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Abstract: Pancreatic cancer is the fourth leading cause of cancer-related deaths in the
United States and incidence rates are rising. Both detection and treatment options for
pancreatic cancer are limited, providing a less than 5% five-year survival advantage. The
need for new biomarkers for early detection and treatment of pancreatic cancer demands the
efficient translation of bench knowledge to provide clinical benefit. One source of therapeutic
resistance is the pancreatic tumor microenvironment, which is characterized by desmoplasia
and hypoxia making it less conducive to current therapies. A major factor regulating
desmoplasia and subsequently promoting chemoresistance in pancreatic cancer is hepatocyte
growth factor (HGF), the sole ligand for c-MET (mesenchymal-epithelial transition), an
epithelial tyrosine kinase receptor. Binding of HGF to c-MET leads to receptor dimerization
and autophosphorylation resulting in the activation of multiple cellular processes that support
cancer progression. Inhibiting activation of c-MET in cancer cells, in combination with other
approaches for reducing desmoplasia in the tumor microenvironment, might significantly
improve the success of chemotherapy. Therefore, HGF makes a potent novel target for
developing therapeutic strategies in combination with existing drugs for treating pancreatic
adenocarcinoma. This review provides a comprehensive analysis of HGF and its promising
potential as a chemotherapeutic target for pancreatic cancer.
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1. Introduction

Pancreatic cancer remains the fourth leading cause of cancer related deaths in the USA [1] with
a five-year survival rate of only 7%. In 2014, American Cancer Society figures showed 46,420
people (23,530 men and 22,890 women) received a diagnosis of pancreatic cancer and 39,590 people
(20,170 men and 19,420 women) died of this disease (www.cancer.org), and these numbers show no sign
of improving in the near future. Unfortunately, even while we have made strides in the management and
stabilization of other solid organ tumors, the rate of pancreatic cancer diagnoses has been increasing over
the past 10 years with pancreatic cancer-related deaths only second to lung cancer (www.cancer.org).
Treatment options are limited; surgery remains the only chance for survival. However, potentially
curative surgical intervention is offered to less than 20% of patients diagnosed with pancreatic cancer,
suggesting the aggressive nature of this disease upon clinical presentation. While current adjuvant
therapies including chemotherapy and radiation have a modest effect on tumor growth, several recently
investigated biological pathways associated with pancreatic cancer show promise as targeted therapies.
This review will focus on the role of hepatocyte growth factor (HGF), also referred to as scatter factor
(SF), as a therapeutic target in the treatment of pancreatic cancer.

2. HGF-the Good, the Bad and the Ugly

While twenty-five years have passed since HGF was discovered [2–4], its mitogenic role is
still being explored. HGF is produced by stromal cells of mesenchymal origin and stimulates
multiple cellular functions in various organs via tyrosine phosphorylation of its receptor, c-MET
(Mesenchymal-Epithelial Transition) [5]. The functions of HGF in organ morphogenesis, regeneration,
repair, and cellular diseases have been comprehensively reviewed by Nakamura et al [6]. In utero,
HGF-neutralization or c-MET gene silencing can lead to organ hypoplasia in fetal stages of many
organs, indicating that HGF signals are essential for organ development [7]. While endogenous HGF
is essential for self-repair of injured visceral organs, lungs and other tissues [8–10], HGF also exerts
protective effects on epithelial and non-epithelial organs such as the heart and the brain by evading
apoptosis and inflammation [11,12]. During exocrine pancreatic morphogenesis, HGF levels remain
significantly increased and blocking HGF ligand activity resulted in accelerated tissue destruction in a
murine model [13]. Additionally, insufficient production of HGF after organ development can lead to
organ failure [6]. The emerging picture in entirety is that the physiologic balance of HGF secretion
is necessary for homeostasis, and HGF supplementation may in some instances be therapeutic for
pathological conditions.

