 4) tumors (A) obtained from WT and β3-KO mice. No statistical difference
was found (p = 0.76). Mean ˘ SD. Representative images from both genotypes are shown (B,C). Scale
bars indicate 100 µm.

α-SMA immunofluoresscent stained tumor sections were used to quantify the relative amount of
activated fibroblasts in the tumors. There were no differences in expression of α-SMA in 4T1 (n = 5)
(Figure 4A–C) or in RM11 tumors (n = 4) (Figure 4D–F) between β3-KO compared to WT mice.
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Figure 4. Percentage of pixels positive for α-SMA in 4T1 (n = 5) and RM11 (n = 4) tumors (A,D) from
WT and β3-KO mice were calculated from immunofluorescent images. No statistical differences in 4T1
(p = 0.76) or RM11 (p = 0.34) tumors were found. Mean ˘ SD. Representative images of α-SMA-staining
(green) from both genotypes in 4T1 (B,C) and RM11 (E,F) tumors are shown. Scale bars indicate 50 µm.

Blood vessels in tumors have fewer and more abnormal pericytes than in normal tissue, and the
pericyte receptor NG2 was determined as a measure of pericytes in the vasculature of the tumors.
Quantification of NG2 did not demonstrate any differences in expression in 4T1 (n = 5) (Figure 5A–C)
or RM11 tumors (n = 4 and n = 6) (Figure 5D–F) in β3-KO and WT mice (p > 0.05).
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Figure 5. Percentage of pixels positive for NG2 in 4T1 (n = 5) and RM11 (n = 4 and n = 6) tumors (A,D)
from WT and β3-KO mice were calculated using immunofluorescent images. No statistical differences
in 4T1 (p = 0.90) or RM11 (p = 0.23) were found. Mean ˘ SD. Representative images of NG2-staining
from both genotypes of 4T1 (B,C) (NG2 green, CD31 red) and RM11 (E,F) (NG2 red) tumors are shown.
Scale bars indicate 50 µm.

3.3. Integrin β3-Deficiency in Stromal Cells Elevates Interstitial Fluid Pressure (PIF) Only in 4T1 Carcinomas

PIF is known to be increased in tumors and in the present study we wanted to evaluate the effect
of stromal integrin β3-deficiency on PIF in tumors. The PIF measured by the wick-in-needle (WIN)
technique was significantly (p < 0.005) higher in 4T1 tumors in β3-KO mice (4.9 ˘ 2.2 mmHg, n = 9)
compared to in WT mice (2.1 ˘ 1.7 mmHg, n = 11) (p < 0.05) (Figure 6A). However, there was no
significant difference in PIF in RM11 tumors between the β3-KO mice (5.6 ˘ 3.8 mmHg, n = 10) and
the WT mice (3.7 ˘ 3.5 mmHg, n = 12) (Figure 6B).
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3.4. Integrin β3-Deficiency in Stromal Cells Changes Collagen Architecture in 4T1 Carcinomas

Since it has been suggested earlier that collagen structure could influence PIF [32,33], we also
decided to evaluate collagen structure in this study. The collagen fibril diameter from Transmission
Electron Microscope (TEM) analyses of 4T1 tumors revealed an uneven distribution in fibril diameter
leading to a clear shift towards thicker collagen fibrils in carcinomas grown in β3-KO mice compared
to WT mice (Figure 7A). The mean collagen fibril diameter in the 4T1 tumors in β3-KO mice was
significantly larger (p < 0.02) (54.2 ˘ 2.7 nm, n = 5) than in WT mice (43.8 ˘ 6.5 nm, n = 5) (Figure 7B).
However, in RM11 tumors the mean collagen fibril diameter in β3-KO (42.3 ˘ 5.4, n = 3) was similar to
that in WT mice (45.8, ˘ 5.2, n = 5) (Figure 7D).
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Figure 7. Collagen fibrils were analyzed using transmission electron microscopy. Collagen fibril
diameter distribution, and average fibril diameter per tumor in 4T1 (n = 5) tumors (A,B), showed a
shift towards thicker fibrils in KO mice. RM11 tumors (n = 5 and n = 3) (C,D) and dermis (n = 4 and
n = 5) (E,F) showed no significant differences in average collagen fibril diameter in WT and β3-KO
mice (RM11 p = 0.39, dermis p = 0.41). Mean ˘ SD. * p < 0.02.

To evaluate whether this effect on the collagen network was a specific effect on tumors grown
in integrin β3-KO mice, the diameter of the collagen fibrils in dermis was also measured. Integrin
β3-deficiency had no effect on the collagen fibril diameter in dermis when comparing β3-KO mice
(68.0 ˘ 11.7 nm, n = 5 mice) with WT mice (73.8 ˘ 6.8 nm, n = 4 mice) (Figure 7E,F), indicating that the
lack of stromal β3 integrin can specifically influence tumor fibrosis.
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By using Scanning Electron Microscopy (SEM) to visualize the collagen architecture, a trend
toward a thicker and denser network of collagen fibrils in 4T1 tumors (n = 6) in β3-KO mice compared
to WT mice was observed (Figure 8A,B). This was not observed in the RM11 tumors (n = 4) when
comparing tumors grown in β3-KO and WT mice (Figure 8C,D).Cancers 2016, 8, 14 9 of 14 
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Figure 8. A representative scanning electron micrograph of collagen in 4T1 tumors (n = 6) from WT (A)
and β3-KO mice (B) and RM11 tumors (n = 4) from WT (C) and β3-KO mice (D), respectively. Scale
bars indicate 1 µm.

3.5. Integrin β3-Deficiency in Stromal Cells Does not Influence Metastasis

To evaluate whether stromal integrin β3 has an effect on metastatic potential, H & E stained
sections from the 4T1 metastatic model were used. The 4T1 breast cancer cell line is known to
metastasize to lungs, liver, bone and brain [34]. Excessive macroscopic surface metastases were
observed in all the lungs from both β3-KO and WT mice in the 4T1 metastatic model. There was no
significant difference in the ability of primary tumor cells to metastasize to the lungs in the β3-KO
mice (n = 4) compared to the WT mice (n = 5) (Figure 9). No metastases were observed in the femur
bones or in the livers during the time span of the 28 day study. However, in the livers the parenchyma
was significantly infiltrated by isles of extramedullary hematopoiesis, thereby making it difficult to
distinguish these isles from small metastases.
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Figure 9. Histomorphometric quantification of H & E-stained lungs from the 4T1 model in WT
(n = 5) and β3-KO (n = 4) mice. Average area per lung covered by metastases (A) and average
number of metastases per lung (B) is shown. No statistical differences were found (p = 0.41, p = 0.19).
A representative lung metastasis from a WT mouse is shown (C). Scale bar indicates 100 µm.
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4. Discussion

The present study showed that the absence of β3 integrin in the stroma of 4T1 mammary tumors
significantly elevated PIF concomitant with a shift towards thicker collagen fibrils. No change in
collagen fibrils or PIF was found in the RM11 prostate carcinomas. These results support the previously
suggested notion that a denser collagen scaffold will increase PIF [32,33]. Since the breast and prostate
carcinomas respond differently concerning the collagen network in the stromal deficient mice, this
indicates that there must be an important crosstalk between the stroma and the specific tumor cells.
No major influence of stromal integrin β3-deficiency on tumor growth, angiogenesis or metastasis was
found. Although initially (day 7) there was an enhanced 4T1 tumor volume in integrin β3-deficient
mice, there were no significant differences in tumor volume at later time points.

The lack of a β3 integrin-effect on tumor growth corresponds to what has earlier been reported
in tumor models in integrin β3-deficient mice, using CT26 colon carcinoma and LM3 breast
carcinoma [32], and in a recent study by Carter et al. [35] where mammary tumor cells (4T1BM2
and 4T1.2) were implanted orthotopically. Several other studies on integrin β3-deficient mice, however,
have shown conflicting results [36,37]. Angiogenesis is pivotal for tumor progression and the integrin
αvβ3 has been proposed to have a role in this [10,21,22,38]. The present study showed no influence
on tumor angiogenesis in the orthotopically implanted 4T1 or the subcutaneously implanted RM11
tumor model in the integrin β3-deficient mice, which corresponds to the lack of influence on tumor
growth. This is consistent with the findings in subcutaneously implanted CT26 colon carcinomas [32]
and orthotopically implanted 4T1BM2 mammary carcinomas in β3-deficient mice [35]. Nonetheless,
some studies using integrin β3-deficient mice have found increased tumor angiogenesis [35–37],
and different integrin αvβ3-inhibitiors have been shown to inhibit tumor angiogenesis in preclinical
studies [21–24]. However, the present data showed no change in vessel density or morphology (NG2
staining), which is in agreement with other studies arguing against a critical role for β3 integrin in
angiogenesis [32,35].

The PIF in tumors is higher than in the surrounding normal tissue and a reduction in PIF in
tumors has been shown to elevate chemotherapeutic uptake and efficacy in carcinomas [39–41]. Several
studies have shown that modulation of the collagen network has enhanced the chemotherapeutic
efficacy [42,43]. Inhibition of collagen type I in carcinomas improved the intratumoral distribution and
efficacy of nanotherapeutics [42], and, in a mouse model developing spontaneous pancreas tumors,
it was demonstrated that reduced fibrosis enhanced the uptake and efficacy of chemotherapeutic
drugs [43]. Previous studies have also suggested that fibrosis would significantly influence PIF [32,33].
Tumors grown in mice deficient in fibromodulin, a small leucine-rich protein important in organizing
the collagen molecules into fibrils and fibers, resulted in lowered PIF and a loose tumor ECM [33].
This is in agreement with the present results suggesting that an elevated PIF was associated with a
collagen matrix with larger collagen fibril diameter in the 4T1 tumors grown in integrin β3-deficient
mice. An elevation in PIF in integrin β3-deficient mice has also previously been related to enhanced
fibrosis in two different types of syngeneic murine carcinomas grown in integrin β3-subunit deficient
mice [32]. Thus, our findings support the hypothesis that increased fibrosis in tumors is associated
with enhanced PIF.

The magnitude of PIF is a result of capillary filtration of fluid into the tumor and drainage by
lymph flow, as well as the resistance offered from the tissue between these two, i.e., the hydraulic
conductivity of the tissue, which is in turn determined by the matrix composition. Since blood vessel
density and also pericyte density was the same in tumors in integrin β3-deficient mice and wild
type mice, this suggests that the reason for the higher PIF is located in the extracellular matrix or is
caused by reduced lymphatic drainage. The increased collagen fibril diameter in the 4T1 tumors is in
agreement with increased hydraulic resistance (lowered conductivity) [44], however, one cannot rule
out changes in lymphatic drainage as a cause for the increased PIF.

The RM11 tumors, however, did not show any change neither in the collagen network nor PIF.
However, the mechanims behind elevation of PIF in tumors are not yet fully understood, so other
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factors might have contributed to the effect seen in the 4T1 tumors. Taken together, our findings
indicate that there must be important crosstalk between the stroma and tumors, since the two different
tumor models responded differently when growing in mice with identical genetic background. Thus,
the effect of β3 integrin on PIF seems to be tumor cell line specific. Although, less likely, it may not be
fully ruled out that the site of implantation or mice gender could play a role.

The murine 4T1 tumor cell line is known to metastasize spontaneously to lung, liver, bone, and
brain via the hematogenous route [34], and the present study showed significant metastasis in all
the lungs at the end point. Nevertheless, in this study we could not demonstrate any influence of
stromal β3 integrin in this process since the metastatic burden was not significantly different in WT
and integrin β3-deficient mice. This is in line with a study by Taverna et al. [45], showing no major
differences in lung metastases found in integrin β3-deficient mice compared to control mice. On the
other hand a study on B16 melanoma cells injected into the left cardiac ventricle has concluded that
“platelet and osteoclast β3 integrins are critical for bone metastasis” [46]. It is known that integrin
β3 knockout mice have defects in their platelet function, due to loss of the αIIbβ3 integrin [8], and
platelets are also strongly implicated in promoting tumor progression and metastasis [47].

In a recent study, Carter et al. [35] reported reduced spontaneous metastasis when tumor cells
with reduced β3 integrin expression were used to study metastasis in vivo. However, when comparing
metastasis of 4T1.2 and 4T1BM2 cell lines injected into integrin β3-deficient, and wild type mice, no
difference in metastatic burden was seen. They concluded that it is the tumor, rather than stromal
integrin β3-expression that is essential for efficient spontaneous breast cancer metastasis to bone and
soft tissue. Since integrin αvβ3-antagonists will also affect the tumor cells, this could also explain why
in several studies where different integrin αvβ3-antagonists were used, it was found that these can
have anti-metastatic properties [15–18].

Using a global β3-KO model there will be an issue regarding whether or not other integrins may
be regulated. However, in a β3-KO C57BL/6Ntac mouse model, where the authors profiled isolated
cells (platelets and MEFs) from β3-KO mice, there was no evidence for upregulation of expression
of αvβ1 or αvβ5 in the β3-KO cells [8]. In another study of expression profiles and functions of
integrins in WT and β3-KO endothelial cells, no changes in β5, β1, α1, α2 or α5, were found, and
the authors stated that there was “no evidence for compensation by other integrins in response to β3
deficiency” [36].

The present study points to an important and complex relationship between the tumor cells and
the extracellular matrix to determine PIF. The matrix and high PIF act as a functional barrier with
biophysical properties for transport between blood and the tumor cells. Understanding what causes
the elevated PIF and thereby how it can be decreased, may pave the way for new adjuvant therapy
by allowing for enhanced transport of cytostatic agents from blood to the tumor cells. Although the
present study does not clearly point to a single determinant for the elevated PIF, it points to a complex
interplay between the tumor cells and the extracellular matrix.

5. Conclusions

The two tumor models studied here showed markedly different responses in the collagen
matrix and PIF, depending on the genetic background of the mice. This strongly suggests that
there is an important and likely complex crosstalk between the stroma and the specific tumor cells.
Furthermore, the differences in responses in our data together with other experimental and clinical
studies concerning tumor growth, angiogenesis and metastasis indicate that the basal biology of this
integrin in carcinogenesis is yet not well enough understood, and more studies are needed to evaluate
this further.
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