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Abstract: High-throughput molecular profiling approaches have emerged as precious
research tools in the field of head and neck translational oncology. Such approaches
have identified and/or confirmed the role of several genes or pathways in the
acquisition/maintenance of an invasive phenotype and the execution of cellular programs
related to cell invasion. Recently published new-generation sequencing studies in head and
neck squamous cell carcinoma (HNSCC) have unveiled prominent roles in carcinogenesis
and cell invasion of mutations involving NOTCH1 and PI3K-patwhay components.
Gene-expression profiling studies combined with systems biology approaches have allowed
identifying and gaining further mechanistic understanding into pathways commonly enriched
in invasive HNSCC. These pathways include antigen-presenting and leucocyte adhesion
molecules, as well as genes involved in cell-extracellular matrix interactions. Here we review
the major insights into invasiveness in head and neck cancer provided by high-throughput
molecular profiling approaches.
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1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is the 6th most prevalent type of cancer and
arises in the mucosa of the upper aerodigestive tract. HNSCC presents at an advanced stage in
40%–60% of the cases, most often requiring multimodal treatment with surgery and radiation (+/−
chemotherapy) [1,2]. Despite the implementation and improvement of such multimodal regimens over
the last few decades and the recent FDA approval of the anti-epidermal growth factor receptor (EGFR)
antibody cetuximab in combination with radiotherapy, up to 50% of patients still experience local and/or
regional recurrence, or develop distant metastases. Unfortunately, the prognosis of recurrent HNSCC is
most often dismal [1,3,4].

HNSCCs are primarily tobacco-related neoplasms, but infection by high-risk subtypes of human
papillomavirus (HPV) has also been established as an important etiologic factor that accounts for a
trend for increasing incidence of oropharyngeal cancers in men younger than age 50 years without a
history of tobacco use [1,5,6]. HNSCCs tend to metastasize to regional lymph nodes early in disease
progression. The presence of lymph node metastases is the most important prognostic factor identified
so far in HNSCC [1]. Distant metastases usually occur later in progression, often after definitive therapy
has been delivered to the primary tumor and the regional lymph nodes [7].

Recent DNA and RNA profiling studies in HNSCC indicate a high level of underlying molecular
heterogeneity [8]. The evolving genomic and transcriptomic technologies combined with large-scale
integrative tools of systems biology have emerged as powerful methods to approach such a complex
disease [8–10]. From a translational perspective, understanding specific mechanisms of invasion may
allow tailoring more patient and tumor-specific management strategies [11].

In this review we discuss some of the most relevant and illustrative insights outlined from recent
genomic and transcriptomic approaches in relation with tumor invasiveness in HNSCC (Figure 1).

2. The Profile of the Invasive HNSCC

2.1. Recent Genomic and Transcriptomic Findings—Impact on Invasiveness of HPV-driven HNSCCs

Comprehensive genomic and transcriptomic data has been recently published by The Cancer
Genome Atlas Network [12]. The findings of this study, along with the data previously reported
by Seiwert et al. [13], provided important insights into the similarities and differences between HPV
negative (tobacco-driven) vs. HPV positive tumors. In broad terms, HPV negative tumors were similar
to lung and esophageal squamous cell carcinomas with respect to mutational profiles, characterized by
activating alterations of receptors tyrosine kinase (RTKs)-RAS-PI3K pathways, as well as mutational
inactivation of TP53 and CDKN2A. In contrast, HPV positive tumors were characterized by activating
alterations of PIK3CA, FGFR3, and E2F1 along with inactivation of TP53 and RB1 by the viral
oncoproteins E6 and E7 respectively [12,13]. Furthermore, HPV positive tumors showed less
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chromosomal aberrations than HPV negative tumors, but both groups shared common features. For
instance, the presence of recurrent amplifications of the 3q26/28 region was common in HPV− and
HPV+ tumors. This region contains essential genes involved in squamous lineage (e.g., TP63, SOX2),
as well as PIK3CA (encoding the p110α subunit of PI3K, discussed in Section 2.4) [12]. Importantly,
activating mutations of PIK3CA are significantly more prevalent in HPV+ tumors [14].
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Figure 1. Most relevant mechanisms of cell invasion outlined by high-throughput profiling
studies in head and neck squamous cell carcinoma (HNSCC).

A very relevant finding in HPV+ tumors was the discovery of previously unknown recurrent deletions
and truncating mutations of TNF receptor-associated factor 3 (TRAF3), a gene implicated in anti-viral
responses whose loss leads to aberrant activation of NF-κB (nuclear factor-κB) [15–17]. In turn, NF-κB
is a master modulator of the inflammatory response and has been clearly linked to oncogenesis and
disease progression in several types of cancer [18].

While these observations underline basic differences in oncogenesis in HPV− vs. HPV+ tumors,
further work is needed to fully characterize HPV-related mechanisms of invasion in HNSCCs.

2.2. Acquiring an Invasive Phenotype—Relevance of Cell Differentiation in HNSCCs

Several prerequisites must be met for a highly differentiated, polarized and contact-dependent
epithelial cell to become invasive. Basically, cells must acquire resistance to apoptosis-anoikis, ability
to digest and remodel the extracellular matrix (ECM), become motile, and develop immune evasion.
Additionally, epithelial cells must be able to survive in hostile environments such as lymphatic or blood
vessels [19–21].
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Epithelial cells can acquire mesenchymal-like features through epithelial-to-mesenchymal transition
(EMT) [20,22]. Even though EMT is a plausible model that accounts for many features of invasive cells,
acquisition of a mesenchymal phenotype is not compulsory for HNSCCs to invade [22–24].

In line with this, in a gene expression profiling study of 60 HNSCCs, Chung et al. [25] were able to
clearly delineate two subgroups of tumors based on their epithelial vs. mesenchymal differentiation.
Immunohistochemical analysis of tumors in the epithelial subgroup revealed expression of different
members of the cytokeratin family, while mesenchymal tumors were characterized by high expression
levels of vimentin, abundance of stromal fibroblasts, and regions of desmoplastic reaction (potentially
suggesting active EMT). From a clinical perspective, patients with mesenchymal tumors had a decreased
recurrence-free survival [25]. An ulterior gene expression profiling study by Chung et al. [26] supported
these observations and revealed that expression of genes involved in EMT, cell adhesion, and nuclear
factor-κB signaling defined a high-risk subtype of HNSCCs. The findings of these studies and several
others suggest that different phenotypes within the epithelial-to-mesenchymal spectrum may imply
different mechanisms of invasion in HNSCC [27–29].

2.3. NOTCH1 Functional Duality as an Emergent Link between Initiation and Invasion of HNSCC

Two independent next-generation sequencing (NGS) approaches were published in 2011, further
emphasizing the relevance of cell differentiation in tumoral invasion and providing new insight into
mechanisms of oncogenesis and invasion. Stransky and colleagues [30] processed data from 74 and
Agrawal et al. [31] from 32 HNSCCs. The most relevant feature in both studies was the discovery
of an excess of mutations in a set of genes functionally related to epithelial squamous differentiation.
Most specifically, these mutations concerned the NOTCH1 gene. This gene emerged as the second most
common alteration in HNSCC (mutated in approximately 15% of the cases) [30,31].

The gene product of NOTCH1 is a transmembrane receptor whose intracellular domain translocates
to the nucleus and acts as a transcription factor upon binding of extracellular ligands [32]. Activation of
Notch signaling has crucial roles in embryogenesis, cell differentiation (partly through regulation of EMT),
angiogenesis, resistance to anoikis, and in the context of cancer, development of metastases [33–36].
Initially NOTCH1 was considered a paradigmatic oncogene due to its aberrant signaling in certain
hematopoietic malignancies [32]. Nonetheless, this notion was very quickly challenged following
contradicting observations in solid tumors, in which NOTCH1 seemed to act as a tumor-suppressor [37].

Recent genomic studies in HNSCC suggest the co-existence of a tumor-suppressing and an oncogenic
role for Notch signaling. Indeed, on one hand most NOTCH1 mutations found in the recent NGS
approaches in HNSCC were predicted to result in loss of function and therefore point towards a
tumor-suppressive role [30,31]. This observation is fully congruent with the increased rate of cutaneous
SCCs reported both in NOTCH1 knockout murine models and in patients enrolled in an early clinical trial
testing a Notch signaling inhibitor (gamma secretase inhibitor) [38]. On the other hand, recent evidence
shows activation of the Notch pathway in HNSCC as an oncogenic mechanism. Sun et al. [39] assessed
gene copy number variation, promoter methylation status, mutation, and expression of several members
of the Notch signaling pathway in a cohort of 44 tumors and 25 matched normal mucosa specimens.
Remarkably, eight components of the Notch signaling pathway, including Notch ligand JAG1, displayed
significant gene copy number gain in tumors. In line with this, mRNA levels of 15 components of the
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Notch pathway as well as their transcriptional targets were significantly up-regulated. These findings
strongly suggest an oncogenic role of Notch signaling [39]. The interactions between Notch and other
essential players in cell invasiveness transcend the Notch pathway. An illustrative example of this in the
recent TCGA data is the co-existence of FAT1 inactivating mutations and Notch alterations. Active FAT1
sequesters β-catenin, resulting in inhibition of Wnt-signaling [12]. These findings confirm previous
studies and add mechanistic insights into the essential interplay between Notch and Wnt signaling [40].

Taken together, these recent results indicate that in certain subsets of HNSCCs, loss of NOTCH1
function as tumor-suppressor contributes to oncogenesis and invasiveness, while in another subset
of tumors, Notch signaling pathway activation may fuel cell invasion through EMT, induction of
angiogenesis, and resistance to cell death [30,35,39,41]. The factors that condition whether Notch acts
as a tumor-suppressor or as an oncogene are not fully understood. Some evidence suggests that tissue
type and even tumoral stage may play a role in determining the outcome of Notch dual role. Finally, it is
important to point out that Notch functional duality poses an obvious challenge to effectively implement
therapies targeting Notch signaling [42].

2.4. New Insights into Old Players: Implications of the Mutational Landscape of Mitogenic Pathways

Several hallmarks of cancer such as sustaining proliferative signaling, activating metastasis, and
angiogenesis are partially executed through aberrant activation of receptors tyrosine kinase (RTKs)
and G-coupled proteins following receptor/ligand overexpression and activating mutations [43].
Additionally, aberrant signaling can also occur due to primary activation of one or more components
in certain canonical pathways, primarily the mitogen-activated protein kinase (MAPK) pathway, the
phosphatydilinositol-3-kinase (PI3K) pathway, and the Janus kinase-signal transducer and activator
of transcription (JAK-STAT) pathway [44]. Important cross-talk exists between the MAPK and the
PI3K pathways, as well as between MAPK and the JAK-STAT pathways. Such cross-talks enhances
invasiveness and represents a potential mechanism of resistance to molecular targeted therapy [45].

Using data from the NGS studies described in the previous chapter along with additional data from
45 HNSCC samples, Liu et al. [46] focused on mutations affecting the MAPK, PI3K, and JAK-STAT
pathways in a total of 151 tumors. Their findings regarding the mutation rate in components of the
MAPK and JAK-STAT pathways were consistent with previous reports (8% and 9.3% respectively),
but the authors reported an unexpectedly high mutation rate of PI3K signaling pathway components of
30.5% [46]. These mutations primarily affected the catalytic and the regulatory helical domains of the
p110α subunit of PI3K (PIK3CA). Most of the mutations reported, some of which were previously
unknown, conferred constitutive PI3K activation and resulted in enhanced in vitro growth [46].
Additionally, inactivating mutations of phosphatase and tensin homologue (PTEN), which antagonizes
PI3K signaling, were reported in around 10% of HNSCCs [46]. Mutations in other components of the
pathway (e.g., AKT2, PIK3R1, and MTOR) were seen in less than 4% of the cases, but tumors containing
mutations affecting diverse pathway components were not uncommon, especially in advanced-stage
HNSCC [46]. Furthermore, PIK3CA gene amplification was reported in 24.4% of tumors [46].

In conclusion, multiple mechanisms of PI3K aberrant activation seem to exist in HNSCC (Figure 1),
conferring increased survival, proliferation, motility, extracellular matrix (ECM) digestion, and
angiogenesis [47]. Activating PI3K mutations ultimately results in resistance to apoptosis as well as
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in development of metastases in preclinical models [48–50]. As a consequence, several therapeutic
strategies targeting aberrant PI3K signaling are being explored in HNSCC [46,51,52].

2.5. Execution of Tumor Cell Invasion—Basic Features Underlined by Gene-Expression
Profiling Studies

A number of studies have assessed gene expression profiles of HNSCCs in the last decade, providing
a rather accurate and consistent picture of the key players involved in the invasive process in HNSCC
(Figure 1). Table 1 summarizes some of the key processes and molecules identified and/or confirmed as
essential in invasion and progression of HNSCC. As can be seen, invasive HNSCCs display up-regulation
of genes related to ECM remodeling and digestion, chemotaxis, and angiogenesis. Additionally, in 2008
Yu et al. [53] reported the results of a network-based meta-analysis with data from 63 published works.
The authors specifically sought to identify altered gene expression patterns acquired during progression
from premalignant lesions, through invasive primary tumors, and lymph node metastases. The majority
of enriched pathways in the meta-analysis were related to tumor-stroma interactions, such as antigen
presentation, chemokine signaling, integrin signaling, leucocyte extravasation, tight junction regulation,
and vascular endothelial growth factor (VEGF) signaling [53].

Remarkably, many of the molecules in Table 1 play roles in several biological processes involved in
invasion. For instance, interleukin (IL)-8, initially described as a chemotactic molecule for leucocytes,
has been shown to act as mitogen, motogen, and pro-angiogenic factor [54]. With respect to
angiogenesis, IL-8 receptors are expressed both by tumor and endothelial cells in HNSCC, suggesting the
existence of a paracrine loop: Tumor cells stimulate angiogenesis while endothelial cells in turn stimulate
tumor cell proliferation and invasiveness (Figure 1). Further emphasizing the functional overlap of
several molecules listed in Table 1, RTKs and their ligands, such as EGFR, MET, and fibroblast growth
factor receptor (FGFR), are often overexpressed in HNSCC, and have pleiotropic effects in tumor cells,
including cell differentiation, proliferation, motility, and angiogenesis [55–58].

Among the genes consistently up-regulated across different studies (Table 1) are enzymes involved
in digestion and remodeling of the ECM, such as matrix metalloproteinases (MMPs) or urokinase
plasminogen activator (uPA) (Table 1). MMPs can be secreted by both neoplastic and stromal cells, and
are designed to digest certain components of the ECM [59]. MMPs are aberrantly expressed at very early
stages of tumorigenesis and are essential in order to promote and allow cell migration and ultimately
metastases [60,61]. It is important to point out that MMPs are often expressed as enzymatically
inactive pro-MMPs. Therefore, not only overexpression of MMPs but also mechanisms of activation
such as protein-protein interactions have major implications in cancer progression and invasion. For
instance, activation and activity of MMP-9, one of the most widely overexpressed MMP in different
types of cancers is enhanced by NGAL (neutrophil gelatinase-associated lipocalin), which additionally
protects MMP-9 from degradation [62]. Expression profiles of the pro-MMP-9/NGAL complex has been
suggested as a potential prognostic marker [63].

Finally, as an essential premise to invasion, tumor cells must be able to evade the host immune
response [64]. In line with this, in the meta-analysis by Yu et al. [53] down-regulation of major
histocompatibility complexes (MHCs) I and II was a hallmark of invasive HNSCCs.
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Table 1. Summary of illustrative findings related to invasiveness from gene-expression
profiling studies in HNSCC.

Reference(s) Function Sense of Regulation in HNSCC Gene(s)

Ye et al. [65];
Nagata et al. [66];

Kainuma et al. [67];
Kondoh et al. [68];
Choi and Chen [69]

Digestion and remodeling
of ECM
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invasion of epithelial cells, fibroblasts were cultured alone and then washed away. Subsequently, SCC-12
cells were cultured and left to invade the matrix previously incubated with fibroblasts. Remarkably,
SCC-12 cells invaded the matrix following the force-mediated tracks created by the stromal fibroblasts
previously cultured, suggesting that physical conditioning of the supporting matrix and not some
fibroblast-derived soluble factor was essential to lead invasion [72]. The authors of this study were
able to show that absence of force-mediated remodeling of the matrix did not impair fibroblasts motility,
but abolished invasion by SCC-12 cells. Several members of the integrin family, as well as MMPs and
RhoGTPases (a family of small GTPases that generate contractile force), were essential both in leading
invading fibroblasts and for matrix remodeling [72,73].

The congruence between the data derived from in vitro models and the data derived from
gene-expression profiling studies regarding integrin signaling strongly suggests the relevance of these
molecules in invasion and development of metastases [74]. As such, many therapeutic strategies directed
against integrin signaling are under investigation [75,76].

3. Conclusions

HNSCC is a molecularly complex and heterogeneous disease. Such heterogeneity is also reflected in
the mechanisms of invasion. Recent high-throughput profiling studies have unveiled the relevance of the
mutational status of several key genes. Among the most prominent genes, NOTCH1 has been suggested
to be able to act both as a tumor-suppressor regulating cell squamous differentiation and as an oncogene
promoting EMT. NGS studies have equally shown a high percentage of mutations of PI3K pathway
members, pointing out a cardinal role in invasiveness and providing new perspectives for molecular
targeted therapy. Additionally, the essential functions in invasiveness of several molecules involved in
biological processes such as digestion and remodeling of the ECM, chemotaxis, antigen presentation,
and angiogenesis have been confirmed in gene-profiling studies, providing an accurate picture of the
invasive process in HNSCC.

The practical implementation of these findings in the field of clinical oncology still needs
extensive validation.
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