Unfortunately, a variety of human malignancies can take advantage of the HGF ligand/c-Met
pathway activation as a mechanism for tumor promotion. Specifically, the hyperactivation of this
pathway through overexpression of the HGF ligand by cells from the tumor microenvironment and
overexpression of the c-Met receptor on the cancer cell lead to significant upregulation of a variety
of tumor promoting signaling pathways [14,15]. This phenomenon was demonstrated in pre-clinical
studies, where patient-derived stromal tissues expressing HGF correlated with enhanced invasion
of pancreatic cancer cells with only high expression of c-Met [16]. Additionally, HGF exerted a
resistance to anoikis on pancreatic cancer cells by phosphorylating Akt and also promoting invasion and
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metastasis [17]. Current work from our group also demonstrates a similar effect when silencing of the
c-Met receptor in pancreatic cancer cells co-cultured with human-derived pancreatic stromal elements
expressing HGF ligand resulted in abrogation of proliferation, invasion, and metastasis These results
established a relationship between stromal and cancerous elements with respect to the HGF/c-MET
signaling pathway in pancreatic cancer pre-clinical studies. We propose that an in-depth analysis of
the HGF/c-MET signaling system in pancreatic cancer could bridge the gap between basic biology and
translational medicine.
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Figure 1. Role of pancreatic stellate cells (PSC) in desmoplasia. In its quiescent state,
the pancreatic stellate cell contains vitamin A-containing lipid droplets and serves as a
reservoir for Vitamin A in the normal pancreas. Its activation from a quiescent to an
activated state, including changes to its proliferation rate, morphology, and sensitivity to
mitogenic factors, are all primary features of pancreatic ductal adenocarcinoma (PDAC).
While the activation process is not yet fully understood, hepatocyte growth factor (HGF)
expression is one of the many signaling events leading to stellate cell activation. Following
activation, the PSC loses its lipid droplets, undergoes morphological changes, and
upregulates alpha smooth muscle actin and collagen. Intercellular signaling originating
from multiple cell types, including tumor cells, endothelial cells and immune cells,
contribute to this increased activation and proliferation of PSCs in the desmoplastic
reaction. PSC-derived HGF can in turn activate cancer cells to promote tumorigenesis
and endothelial cells to promote angiogenesis in tumors. HGF-Hepatocyte growth factor,
MET-mesenchymal-epithelial transition.

3. HGF and Desmoplasia

Pancreatic cancer is pathologically characterized by a strong desmoplastic reaction involving up
to 90% of the tumor volume, suggesting a vital role in pancreatic tumor growth [18–20]. Not
surprisingly, chronic pancreatitis, a risk factor for pancreatic ductal adenocarcinoma (PDAC), also
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shows marked desmoplasia further suggesting the important role of the pancreatic microenvironment
as a tumor-promoting and supporting factor during inflammatory changes of the pancreas [21–23].
Pancreatic tumors undergo desmoplasia through proliferation of activated fibroblasts (referred to as
myofibroblasts or pancreatic stellate cells), infiltration by immune cells and deposition of multiple
ECM (extracellular matrix) components with a concomitant increase in interstitial fluid pressure [23]
(Figure 1). These ECM components can be cellular and non-cellular and are regulated by many intrinsic
and extrinsic biological pathways [24]. Cancer cells secrete TGF-β that induces quiescent fibroblasts to
adopt a myofibroblastic phenotype by increasing the expression of α-smooth muscle actin, collagen, and
fibronectin [25–27]. In turn, the myofibroblasts can produce factors like HGF that can promote malignant
changes in epithelial cells through a variety of signaling mechanisms [25,28,29]. The signaling pathways
that initiate tumorigenesis and subsequently a desmoplastic reaction need to be scrutinized as it is still
uncertain whether early changes in the microenvironment promote malignant changes, or if epithelial
cells with malignant transformation promote a supportive desmoplastic microenvironment. What is
understood is that interactions between the epithelial cells and the stromal fibroblasts govern the normal
functioning of an organ/tissue. With this in mind, it is plausible that deregulation of this balance might
affect the “normal” function of the native tissue and/or surrounding tissue by autocrine or paracrine
signaling leading to tumor formation.

Useful insights may be gained from examining what is known of related pathways in another
cancer type. In colon cancer, it has been reported that both epithelial and stromal factors are
responsible for intestinal transformation and progression to tumorigenesis. Initiation of colorectal
cancer is associated with loss of paracrine hormones guanylin and uroguanylin, the endogenous
ligands for the tumor suppressor guanylyl cyclase C (GUCY2C), which regulates epithelial cell
dynamics and balance in proliferation, metabolism and differentiation at the crypt-surface axis
of the intestine [30–32]. Whereas the presence of GUCY2C inhibits desmoplastic reaction in
colon cancer cells, elimination of GUCY2C induces desmoplasia by promoting Akt-dependent
TGF-β secretion, activation of fibroblasts, and Smad3 phosphorylation. These events lead to HGF
secretion by fibroblasts, which in turn drive colon cancer cell proliferation through c-MET-dependent
signaling [33]. Studies in pancreatic cancer revealed that inhibiting TGF-β production by cancer
cells facilitates fibroblast-derived HGF-induced tumor cell invasion [34]. Treatment of pancreatic
cancer cells with HGF stimulated cell growth by enhancing TGF-α level [35]. The importance of
rising HGF in pancreatic cancer in vivo is suggested by studies that have demonstrated the rise of
HGF serum levels as the disease advances [36,37]. However, its precise role in pancreatic desmoplasia
is not fully understood. Upregulation of various growth factors like TGF-β [38], platelet-derived growth
factor (PDGF, [39]) and pro-inflammatory cytokines like tumor necrosis factor α, and Interleukins-1 and
6 [40] have demonstrated promotion of proliferation and migration of pancreatic stellate cells, which
support a strong desmoplastic reaction. While their association with HGF has not been fully elucidated
in pancreatic cancer, what is understood is that the expression of IL-1α by pancreatic cancer cell
lines promotes HGF production in stromal cells to facilitate tumor-promoting properties [41]. In other
tissues such as human mesenchymal stem cells, TNF-α (which supports stromal desmoplastic changes)
increases the mRNA levels of HGF and also of secretory HGF in conditioned media via p38MAPK
and PI3K/AKT pathways to enhance migration and autocrine production of HGF [42]. Similarly, IL-1α
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and IL-1β stimulation of cultured corneal fibroblasts (keratocytes) upregulates HGF and keratinocyte
growth factor (KGF), thereby facilitating healing of the wounded corneal epithelial cells by modulating
proliferation, motility and differentiation [43]. In colonic epithelial cells, both HGF and KGF are
enhanced in IL-1 stimulated production of IL-8 during mucosal inflammations, and IL-8 expression,
although promoted as an angiogenic factor in pancreatic tumors, might be playing a significant role in
supporting this tumor microenvironment [44–48]. So, although there is a suggested link between HGF
and multiple cytokines that promote a desmoplastic reaction in the tumor microenvironment, the role of
HGF through similar pathways in pancreatic cancer is a topic for future research endeavors.

4. HGF and Hypoxia

Desmoplasia and hypoxia are intertwined events leading to aggressive PDAC. Desmoplasia
promotes a hypoxic environment in pancreatic cancers and limits cancer drug delivery due to
decreased blood perfusion. Tumor hypoxia activates hypoxia-inducible factor-1α (HIF-1α) that
in turn activates a number of signaling pathways leading to stronger desmoplastic reaction.
HIF-dependent pathways activate MET in pancreatic tumor cells, while stroma-secreted
HGF facilitates cell motility from the hypoxic regions of the tumors to the oxygen-rich distant
organs [49,50]. One of the prominent pathways that HIF-1α activates in pancreatic cancer cells is
Sonic hedgehog signaling (SHH) that is responsible for increased fibrous tissue deposition. A positive
loop of increased SHH ligand and HIF-1α production occurs that will continue to decrease blood
flow and increase hypoxia [51]. It is well established that hypoxic tumors mediate angiogenesis,
invasion, and malignancy in cultures [52–54] as well as in mouse models [55]. During hypoxia-induced
angiogenesis, HGF facilitates cancer cell-endothelial cell contact through FAK (focal adhesion kinase)
phosphorylation [56] and decreases endothelial occludin, a primary protein in endothelial tight
junctions [57]. As a result of the tight junction morphological change, HGF increases permeability
between vascular endothelial cells and promotes movement across an endothelial cell barrier into
adjacent tissues. HGF-induced FAK phosphorylation simultaneously upregulates many matrix
metalloproteinases like MMP-1, -9, and -14, through activation of the transcription factor Ets, in
cancers of the gallbladder, prostate, and liver thereby facilitating cancer invasion [58–60]. Studies
using pancreatic PK8 and fibroblast MRC5 cells demonstrated that hypoxia induces HGF production in
culture media of MRC5 cells. PK8 cells exposed to conditioned media collected from HGF-expressing
MRC5 cells showed a much higher increase in MMP-2, -7, MT1-MMP and c-MET levels, as well as a
concomitant increase in c-MET phosphorylation leading to enhanced migration and invasion through
the basement membrane [61].

Although PDACs are not highly vascularized tumors, several lines of evidence reveal a positive
correlation between blood vessel density, tumor VEGF-A levels, and disease progression [62,63],
highlighting a potential role in cancer progression. Pancreatic cancer cells themselves secrete a number
of mitogenic factors with angiogenic properties, such as EGF, TGF-α, HGF, FGF-1, 2, and 5, and
PDGF-β [64,65]. HGF by itself is a very potent angiogenic factor that promotes endothelial cell motility
and growth via the MET receptor [52]. It has been shown in murine colon carcinoma CT6 cells that
intracellular HGF increases VEGF-A mRNA levels through PI3K/Akt, MAPK, and STAT3 pathways,
more so under hypoxic conditions [66]. These data reiterate the fact that a tumor-stroma interactive loop
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exists and facilitates tumor growth and metastasis. What remains to be explored is how similar these
mitogenic and angiogenic signaling pathways work in a pancreatic environment using an orthotopic
animal model of pancreatic cancer.

5. HGF and Acidic Environment

Physical properties of the tumor microenvironment also influence tumor progression [67]. Both
hypoxia [68] and acidosis [69] can be cytotoxic, but tumor cells adapt to these stressful conditions, avoid
apoptosis, [70] and survive to spread to distant sites [71]. Normal cells undergo a low rate of glycolysis
followed by oxidation of pyruvate, [72] while cancer cells undergo the “Warburg effect” to produce
energy by a high rate of glycolysis followed by lactic acid fermentation in the cytosol [73]. PDAC cell
line PANC1 revealed alteration in metabolic pathways similar to the Warburg effect when compared to
the proteome of normal pancreatic duct cells [74] via abnormal metabolism of glutamine. This suggests
that glutamine is largely consumed as a nitrogen donor in nucleotide and amino acid biosynthesis,
further supporting current data that demonstrates pancreatic cancer cell growth is stimulated by a
glutamine-associated KRAS dependent pathway [75]. Both extracellular pH (pHe) and cytoplasmic pH
(pHi) are affected due to enhanced metabolism and glycolysis by tumor cells. The pH of the cells plays
a regulatory role in many cellular processes like cell cycle, motility, membrane potential, intracellular
homeostasis, and eventually malignant transformation [76–78]. Sodium-proton exchangers (NHEs) and
other transporters maintain the pHi and expel protons outside the cells creating an acidic pHe [79] that
aggravates invasive properties of transformed cells [71,80,81]. Among growth factors, HGF is known to
activate NHE directly and lowers the pHe thereby inducing cathepsin-mediated trafficking of lysosomes
to the cell periphery [82]. This process leads to enhanced ECM proteolysis, migration, and invasion.
A study by Steffan et al. [83] in prostate cancer cells revealed that HGF induces lysosome trafficking
to the cell periphery by phosphorylating MET receptor and activating kinase cascades like PI3K and
Rho A GTPases. HGF treatment also resulted in increased microtubule accumulation at the cell surface
protrusions coinciding with the lysosomes, NHE activity, and cathepsin B secretion; all these processes
eventually lead to enhanced invasion by prostate tumor cells [83]. Again, such explicit evidence as is
seen with prostate cancer is lacking in pancreatic tumor research, and whether the acidic environment
can activate the HGF-c-MET pathway needs further investigation.

6. HGF and Inflammation

Inflammatory cells are an integral part of the desmoplastic reaction found in pancreatic cancer and
contribute to the advancement of this disease. Chronic pancreatitis, or chronic inflammation of the
pancreas, is a known risk factor for developing PDAC [84]. Inflammatory signals are implicated in both
tumor initiation and tumor progression. Leukocytic infiltrates in PDAC are largely immunosuppressive
and associated with reduced survival in humans [85,86]. Furthermore, pro-inflammatory markers, such
as IL-6, IL-8, IL-10, and IL-1 receptor antagonist, are elevated in the serum of patients with pancreatic
cancer, with IL-6 specifically being an indicator of poor prognosis [87]. IL-6 functions in pancreatic
tumor progression by activating the signal transducer and activator of transcription 3 (STAT3), as well
as NF-κB in macrophages [88]. Inflammatory mediators also characterize pancreatic neoplasms that
account for up to 10% of pancreatic malignancies and up to 30% of pancreatic resections. HGF was
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highly expressed in pancreatic inflammatory cystic fluid (PIC) and implicated in distinguishing PIC
from mild branch duct intraductal papillary mucinous neoplasms [89]. HGF expression can serve as a
biomarker in such cases and its presence could be a possible early indicator of pancreatic malignancy.

7. HGF/c-MET as a Target

Desmoplasia is a contributing factor to chemoresistance, which remains a principal challenge in
pancreatic cancer treatment. Pancreatic stellate cells enhance fibrosis, partly through HGF production,
leading to sequestration of chemotherapeutic agents in the stromal compartment, impairing successful
drug delivery to cancer cells [90–92]. Further studies to find novel therapeutic agents targeting
the HGF-c-MET signaling axis will better help us understand the implications of HGF-c-MET
signaling in malignancy. Existing agents can be explored based on their target components, whether
it is HGF or c-MET.

It is well known that c-MET is deregulated in many human cancers including pancreatic
cancer [93–96] and can be activated by genetic mutations, gene amplifications, protein overexpression,
or a ligand-dependent autocrine/paracrine signaling loop [97–99]. HGF is the only known ligand for
c-MET [94] and c-MET has clearly been associated with aggressive disease, poor prognosis, worse
clinical outcomes, and chemoresistance in many cancers. Many ongoing clinical trials in phase I, II, and
III, outlined in Table 1 below, employ MET kinase inhibitors or MET monoclonal antibodies (MAb),
(Onartuzumab from Genentech) as a potent chemotherapeutic approach to tackle different cancers
(www.vai.org/metclinicaltrials; [100]). Most advanced in clinical development among the c-MET
targeted therapies in trial studies, Tivantinib (ARQ 197), a non-adenosine triphosphate-competitive
c-MET inhibitor, is in phase III development for various malignancies [101]. Specifically for pancreatic
cancer, it is under a randomized phase 2 study of ARQ 197 versus gemcitabine in treatment-naive
patients with unresectable locally advanced or metastatic pancreatic adenocarcinoma [102]). Recent
evidence with another c-MET inhibitor, INC280, demonstrated reduced motility of pancreatic cancer
cells with a 30% lymph node involvement in the treatment group when compared to 60% involvement
in the control group, suggesting potential suppression of metastasis [103]. Other notable results
from the study include reduced motility of endothelial cells, impaired tumor growth in response to
HGF, and improved gemcitabine efficacy when used in combination with the frequently prescribed
nucleoside inhibitor [103].
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Table 1. Current HGF/cMET Target Therapies in Phase II/III clinical trials. To date, multiple therapies targeting the HGF/cMET pathway
are showing promising results in median progression free survival when applied to a diverse range of neoplastic pathologies supporting
further exploration of HGF as a potent medical therapy avenue yet to be fully exploited.

Category Drug Name
Trial
Phase

Target Neoplasm
Median Progression

Free Survival
Side Effects Conclusions Source

HGF/SF
Mab

AMG102 (Rilotumumab)
+Bevacizumab

II
Renal cell
carcinoma

3.7 months at 10 mg/kg
and 2 months at
20 mg/kg

Edema (45.9%)
AMG102 is tolerated, but not
definitively growth inhibitory

Schoffski
et al. [104]

Fatigue (37.7%)
Nausea(27.9%)

HGF/SF
Mab

AMG 102 (Rilotumumab) vs.
AMG 102 after previous
Bevacizumab Therapy

II
Recurrent
Glioblastoma

[AMG102 only]
4.1 weeks vs. [previous
Bevacizumab] 4.3 weeks

Fatigue (38%), AMG 102 monotherapy not
associated with statistically
significant anti-tumor activity

Wen et al. [105]Headache (33%)
Peripheral Edema
(23%).

HGF/SF
Mab

AMG 102 (Rilotumumab)
plus mitoxantrone and
prednisone

II
Castration Resistant
Prostate Cancer

3.0 months [AMG 102]
vs. 2.9 months [control]

Pulmonary Embolism
(6%)

Addition of AMG 102 showed no
efficacy improvements

Ryan et al. [106]
Fatigue (3%)

Met Kinase
Inhibitor

Tivantinib plus
Erlotinibversus Placebo plus
Erlotinib

III

Nonsquamous,
Non-Small-Cell
Lung Cancer

3.8 months [Erlotinib +
Tivantinib] vs.
2.3 months for
Erlotinib+Placebo

Rash
Addition of Tivantinib showed a
significant delay in metastasis
when compared to Erlotinib alone

Scagliotti
et al. [107]

Diarrhea
Fatigue
Vomiting
Dyspnea

Met Kinase
Inhibitor

Tivantinib vs. Placebo II
Hepatocellular
Carcinoma

1–6 months [Titantivib]
vs. 1–4 months
[Placebo]

Neutropenia (14%) Beneficial second line treatment
for c-MET-high advanced HCC.

Santoro et al. [108]
Anemia (11%)
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Table 1. Cont.

Category Drug Name
Trial
Phase

Target Neoplasm
Median Progression

Free Survival
Side Effects Conclusions Source

Met Kinase
Inhibitor

Tivantinib II

Microphthalmia
transcription factor
(MITF)-associated
(MiT) tumors

3.6 months [overall] vs.
5.5 months [ASPS] vs.
1.9 months [CCS
and tRCC]

Anemia (4%)
Safe and tolerable at doses of
360mg BID, with moderate
antitumor response

Wagner et al. [109]
Neutropenia (4%).
Thrombocytopenia
Deep vein thrombosis
(6.4%)

Met Kinase
Inhibitor

PF-02341066 (Crizotinib) vs.
Pemetrexed or Docetaxel

III
ALK+ Non-Small
Cell Lung Cancer

7.7 months [crizotinib]
vs. 3.0 months [control]

Visual disorder Crizotinib is superior to standard
chemotherapy in terms of
progression free survival,
symptomology, and quality of life

Shaw et al. [110]GI SE
Elevated liver
aminotransferase levels

Met Kinase
Inhibitor

Cabozantinib III
Medullary Thyroid
Carcinoma

11.2 months
[cabozantinib] vs.
4.0 months [placebo]

Diarrhea Cabozantinib resulted in
statistically significant increased
progression free survival length
of time.

Elisei et al. [111]Palmar-plantar
erythrodysesthesia
Decreased weight and
appetite Nausea
Fatigue

Met Kinase
Inhibitor

Foretinib II
Papillary Renal Cell
Carcinoma

9.3 months [Foretinib]
vs. 1.3 months
[Sunitinib]

Fatigue, Hypertension,
Gastrointestinal
toxicities

Foretinib demonstrated a high
response rate in cancers with
known germline MET mutations

Choueiri
et al. [112]

Pulmonary Emboli.
Met Kinase
Inhibitor

Foretinib II Gastric Cancer
1.7 months vs.
[no comparison]

Hypertension (35%) Foretinib is an insufficient
monotherapy in the treatment of
gastric cancer

Shah et al. [113]
Elevated Aspartate
Aminotransferase (23%)



Cancers 2015, 7 1794

In addition to c-MET itself, the ligand HGF is an obvious therapeutic target considering its
significant role in promoting tumorigenesis in cases exhibiting MET mutation [114]. Clinical trials
with HGF/SF monoclonal antibody (MAb) in combination with other chemotherapeutic drugs are
currently in progress. HGF/SF Mab therapies under different phases of ongoing clinical trials for various
cancers include Rilotumumab from Amgen, Ficlatuzumab from AVEO pharmaceuticals and HuL2G7
from Millennium pharmaceuticals (www.vai.org/metclinicaltrials; [100]). Another promising therapy,
NK4, an intra-molecular fragment of HGF, has been shown to possess anti-growth, anti-metastasis,
anti-angiogenic abilities in addition to showing reduction in ascites, thereby prolonging survival in an
orthotopic mouse model of pancreatic cancer [115,116].

It is composed of an N-terminal hairpin domain and 4-kringle domains (K1–K4) of HGF
α-chain [117–119] and lacks 16 amino acids from the C-terminus of HGF, and has been shown to bind
MET without activating the receptor signal transduction, as shown in Figure 2. The benefits of using
NK4 as an HGF antagonist have been comprehensively discussed in the review by Mizuno et al. [120].
With such compelling evidence, NK4 is a plausible option to target HGF along with c-MET and other
drugs currently in use for controlling pancreatic cancer.

While present knowledge of HGF/c-MET has supported clinical trials targeting various aspects of
the biological mechanism, more mature studies addressing side effects and clinical outcomes specific to
pancreatic cancer are lacking. Combining promising c-MET and HGF antagonists along with strategic
utilization of current treatment regimens leave the pancreatic cancer community with an expectant
outlook for the future of medical intervention.
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Figure 2. The antagonistic role of NK4 in relationship to HGF. (A) The intramolecular
fragment of HGF: NK4; (B) NK4 acting as a direct antagonist of HGF with receptor
binding capability while simultaneously lacking C terminus amino acids necessary for the
signal transduction.
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8. Conclusions

Pancreatic cancer remains a major unsolved problem, with inadequate medical therapies. HGF and
its receptor counterpart are emerging as an attractive target to be exploited not only in early detection
of pancreatic cancer, but also as a target for chemotherapy. Further study of these possibilities is
motivated by increasing appreciation of the importance of associated pathways in other cancers and
model systems. Available small-molecule and antibody-based therapeutics targeting these pathways
should be investigated for utility in pancreatic cancer specific studies, and related biomarkers investigated
for potential use as diagnostic tools. Additionally, focus beyond the molecular pathway’s direct
consequences to include the tumor microenvironment and downstream effects on tumor behavior
continue to keep HGF at the forefront of research focused on neoplastic invasion.
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