Adrenalectomy Performed with the Da Vinci Single-Port Robotic System: A Systematic Review and Pooled Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion Criteria, Exclusion Criteria, and Outcomes
2.3. Selection Process and Data Extraction
2.4. Risk of Bias Assessment
2.5. Statistical Analysis
3. Results
3.1. Study Selection, Characteristics, and Quality
3.2. Patient Characteristics
3.3. Surgical Outcomes Associated with DV-SP RAA
3.4. Comparison Between DV-SP and Two-Port or Three-Port DV-MP
3.5. Comparison Between DV-SP and Single-Port Access DV-MP
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rowe, N.E.; Kumar, R.; Schieda, N.; Siddiqi, F.; McGregor, T.; McAlpine, K.; Violette, P.; Bathini, V.; Eng, M.; Izard, J. Diagnosis, Management, and Follow-Up of the Incidentally Discovered Adrenal Mass: CUA Guideline Endorsed by the AUA. J. Urol. 2023, 210, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Kahramangil, B.; Kose, E.; Remer, E.M.; Reynolds, J.P.; Stein, R.; Rini, B.; Siperstein, A.; Berber, E. A Modern Assessment of Cancer Risk in Adrenal Incidentalomas. Ann. Surg. 2022, 275, e238–e244. [Google Scholar] [CrossRef] [PubMed]
- Corwin, M.T.; Navarro, S.M.; Malik, D.G.; Loehfelm, T.W.; Fananapazir, G.; Wilson, M.; Campbell, M.J. Differences in Growth Rate on CT of Adrenal Adenomas and Malignant Adrenal Nodules. Am. J. Roentgenol. 2019, 213, 632–636. [Google Scholar] [CrossRef] [PubMed]
- Mihai, R. Open adrenalectomy. Gland. Surg. 2019, 8, S28–S35. [Google Scholar] [CrossRef]
- Lal, G.; Duh, Q.-Y. Laparoscopic adrenalectomy—Indications and technique. Surg. Oncol. 2003, 12, 105–123. [Google Scholar] [CrossRef]
- Feng, Z.; Feng, M.P.; Feng, D.P.; Solórzano, C.C. Robotic-assisted adrenalectomy using da Vinci Xi vs. Si: Are there differences? J. Robot. Surg. 2020, 14, 349–355. [Google Scholar] [CrossRef]
- Piccoli, M.; Pecchini, F.; Serra, F.; Nigro, C.; Colli, G.; Gozzo, D.; Zirilli, L.; Madeo, B.; Rochira, V.; Mullineris, B. Robotic Versus Laparoscopic Adrenalectomy: Pluriannual Experience in a High-Volume Center Evaluating Indications and Results. J. Laparoendosc. Adv. Surg. Technol. 2021, 31, 375–381. [Google Scholar] [CrossRef]
- Materazzi, G.; Rossi, L. Robot-assisted adrenalectomy: State of the art. Updates Surg. 2021, 73, 1131–1146. [Google Scholar] [CrossRef]
- Nomine-Criqui, C.; Germain, A.; Ayav, A.; Bresler, L.; Brunaud, L. Robot-assisted adrenalectomy: Indications and drawbacks. Updates Surg. 2017, 69, 127–133. [Google Scholar] [CrossRef]
- Morelli, L.; Tartaglia, D.; Bronzoni, J.; Palmeri, M.; Guadagni, S.; Di Franco, G.; Gennai, A.; Bianchini, M.; Bastiani, L.; Moglia, A.; et al. Robotic assisted versus pure laparoscopic surgery of the adrenal glands: A case-control study comparing surgical techniques. Langenbecks Arch. Surg. 2016, 401, 999–1006. [Google Scholar] [CrossRef]
- Reitano, G.; Tumminello, A.; Ghaffar, U.; Saggionetto, G.; Taverna, A.; Mangiacavallo, F.; Ahmed, M.E.; Basourakos, S.P.; Carletti, F.; Minardi, D.; et al. Perioperative, Oncological, and Functional Outcomes of New Multiport Robotic Platforms in Urology: A Systematic Review and Meta-analysis. Eur. Urol. Open Sci. 2025, 74, 44–70. [Google Scholar] [CrossRef] [PubMed]
- Abaza, R.; Murphy, C.; Bsatee, A.; Brown, D.H.; Martinez, O. Single-port Robotic Surgery Allows Same-day Discharge in Majority of Cases. Urology 2021, 148, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Beksac, A.T.; Zeinab, M.A.; Ferguson, E.; Kaviani, A.; Kaouk, J. Single-Port Extraperitoneal Robot Assisted Radical Prostatectomy—Description of Technique. Urol. Video J. 2022, 15, 100162. [Google Scholar] [CrossRef]
- Abou Zeinab, M.; Kaviani, A.; Beksac, A.T.; Ferguson, E.; Kaouk, J. Single port transvesical simple prostatectomy: A minimally invasive technique in BPH management. Urol. Video J. 2022, 14, 100158. [Google Scholar] [CrossRef]
- Francavilla, S.; Abern, M.R.; