
Cancers 2011, 3, 3972-3990; doi:10.3390/cancers3043972 

cancers
ISSN 2072-6694 

www.mdpi.com/journal/cancers 
Article

Helical Tomotherapy in Children and Adolescents: Dosimetric 
Comparisons, Opportunities and Issues

Maurizio Mascarin 1,2,*, Francesca Maria Giugliano 1,4, Elisa Coassin 1, Annalisa Drigo 2,3,
Paola Chiovati 2,3, Andrea Dassie 2,3, Giovanni Franchin 2, Emilio Minatel 2 and
Mauro Gaetano Trovò 2

1 Pediatric Radiotherapy Unit, Centro di Riferimento Oncologico- National Cancer Institute/Via 
Franco Gallini, 2 33081 Aviano (PN) Italy; E-Mails: francesca_giugliano@hotmail.com (F.M.G.); 
elisa.coassin@libero.it (E.C.) 

2 Department of Radiation Therapy, Centro di Riferimento Oncologico- National Cancer Institute/Via 
Franco Gallini, 2 33081 Aviano (PN) Italy; E-Mails: adrigo@cro.it (A.D.); pchiovati@cro.it (P.C.); 
adassie@cro.it (A.D.); gfranchin@cro.it (G.F.); eminatel@cro.it (E.M.);  
mgtrovo.rt.cro@cro.it (M.G.T.) 

3 Department of Medical Physics, Centro di Riferimento Oncologico- National Cancer Institute/Via 
Franco Gallini, 2 33081 Aviano (PN) Italy 

4 Seconda Università di Napoli, Napoli 80138, Italy 

* Author to whom correspondence should be addressed; E-Mail: mascarin@cro.it;  
Tel.: +39-0434-659-523; Fax: +39-0434-659-524. 

Received: 13 September 2011; in revised form: 7 October 2011 / Accepted: 17 October 2011 / 
Published: 25 October 2011 
 

Abstract: Helical Tomotherapy (HT) is a highly conformal image-guided radiation 
technique, introduced into clinical routine in 2006 at the Centro di Riferimento Oncologico 
Aviano (Italy). With this new technology, intensity-modulated radiotherapy (IMRT) is 
delivered using a helicoidal method. Here we present our dosimetric experiences using HT 
in 100 children, adolescents and young adults treated from May 2006 to February 2011. 
The median age of the patients was 13 years (range 1–24). The most common treated site 
was the central nervous system (50; of these, 24 were craniospinal irradiations), followed 
by thorax (22), head and neck (10), abdomen and pelvis (11), and limbs (7). The use of HT 
was calculated in accordance to the target dose conformation, the target size and shape, the 
dose to critical organs adjacent to the target, simultaneous treatment of multiple targets, 
and re-irradiation. HT has demonstrated to improve target volume dose homogeneity and 
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the sparing of critical structures, when compared to 3D Linac-based radiotherapy (RT). In 
standard cases this technique represented a comparable alternative to IMRT delivered with 
conventional linear accelerator. In certain cases (e.g., craniospinal and pleural treatments) 
only HT generated adequate treatment plans with good target volume coverage. However, 
the gain in target conformality should be balanced with the spread of low-doses to distant 
areas. This remains an open issue for the potential risk of secondary malignancies (SMNs) 
and longer follow-up is mandatory.  

Keywords: paediatric oncology; helical tomotherapy; intensity modulated radiotherapy; 3D 
conventional radiotherapy; treatment planning; organs at risk; late effects; dose homogeneity 

 

1. Introduction 

Cancer is the second commonest cause of death in children in the developed countries [1]. 
Incidence rates of childhood cancer have risen over the last few decades. Cure rates have also 
increased progressively over the last few years due to highly specific diagnostic procedures, the use of 
standardized chemotherapy protocols, recent studies which focused on the management of toxicities, 
as well as more sophisticated radiation treatments. Within the Italian population there are about  
8 million children and another 6 million adolescents and young adults (AYA), so we expect to see 
between 260 and 350 children diagnosed with solid tumors requiring some form of radiation therapy 
(RT) annually in Italy. Long-term survivors in the pediatric population show an elevated risk for 
adverse events. The late effects in children, especially after RT, develop gradually over several months 
or years. They include neurocognitive deficiencies, cardiac toxicity, endocrinological problems, 
growth defects, and the development of secondary malignancies (SMNs). The incidence of SMNs  
30 years after treatment is around 10–20%. For this reason, the use of RT is still debated in pediatric 
oncology. 

Intensity-modulated radiotherapy (IMRT) is a new method of planning and delivering RT. In 
comparison to the current, well-established technique of three-dimensional conformal radiation 
therapy (3D-CRT), IMRT has proved to have remarkable advances in target conformity, allowing dose 
escalation to the target volume and sparing neighboring organs at risk (OARs). IMRT has been used 
with great caution in the pediatric population for several reasons. Among these, an increased fraction 
time, necessity for exact immobilization with tailor-made steep dose gradients and the fear of 
increased SMNs induction by the potentially greater low dose spillage or integral dose (ID) [2]. 

Helical Tomotherapy (HT) represents both an innovative RT approach and a novel treatment device 
that merges a linear accelerator designed for IMRT with elements of a helical computer megavoltage 
tomography (MV-CT) scanner. During HT treatment, a 6 MV x-ray fan beam modulated by a binary 
multi-leaf collimator (MLC) is delivered from a rotating gantry while the patient on the treatment 
couch is slowly moving through the gantry aperture, resulting in a helical beam trajectory. The MLC is 
equipped with 64 pneumatically driven leaves, that open and close across the slit opening. To perform 
the intensity modulation, at any given time, each leaf can be closed, covering a portion of the slit, or 
open, allowing radiation through, or changing between these states [3-5]. In addition, HT allows  
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MV-CT imaging and image registration with the planning CT for patient alignment. Image Guided 
Radiotherapy (IGRT) uses daily CT scanning to create 3D images of body anatomy in order to 
visualize set-up errors. Other than to assure an exact reproduction of the spatial position of the patient, 
in some situations it allows us to monitor the tumor shrinkage or changes in the body (e.g., weight 
loss). Finally, HT patients can be treated in a supine position without the problem of junctions; thus 
resulting in more comfortable treatment, especially for children requiring sedation.  

HT can potentially provide an advantage over conventional techniques in certain situations because 
of its ability to generate highly conformal avoidance of critical structures immediately adjacent to the 
tumor target. This can be shown in multiple anatomical sites. 

2. Patient Population and Treatment Techniques 

This study describes our clinical dosimetric experience with HT in pediatric and AYA patients 
treated at the Centro di Riferimento Oncologico Aviano, Italy. In our Department, IMRT delivered 
with Linac (Eclipse Varian) and HT (Hi-ART Tomotherapy) equipment were applied to the pediatric 
population from 2005 and 2006, respectively. 

We began our experience with HT in children in May 2006 and by February 2011 we had  
treated 100 pediatric and adolescent patients. The median patient age was 13 years (range 1–24). The 
AYA patients were included because our Institute is involved in a special program for this patient 
population [6]. The treated sites were the central nervous system (n = 50), the head and neck (n = 10), 
the thoracic bone and pleural cavity (n = 9), the abdomen (n = 8), the pelvis (n = 3), limbs (n = 7), and 
mediastinal-neck nodes (n = 13). The most representative histology were “primary” brain tumors, 
followed by sarcomas (bone and soft tissue), lymphomas, neuroblastomas, nasopharynx cancers and 
others. Table 1 shows more detailed information about the patients’ characteristics. 

We chose HT when the case met at least one of the following five criteria: (1) complex tumor 
geometry (irregular target); (2) close proximity of OARs; (3) target volume coverage with different 
dose modulation; (4) noticeable tumor shrinkage during RT; (5) patients treated for an extensive 
planning target volume (PTV) (e.g., craniospinal irradiation (CSI), lymphoma), when the “low dose 
bath” was considered not much more unfavorable when compared to 3D-CRT, specifically when the 
ID was not completely in favor of 3D-CRT use. 

2.1. Immobilization 

Immobilization was obtained using several devices and depended on the treatment site, the patients’ 
age, the need to minimize patient movement and setup errors, as well as to maintain the same position 
during treatment and assure that it could be reproduced accurately each time. Patients were positioned 
as comfortably as possible, as many who require RT are very young children and need sedation or 
anesthesia (31/100 patients). Patients with brain tumors or head and neck tumors were immobilized 
with individual thermoplastic masks, sometimes with an auxiliary bite block. Younger patients with 
thoracic or abdominal-pelvic tumors were immobilized by using a vacuum bag and customized pillows 
for legs and feet. The adolescents and young adults were often put directly on the treatment couch. 
With the introduction of HT, the patients were all aligned and immobilized in a supine position, the 
same for CSI [7]. 



Cancers 2011, 3                    
 

 

3975

Table 1. Patients’ characteristics: age at the time of RT, histologies, site of primary tumor, re-treatments. 

Median age (range) 13 (1–24 years) 
Diagnosis (n) 

Tumors of the central nervous system: 
Medulloblastoma/PNET 
Ependymoma 
Low grade glioma 
High grade glioma 
Germ cells tumor 
Atypical teratoid rhabdoid brain tumor 

Sarcomas: 
PNET/Ewing’s sarcoma family  
Rhabdomyosarcoma 
Synovial sarcoma 
Osteosarcoma 
Chordoma 

Lymphoma 
Neuroblastoma 
Undifferentiated nasopharyngeal carcinoma 
Wilms’ tumor 
Others 

 
50 
23 
7 
7 
6 
4 
3 
22 
9 
7 
4 
1 
1 
13 
6 
4 
2 
3 

Location (n) 
Central nervous system (Craniospinal irradiation) 
Mediastinal-neck nodes 
Head and neck 
Thoracic bone and pleural cavity 
Abdomen 
Limbs 
Pelvis 

 
50 (24) 

13 
10 
9 
8 
7 
3 

Re-treatment (n) 4 

2.2. Radiation Imaging—Contouring 

One of the fundamental prerequisites for conformal RT and especially for all IMRT techniques is 
the localization of the target, starting with the gross tumor volume (GTV) and the clinical target 
volume (CTV), and moving outwards to the PTV. Inverse planning for IMRT-HT requires 
comprehensive contouring of all OARs. The CT images are acquired from a slice thickness and 
spacing of 5 mm. A 2.5 mm slice thickness CT is used for brain and head and neck targets. In our 
practice, the volume of interest is generated with a co-registered CT/MRI (magnetic resonance 
imaging) ± PET (positron emission tomography); starting with a multimodality diagnostic imaging set, 
we delineate the target and OARs, and next we proceed with treatment planning optimization. Some 
extra structures are generated (“tune structures”) to obtain a better optimization around the target 
which include e.g., the anterior part of the orbits, the nasal cavity, the jaw-maxillary-dental area,  
the arms, and the breasts (Figure 1). The spinal cord when considered as OAR is always contoured  
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and automatically expanded with a 1 cm margin to create the “spinal cord tuning,” which better spares 
the organ. 

Figure 1. An example of contouring of different OARs marked during the HT process: 
anterior part of the orbits, nasal cavity, cochlea, teeth, arms, breasts. 

 

The setup margin of PTV on CTV is not universally attributed and it depends on the tumor site, 
mobility of the organ involved, age and collaboration of the patient, the experience of the Center, and 
quality assurance procedures. Generally, we consider an expansion of 5 mm for every CTV, except for 
patients (fixed with mask and bite block) with head and neck lesions close to OARs (3 mm). For 
patients who underwent CSI, different expansions between cranial CTV (4–5 mm), and lumbar-sacral 
spinal canal CTV (5–7 mm) were used, depending on quality of immobilization (sedation, patient 
collaboration, etc.) and PTV length. 

2.3. Treatment Planning Parameters 

The HT plans were generated by the Tomotherapy planning workstation. The dose was prescribed 
to a PTV, assuming that 95% isodose covered all target volumes. The dose limits for critical structures 
were the standard values used in clinical protocol practice for pediatric tumors, using the priority, 
importance, and penalty factors. Parameters specified as part of the optimization/dose calculation 
process were pitch, beam thickness and modulation factor. The typical planning parameters were: fan 
beam thickness (2.5 cm; 1 cm for target close to optic regions or spinal cord), modulation factor  
(2.0–2.5) and pitch (0.172 or 0.215 or 0.287). A field width of 5 cm was chosen only in tall older 
adolescent patients requiring CSI. Briefly, HT system planning uses an interactive inverse treatment 
planning algorithm based on least squares minimizations of an objective function [8], and calculation 
grid size was selected during the optimization stage (fine, 512 × 512; normal, 256 × 256; coarse,  
128 × 128). Typically the normal grid size was used. The coverage of 95% PTV volume with the 
prescribed dose was set as the minimum optimization objective (high penalty and high importance 
were set to guarantee the minimum dose to the target).

2.4. Pre Treatment MV-CT Acquisition 

MV-CT was acquired prior to treatment in order to precisely align the patient every day.  
The pre-treatment MV-CT scanning was performed in 100% of HT fractions. The length of scanned 
area was chosen individually on the basis of anatomy of interest and target. The patient dose is about  
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1-2cGy for a 10 cm length scanning. Generally, we tried to avoid the scan along particularly sensitive 
regions like the lens. In medulloblastoma patients a double scan of about 10–15 cm was performed in 
the cranial-cervical region and in the lumbar region. The entire scan of CSI PTV is not feasible 
because it requires about 20 minutes just for the MV-CT. 

The correlation of the MV-CT with the planning CT (co-registration) was done automatically with 
algorithms generally focusing on bone anatomy. Moreover, a manual correction was often applied to 
the thoracic and abdominal target. During the first three fractions the registration process was performed 
both by physicists and radiation therapists. From the fourth fraction onwards it was performed only by 
radiation therapists after they had received special training. A 3D correction vector was calculated on 
the basis of three setup axes: X (later-lateral), Y (cranium-caudal) and Z (anterior-posterior) axis. The 
Z axis was reseated after the first fraction because the flexion of the Tomotherapy couch in this 
direction also depends on the patient weight. The following equation was applied to calculate the 
vector v: 

v =

3. Results and Discussion 

The HT plans were compared with conventional 3D plans and a decision considering both PTV 
coverage and OARs sparing was reached. We found that HT has the potential to improve the quality of 
the dose distribution both in terms of dose homogeneity within the PTV (without cold-hot spots) and 
OARs sparing. The Dose Volume Histogram (DVH) generated with HT showed several advantages for 
the mean-high doses in most cases when compared with conventional techniques. In certain cases, only 
HT generated adequate treatment plans with good target volume coverage. However, HT is often 
associated with a low dose bath. 

The typical RT process times were: 3–10 hours for contouring, 4–16 hours for planning,  
6–22 minutes beam-on radiation time, 15–45 minutes room time. HT requires more time in the 
development of different RT steps: time of simulation, target and OARs delineation, planning, delivery 
and verification. 

For 42 patients treated for brain or head and neck tumors (1020 HT fractions) the mean detected 
setup correction vector was analyzed. It was 2.76 mm, 3.18 mm and 4.34 mm for mask and sedation, 
mask and bite block, and mask alone, respectively. In the CSI we found a different Z value between 
the cranial and the lumbar tract setup, probably due to the different couch flexion. The 3D correction 
vector for the lumbar tract, analyzed in 16 CSI patients, was 5.9 mm. However, the corrections to the 
lumbar tract should be done carefully because any translational movement in this region could have a 
negative impact on the eye area, putting it in a high dose region. To avoid this, rather than correct the 
cranial and lumbar tract with different setup parameters, we decided to apply a different PTV margin 
expansion between cranial CTV (4–5 mm) and lumbar-sacral spinal CTV (5–7 mm). So the setup 
errors in the lumbar spinal region were preferentially corrected only along the X axis, manually 
adjusting the jaw and keeping the head still. In the following sections, we describe our HT experience 
in various anatomical sites individually. 
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3.1. Brain Tumors 

Structures contoured as OARs for the brain patient group were both parotids, teeth, the mandible 
(including temporo-mandibular joint), the spinal cord, optical structures (optical nerves, chiasm, eyes, 
lens), the brain, the brain stem, the pituitary gland, temporal lobes, the cochlea, and the thyroid gland. 
The choice of sparing one organ ‘more than another’ is a complex clinical and technical challenge. The 
use of delivery systems with a very high degree of freedom, such as HT, could permit us to explore the 
potential of sparing other structures and tissues that normally cannot be efficiently spared with more 
conventional 3D-CRT or IMRT techniques [9]. Examples of OARs are the cochlea and the pituitary 
gland in the treatment of the brain. Much importance is given to the prevention of hearing loss as it 
could compromise the quality of life of these young and very young patients, especially in the 
workplace and during social relations. Despite its small size (mean volume 0.14 cc), the cochlea is 
easily identified on CT planning with 3 mm cut [10]. We slightly expanded the anatomic cochlea 
contour as an OAR to facilitate its preservation from excessive radiation because of its small size. In 
fact, the value of data resulting from HT planning optimization is not so accurate for OARs whose 
volumes are lower than 2 cc. Neuroendocrine disturbances in anterior pituitary hormone secretion are 
common following radiation damage, the severity and frequency of which correlate with the total 
radiation dose delivered to the hypothalamus-pituitary axis and the time that has elapsed since 
treatment. Classically, growth hormone (GH) is the most sensitive of the anterior pituitary hormones to 
irradiation, followed by gonadotrophins, adrenocorticotrophic hormone (ACTH) and thyroid-stimulating 
hormone (TSH). The somatotrophic axis is the most vulnerable to radiation damage and GH deficiency 
remains the most frequently seen endocrinopathy. In our example of a 2-year-old male with an atypical 
teratoid rhabdoid tumor of the quadrigeminal region, the HT plan has been compared with 3D-CRT 
using no-coplanar fields. The tightly conformal dosimetric characteristics of HT were not advantageous 
with respect to the cochlea and pituitary gland DVHs. In this case, the relatively small volume of 
treatment, the regular target volume and the opportunity to choose the entrance fields with CRT, 
favored applying the latter option (Figure 2). Some patients with brain tumors need CSI and, in this 
case, HT has a frequent application. In our experience in a 4 year-old-male affected by 
medulloblastoma treated with HT (Figure 3), an inspection of DVH reveals excellent conformal 
quality both for CTV brain and spinal cord with better sparing of OARs close to the target [7]. In 
comparison with conventional techniques, CSI delivered with HT is able to achieve better dose 
homogeneity and conformality in the target volume. With HT-CSI lower doses are distributed to larger 
volumes and higher doses to smaller volumes, with higher doses confined to a very small volume. The 
potential drawback of the low dose bath is that it could have an effect on acute toxicities (e.g., on the 
lung, on the gastrointestinal tract) and on the total body ID [7]. 

The pulmonary toxicity has been studied by Penagaricano et al. They found no acute pulmonary 
toxicities in 18 patients (age 2.5–21 years) treated with HT-CSI; 11 of them had �50% of the lung 
volume that received �10Gy. The same author reported no high grade acute toxicity profiles:  
weight loss (14/18 patients, grade 1–2) and nausea (10/18, grade 1–2) were the most common acute 
toxicities [11]. 
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Figure 2. A comparison between no-coplanar 3D-CRT and Tomotherapy plans is shown in 
a 2-year-old male affected by atypical teratoid rhabdoid brain tumor. The DVH analysis for 
pituitary gland and audit and total brain are in favor of 3D-CRT. 

 

Figure 3. In a 4-year-old medulloblastoma patient, CSI delivered with HT, compared to 
conventional techniques, is able to give a more homogeneous dose and better conform the 
dose to the target, but with a larger low dose bath.
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On the contrary, the total body ID slightly increases in comparison to conventional techniques 
delivered with linear accelerator. Based on our experience, in 15 children younger than 8 years treated 
with CSI for different brain tumors, the total body ID showed a difference of about 11% in favor of 
3D-CRT-CSI when compared to HT-CSI [12,13]. However, results for ID in CSI vary in the literature. 
Shi et al., in a single patient study, showed that the HT plan produces lower non tumor ID when 
compared to the step-and-shoot IMRT plan, and better homogeneity for the spinal PTV [14]. In a 
comparison between HT and conventional CSI, Penagaricano et al. found an ID 8% higher in two 
patients, but 2% lower in another one [15]. Finally, Sharma et al., in a dosimetric study in 4 pediatric 
and adolescent patients, reported that HT-CSI was able to reduce the ID in 4 of the 10 analyzed OARs 
(heart, thyroid, liver and esophagus) when compared to 3D-CRT-CSI. The authors focused their study 
on OARs, but the total body ID was not reported [16]. 

The cribriform plate is a possible site of meningeal relapse. Adequate coverage of this structure 
means that superior orbital tissue is included in the treatment field. An inspection of a central axis slice 
through the eye level shows a good ocular sparing with HT, with a 25 mm fan beam and by building a 
“tuning eye structure” in the anterior-bulbar space. However, the cribriform plate is not covered as 
well as the rest of the craniospinal PTV. For this reason we usually build some extra PTV to better 
control these critical areas. A good result both in the ocular area and the cribriform plate PTV was also 
obtained with a 10 mm fan beam, but with a total treatment time of about 40 minutes; unacceptable for 
a child treated daily with sedation (Figure 4). 

Figure 4. An inspection of a central axis slice through the eye level shows that the 
cribriform plate is not covered as well as the rest of the craniospinal PTV. For this reason 
we usually build some extra PTV to better control these critical areas (cribriform plate PTV).  
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Hypothyroidism is another common late effect, not only after CSI, but also in neck/mediastinum 
irradiation. The frequency of compensated hypothyroidism is reportedly as high as 43.8% among 
adults and 80% among children after neck irradiation. Thyroid dysfunction may develop from a few 
months to several years after patients have completed their RT. In children with chronic diseases, or 
given lengthy anti-neoplastic treatments, recurrent or persistent endocrine disorders may have a 
negative effect on the growth and the development of a child into adulthood [17]. With regard to the 
thyroid in conventional 3D CSI, the upper part of the gland received, with two cranial opposed fields, 
about 20% of the delivered dose and the lower part, with direct posterior field, between 50% and 70% 
of the delivered dose. In the HT plans, 90% of the thyroid volume received lower than 23% of the 
delivered dose (Figure 3). 

HT-CSI provides a dosimetric advantage in the exit dose in the pelvic-bladder area when compared 
to conventional techniques (<5% and �10% of dose delivery with HT and with Linac-based 
conventional CSI, respectively). This is due to the divergent posterior spinal field used with the Linac, 
being liable for a higher dose in the anterior part of the pelvis. Differently, with HT the helicoidal 
fields are substantially orthogonal to the spine, and the gonadic region could be the object of OAR 
planning optimization. This result may be of interest to better spare the ovaries in a female patient 
treated with CSI, even if the gonads could be difficult to contour. 

Finally, HT gives us the opportunity to re-treat areas that have been already treated. The advantages 
for re-treatment with HT are the greater conformality of dose distribution and the possibility to respect 
dose constraints for adjacent, critically sensitive, previously irradiated normal tissues. This opportunity 
could be of interest both for palliative intent and for patients in which curative treatment could not be 
obtained with other procedures. We use HT for the re-treatment of local relapsed brain tumors and “in 
field” relapsed Hodgkin lymphomas. Both these situations can adequately be managed by other 
techniques like Linac-delivered IMRT or stereotactic treatment. An unusual condition in which HT 
can play a specific role is the re-irradiation of the craniospinal axis. We employed this technique in a 
10-year-old male with diffuse meningeal spread of disease, 24 months after the first-line CSI for a 
standard risk medulloblastoma, proved to be refractory to salvage chemotherapy. He received 23.4Gy 
in 13 fractions to the craniospinal axis, with a reduced dose to posterior fossa of 18Gy. HT allowed us 
to adequately re-treat the entire axis, while giving a safe dose to the posterior fossa, previously treated 
by the full dose (55.8Gy). 

3.2. Head and Neck Tumors 

The conventional treatment technique for head and neck tumors is composed of two phases. Phase I 
consists of two lateral opposed fields for the primary tumor and enlarged neck nodes, together with a 
lower anterior field for the lower cervical nodes. Phase II is used after 40 Gy to shield the spinal cord; 
usually in this phase the posterior neck nodes are treated with electron fields. 

In our patients with head and neck tumors the use of HT, as an alternative to 3D-CRT, was chosen 
to avoid multiple fields, different energies, and junctions and to spare unavoidably higher dose to the optic 
nerves, chiasm, eyes and lens, as shown in our adolescent patient affected by esthesioneuroblastoma of 
the nasal cavity (Figure 5). HT gives us the opportunity to “paint” the high-dose region around the 
target volume and thus spare at least part of the mucosa from the high-dose region. 
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Figure 5. HT plan in an adolescent female affected by esthesioneuroblastoma of the nasal 
cavity offered good sparing of the contralateral optic nerve, chiasm and lens. 

Cases like this demonstrate that HT-delivered IMRT may provide superior dose homogeneity and 
dose conformality when compared to earlier technologies, such as 3D-CRT or conventional RT, 
leading to efficient sparing of the spinal cord, the parotids, the teeth and the mandible.  

Figure 6. An example of nasopharyngeal cancer in a 14-year-old female in which a 
simultaneous integrated boost (SIB) was delivered. 66Gy/30 fractions to the GTV, 
60Gy/30 fractions to the PTV1 (high risk CTV + 5 mm margin), 50Gy/30 fractions to the 
PTV2 (low risk CTV + 5 mm margin). 
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In addition, we are investigating the sparing of pharyngeal mucosal structures and other tissues and 
organs, such as larynx, thyroid, inner ear and cerebellum. This is done to reduce the potentially dose-
limiting toxicities. We pay special attention to mucosal-sparing techniques to prevent malnutrition and 
treatment breaks. Indeed, some authors suggested that in pediatric nasopharyngeal carcinoma the use 
of IMRT resulted in a significant reduction in the incidence of high grade toxicity, delayed the onset of 
moderate toxicity, resulting in a reduction in the total time required to deliver RT compared to CRT [18]. 

An important point in favor of HT (and other IMRT methods) is the possibility to efficiently and 
easily deliver different doses at different volumes (Figure 6). The choice between IMRT delivered 
with Linac or with HT is random for head and neck tumors in our Department. Based on our adult 
experience, there is no difference between the two IMRT modalities in terms of loco-regional control 
and development of severe, acute, and late toxicities [19]. For both techniques the patient setup is done 
with CT images (MV-CT or cone-beam-CT). 

3.3. Thoracic Tumors 

RT for advanced Hodgkin Lymphoma (HL) often requires large fields and may result in significant 
exposure of normal tissues to ionizing radiation. Advances in the treatment of HL have resulted in a 
large number of long-term survivors at risk for the serious late effects of therapy. Currently, second 
cancers are also the primary cause of mortality among these patients with breast cancer being the most 
common solid tumor among women. The largest excesses of breast cancer are observed among women 
diagnosed with HL at age 30 years or younger, a pattern that is consistent with the known  
radio-sensitivity of the breast at young ages [20]. The incidence of breast cancer has been reported to 
increase by a factor of 4.3 (95% CI: 2.0–8.4) for patients treated with mantle irradiation [21]. While 
the dose response for radiation above 10Gy remains uncertain, carcinogenesis after radiation is 
exacerbated by the large dose gradient across the breast and treatment field position. Although HT 
might significantly decrease high doses delivered to the breast, it increases the volume that receives 
lower doses, which has also been implicated in the carcinogenesis process [22]. Conventional 3D-CRT 
delivered with opposite anterior-posterior fields has been successfully used to treat this disease but 
treatment delivery often requires photon-photon or photon-electron matching, utilization of  
field-in-field techniques and partial transmission blocks [23]. Dose reduction in the thyroid, breast, but 
also in the heart, kidney and bowel should be helpful. Based on our experience, HT obtains a greater 
dose homogeneity in the PTV and has dosimetric advantages compared to the conventional technique 
in several OARs. The most striking results have been obtained for the left breast (10.82Gy and 7.9Gy 
mean dose for 3D-CRT and HT, respectively), the right breast (10.13Gy and 8.73Gy mean dose for 
3D-CRT and HT, respectively), the heart (19.89Gy and 17.1Gy mean dose for 3D-CRT and HT, 
respectively), and the left kidney (17.9Gy and 8.9Gy mean dose for 3D-CRT and HT, respectively) 
(Figure 7). To achieve these results we did not perform a full blocking of the structures. We applied a 
high importance with a very low dose constraint to the specific OAR. In our cases, this approach 
allowed us to achieve analogous results to full blocking, but with better optimization of the target. 
Instead, we use a directional block e.g., in total pleural irradiation to spare the contralateral lung and in 
CSI to avoid irradiation through the arms. 
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Figure 7. 20-year-old female, Stage IIIA HL, treated with 25.2Gy/14 fractions at the end 
of chemotherapy. HT has dosimetric advantages compared to the conventional technique in 
several OARs, whereas whole body HT results in a disadvantage at lower doses and an 
advantage at higher doses. The total body ID is 9% lower for HT. The HT-DVHs for OARs 
are marked with triangles for HT and with squares for conventional RT. 

 

Irradiation of the pleural cavity represents a special challenge for radiotherapists because every 
conventional technique determines the risk of delivering high doses to the involved lung. Even if this 
treatment is mostly applied in the adult population with mesothelioma, sometimes also pediatric age 
cases of soft tissue tumors can involve the entire pleura. We applied HT to an adolescent patient 
affected by PNET (primitive neuroectodermal tumor) of the right pleural cavity with multiple nodular 
localizations and, after chemotherapy, a residual bulky disease along the base of the diaphragm. The 
patient was simulated in a supine position with arms overhead and fixed with a vacuum bag. The 
prescription to the right pleural PTV was: first phase, 36Gy in 20 fractions with a simultaneous 
integrated boost of 42 Gy in 20 fractions to the post-chemotherapy residual disease [Figure 8(a)]; second 
phase, 10 Gy in five fractions (total dose 52 Gy) delivered only to the shrinking residual costal-
diaphragmatic tumor [Figure 8(c)]. The planning was built with the following constraints: mean total 
lung dose <20 Gy; V20 Gy total lung <30–35%; left healthy lung, all volume <15 Gy, V5 Gy <50%; 
heart V 20Gy <50%. A tune structure was built in the central part of the affected lung with a dose 
constraint of 20 Gy [24]. The result was quite good both in terms of PTV coverage and the sparing of 
the contra-lateral lung and other OARs [Figure 8(a)]. The mean total lung dose and the V5 Gy were 
15.9 Gy and 50%, respectively. The mean dose for the affected lung was 29.1 Gy. The maximum dose, 
the mean dose and the V5 Gy for the healthy lung were 10.5 Gy, 3.4 Gy and 3.8%, respectively. The 
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maximum dose, the mean dose and the V20 Gy for the heart were 38.2 Gy, 15.5 Gy and 22%, 
respectively [Figure 8(b)]. The plan was initially defined on the basis of pre-RT imaging, but this could 
not accurately reflect the degree of normal lung exposure during all treatment. For this reason, while 
monitoring tumor shrinkage with daily MV-CT, we planned the second treatment phase on the basis of 
MV-CT acquisition, applying an adaptive therapy to try to further reduce any exposure to the normal 
lung [Figure 8(c)]. The patient is in complete remission after 42 months from end of RT. He developed 
a transient radiation pneumonitis in the right lung during the first year, requiring steroid support. 

Figure 8. A 10-year-old male affected by right pleural PNET. HT allows different dose 
gradients between the pleural cavity (36 Gy/20 fractions) (a) and residual disease (42 
Gy/20fractions) (b). DVHs of the first phase of treatment for the residual GTV, right 
pleural PTV, right lung, left lung, total lung volume and heart are shown (c). Further 10 
Gy/5 fractions were delivered only to the shrinking tumor (bottom left) after the first phase 
of treatment on the basis of MV-CT acquisition. 

 

3.4. Abdominal and Pelvic Tumors 

There are several obstacles to treating young patients with whole abdominal and pelvic irradiation. 
The conventional technique is not only associated with high incidence of toxicity, but also with poor 
target volume coverage and significant dose heterogeneity because of shielded kidneys and liver as 
dose limiting organs. For this patient group, contoured organs were the kidneys, the spinal cord, the 
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liver, the spleen, the rectum, and the bladder. HT is feasible and fast for whole abdominal irradiation; 
this technique provides excellent coverage of the PTV and effective sparing of the OARs. The goal in 
advanced abdominal disease is to treat the retroperitoneal lymph nodes and the peritoneal surface 
while reducing the dose to the kidneys and the bone marrow. Typically, 15 Gy in 10 daily fractions are 
given to the whole abdomen for patients with Wilms’ tumor with post surgical unresectable peritoneal 
implants or tumor rupture. After the first 12 Gy, the residual healthy kidney is shielded with a block. 
This technique results in an under-dosed abdominal area in front of the healthy kidney. Instead with 
HT, the abdominal cavity is treated uniformly well with a dose to the healthy kidney less than 40% of 
the prescribed dose. HT provided adequate coverage of the peritoneal cavity while limiting the dose to 
the residual kidney, spinal cord and bone marrow. 

In our Center, a low radiation dose is used to treat the flank in neuroblastoma (21 Gy/14 fractions) 
and Wilms’ tumor (14.4 Gy/8 fractions). This dose range could be responsible, if delivered to a very 
young child, for abnormalities in bone growth; especially in vertebral bone with scoliosis as a 
consequence. Generally, conventional treatment in abdominal neuroblastoma and Wilms’ tumors 
includes the tumor bed plus 2 cm margins, the entire width of the vertebral body and para-aortic nodes 
in the antero-posterior fields. However, a series from Iowa University showed, in 55 children receiving 
megavoltage RT as part of treatment for Wilms’ tumor, an incidence of scoliosis after 10 to 12 Gy, 
12.1 to 23.9 Gy, and 24 to 40 Gy at 8%, 46% and 63%, respectively [25]. 

Beyond a better control of the PTV dose coverage, HT enables us to further reduce small bowel dose to 
avoid any serious acute lower gastro-intestinal toxicity, while achieving a very homogenous dose along 
the vertebral body (Figure 9). In addition, there is a greater homogeneity in whole abdomen irradiation 
with concomitant sparing of the healthy kidney (Figure 10), which is also shown in other studies [26,27]. 

Figure 9. A 3-year-old male with left adrenal gland neuroblastoma treated with HT. Other 
than a good PTV coverage, the patient was given a homogeneous dose to the vertebral 
body to reduce the risk of asymmetrical growth.  
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Figure 10. A 2-year-old female with left kidney Wilms’ tumor and preoperative rupture in 
the abdomen. HT allows a greater homogeneity in whole abdomen irradiation with 
concomitant sparing of the healthy kidney to less than 40% of the prescribed dose. The 
technique provided adequate coverage of the peritoneal cavity while limiting the dose to 
the residual kidney, spinal cord and bone marrow. 

 

4. Conclusions 

HT plays a very important part in the history of IMRT and could become a good option for children 
and young adult patients. In our study, we have proposed some examples of treatment with HT and our 
preliminary experience suggests a greater sparing of critical normal structures and a better PTV 
homogeneity using HT-based IMRT when compared with 3D-CRT. The dose conformity advantages 

of HT are sufficient to selectively recommend its use in the pediatric population. We could choose HT 
when the target/tumor is critical and where the margin of safety (from GTV/CTV to PTV) around the 
tumor is narrow, when OARs are so near the target they are at higher risk for radiation damage. 
Moreover, the potential for dose escalation may translate to a better local control without increasing 
complication rates. The use of daily image guidance requires more time than conventional RT,  
but it has a major impact on the verification and setup correction. This is true in all patients but 
especially in the younger ones, in whom treatment compliance is not always adequate. On the contrary, 
the increase of low doses to normal tissues and the ID demand attention and need to be evaluated with 
further research. 

In recent decades, survivors of pediatric cancers have experienced a high incidence of chronic 
health problems, including secondary cancers, cardiac toxicity, fertility problems, and so on. Even if 
the adoption of high conformal RT techniques for the pediatric population has allowed reduction of 
side effects due to high doses to OARs (alopecia, bone deformities, defect of muscular growth, brain 
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damage, etc.), caution is still required. When we adopt a new technology careful considerations are 
necessary, particularly in a field where the incidence of late second cancers is becoming a dominant 
concern. Long-term survivors of childhood cancer who received RT are at a significantly increased 
risk for the development of SMNs: the incidence of SMNs is around 10%-20%, 30 years after  
treatment [28]. Some authors estimate that the risk of induced cancer could be doubled by new 
techniques, such as IMRT [29]. When we analyze the risk associated with RT, it demonstrates 
different dose-response curves for specific secondary cancers. For example, the risk of thyroid cancer 
increases with low doses and, subsequently, it decreases with higher doses [30]. The low-dose data for 
radiation-induced carcinogenesis are taken from atomic bomb survivors and the high-dose data are 
gathered from RT patients. However, that outcome is not in accordance with clinical experience, in 
which the majority of second induced tumors occurs in or close to the high-dose treatment volume [31]. 
Although proton therapy may be the better treatment approach in terms of secondary cancer reduction 
and normal tissue sparing, its associated stray radiation (protons and neutrons outside the target) could 
still be strongly associated with SMNs. So dose, by itself, is a poor biomarker for SMNs risk. 
However, the issue regarding the increase of low-dose radiation exposure observed with HT and the 
supposed risk of radiation-induced cancer, needs to be further addressed. Our aim is to continue to 
compare HT and 3D-CRT and to establish more detailed selection guidelines for the utility of HT in 
the pediatric population. 

Acknowledgements 

We would like to thank Ms. Elena Byther and Sarah Wilson for editorial language assistance in 
preparing the manuscript and Ms. Elisa Cipolat Gotet for graphics editing.

References

1. Kaatsch, P. Epidemiology of childhood cancer. Cancer Treat. Rev. 2010, 36, 277-285. 
2. Sterzing, F.; Stoiber, E.M.; Nill, S.; Bauer, H.; Huber, P.; Debus, J.; Münter, M.W. Intensity 

modulated radiotherapy (IMRT) in the treatment of children and adolescents: A single institution’s 
experience and a review of the literature. Radiat. Oncol. 2009, 4, doi:10.1186/1748-717X-4-37. 

3. Fogliata, A.; Yartsev, S.; Nicolini, G.; Clivio, A.; Vanetti, E.; Wyttenbach, R.; Bauman,G.; Cozzi, L. 
On the performances of Intensity Modulated Protons, RapidArc and Helical Tomotherapy for 
selected paediatric cases. Radiat. Oncol. 2009, 4, doi:10.1186/1748-717X-4-2. 

4. Mackie, T.R.; Holmes, T.; Swerdloff, S.; Reckwerdt, P.; Deasy, J.O.; Yang, J.; Paliwal, B.; 
Kinsella, T. Tomotherapy: A new concept for the delivery of dynamic conformal radiotherapy. 
Med. Phys. 1993, 20, 1709-1719 

5. Penagaricano, J.A.; Yan, Y.; Corry, P.; Moros, E.; Ratanatharathorn, V. Retrospective evaluation 
of pediatric cranio-spinal axis irradiation plans with the Hi-ART tomotherapy system. Technol.
Cancer Res. Treat. 2007, 6, 355-360. 

6. Ferrari, A.; Thomas, D.; Franklin, A.R.; Hayes-Lattin, B.M.; Mascarin, M.; van der Graaf, W.; 
Albritton, K.H.J. Starting an adolescent and young adult program: Some success stories and some 
obstacles to overcome. Clin. Oncol. 2010, 28, 4850-4857. 



Cancers 2011, 3                    
 

 

3989

7. Mascarin, M.; Drigo, A.; Dassie, A.; Gigante, M.; Franchin, G.; Sartor, G.; Trovò, M.G. 
Optimizing craniospinal radiotherapy delivery in a pediatric patient affected by supratentorial 
PNET: A case report. Tumori 2010, 96, 316-321. 

8. Shepard, D.M.; Olivera, G.H.; Reckwerdt, P.J.; Mackie, T.R. Iterative approaches to dose 
optimization in tomotherapy. Phys. Med. Biol. 2000, 45, 69-90. 

9. Fiorino, C.; Dell’Oca, I.; Pierelli, A.; Broggi, S.; de Martin, E.; di Muzio, N.; Longobardi, B.; 
Fazio, F.; Calandrino, R. Significant improvement in normal tissue sparing and target coverage 
for head and neck cancer by means of helical tomotherapy. Radiother. Oncol. 2006, 78, 276-282. 

10. Nguyen, N.P.; Smith-Raymond, L.; Vinh-Hung, V.; Sloan, D.; Davis, R.; Vos, P.; Abraham, D.; 
Stevie, M.; Krafft, S.P.; Ly, B.H.; Ries, T.; Karlsson, U.; Ceizyk, M. Feasibility of Tomotherapy 
to spare the cochlea from excessive radiation in head and neck cancer. Oral. Oncol. 2011, 47,  
414-419. 

11. Penagaricano, J.; Moros, E.; Corry, P.; Saylors, R.; Ratanatharathorn, V. Pediatric craniospinal 
axis irradiation with Helical Tomotherapy: Patient outcome and lack of acute pulmonary toxicity. 
Int. J. Radiat. Oncol. Biol. Phys. 2009, 75, 1155-1161. 

12. Mascarin, M.; Chiovati, P.; Drigo, A. New Technologies and Therapeutic Index in Pediatric 
Radiotherapy. In Proceedings of XX AIRO Italian Association Radiotherapy and Oncology, 
Naples, Italy, November 13-16, 2010; pp. R63-R65. 

13. D’Souza, W.D.; Rosen, I.I. Nontumor integral dose variation in conventional radiotherapy 
treatment planning. Med. Phys. 2003, 30, 2065-2071. 

14. Shi, C.; Penagaricano, J.; Papanikolaou, N. Comparison of IMRT treatment plans between linac 
and helical tomotherapy based on integral dose and inhomogeneity index. Med. Dosim. 2008, 33, 
215-221. 

15. Penagaricano, J.A.; Shi, C.; Ratanatharathorn, V. Evaluation of integral dose in cranio-spinal axis 
(CSA) irradiation with conventional and helical delivery. Technol. Cancer Res. Treat. 2005, 4, 
683-689. 

16. Sharma, D.S.; Gupta, T.; Jalali, R.; Master, Z.; Phurailatpam, R.D.; Sarin, R. High-precision 
radiotherapy for craniospinal irradiation: Evaluation of three-dimensional conformal radiotherapy, 
intensity-modulated radiation therapy and helical TomoTherapy. Br. J. Radiol. 2009, 82, 1000-1009. 

17. Massimino, M.; Gandola, L.; Pignoli, E.; Seregni, E.; Marchianò, A.; Pecori, E.; Catania, S.; 
Cefalo, G. TSH suppression as a possible means of protection against hypothyroidism after 
irradiation for childhood Hodgkin lymphoma. Pediatr. Blood Cancer 2011, 57, 166-168. 

18. Laskar, S.; Bahl, G.; Muckaden, M.; Pai, S.K.; Gupta, T.; Banavali, S.; Arora, B.; Sharma, D.; 
Kurkure, P.A.; Ramadwar, M.; Viswanathan, S.; Rangarajan, V.; Qureshi, S.; Deshpande, D.D.; 
Shrivastava, S.K.; Dinshaw, K.A. Nasopharyngeal carcinoma in children: Comparison of 
conventional intensity-modulated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2008, 72, 728-736. 

19. Franchin, G.; Vaccher, E.; Talamini, R.; Politi, D.; Gobitti, C.; Minatel, E.; Lleshi, A.; Sartor, G.; 
Mascarin, M.; Rumeileh, I.A.; Trovò, M.G.; Barzan, L. Intensity-modulated radiotherapy 
(IMRT)/Tomotherapy following neoadjuvant chemotherapy in stage IIB–IVA/B undifferentiated 
nasopharyngeal carcinomas (UCNT): A mono-institutional experience. Oral Oncol. 2011, 47, 
905-909. 



Cancers 2011, 3                    
 

 

3990

20. Travis, L.B.; Hill, D.; Dores, G.M.; Gospodarowicz, M.; van Leeuwen, F.E.; Holowaty, E.; 
Glimelius, B.; Andersson, M.; Pukkala, E.; Lynch, C.F.; Pee, D.; Smith, S.A.; Van't Veer, M.B.; 
Joensuu, T.; Storm, H.; Stovall, M.; Boice, J.D., Jr.; Gilbert, E.; Gail, M.H. Cumulative absolute 
breast cancer risk for young women treated for Hodgkin lymphoma. J. Natl. Cancer Inst. 2005, 
97, 1428-1437. 

21. Zellmer, D.L.; Wilson, J.F.; Janjan, N.A. Dosimetry of the breast for determining carcinogenic 
risk in mantle irradiation. Int. J. Radiat. Oncol. Biol. Phys. 1991, 21, 1343-1351. 

22. Hodgson, D.C.; Koh, E.S.; Tran, T.H.; Heydarian, M.; Tsang, R.; Pintilie, M.; Xu, T.; Huang, L.; 
Sachs, R.K.; Brenner, D.J. Individualized estimates of second cancer risks after contemporary 
radiation therapy for Hodgkin lymphoma. Cancer 2007, 110, 2576-2586. 

23. Vlachaki, M.T.; Kumar, S. Helical tomotherapy in the radiotherapy treatment of Hodgkin's 
disease—A feasibility study. J. Appl. Clin. Med. Phys. 2010, 11, 77-87. 

24. Miles, E.F.; Larrier. N.A.; Kelsey, C.R.; Hubbs, J.L.; Ma, J.; Yoo, S.; Marks, L.B.  
Intensity-modulated radiotherapy for resected mesothelioma: The Duke experience. Int. J. Radiat. 
Oncol. Biol. Phys. 2008, 71, 1143-1150. 

25. Paulino, A.C.; Wen, B.C.; Brown, C.K.; Tannous, R.; Mayr, N.A.; Zhen, W.K.; Weidner, G.J.; 
Hussey, D.H. Late effects in children treated with radiation therapy for Wilms’ tumor. Int. J. 
Radiat. Oncol. Biol. Phys. 2000, 46, 1239-1246. 

26. Rochet, N.; Sterzing, F.; Jensen, A.; Dinkel, J.; Herfarth, K.; Schubert, K.; Eichbaum, M.; 
Schneeweiss, A.; Sohn, C.; Debus, J.; Harms, W. Helical tomotherapy as a new treatment 
technique for whole abdominal irradiation. Strahlenther. Onkol. 2008, 184, 145-149. 

27. Plowman, P.N.; Cooke, K.; Walsh, N. Indications for tomotherapy/intensity-modulated radiation 
therapy in paediatric radiotherapy: Extracranial disease. Br. J. Radiol. 2008, 81, 872-880. 

28. Armstrong, G.T.; Liu, Q.; Yasui, Y.; Neglia, J.P.; Leisenring, W.; Robison, L.L.; Mertens, A.C. 
Late mortality among 5-year survivors of childhood cancer: A summary from the Childhood 
Cancer Survivor Study. J. Clin. Oncol. 2009, 27, 2328-2338. 

29. Hall, E.J. Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int. J. 
Radiat. Oncol. Biol. Phys. 2006, 65, 1-7. 

30. Bhatti, P.; Veiga, L.H.; Ronckers, C.M.; Sigurdson, A.J.; Stovall, M.; Smith, S.A.; Weathers, R.; 
Leisenring, W.; Mertens, A.C.; Hammond, S.; Friedman, D.L.; Neglia, J.P.; Meadows, A.T.; 
Donaldson, S.S.; Sklar, C.A.; Robison, L.L.; Inskip, P.D. Risk of second primary thyroid cancer 
after radiotherapy for a childhood cancer in a large cohort study: An update from the childhood 
cancer survivor study. Radiat. Res. 2010, 174, 741-752. 

31. Newhauser, W.D.; Durante, M. Assessing the risk of second malignancies after modern 
radiotherapy. Nat. Rev. Cancer 2011, 11, 438-448. 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 


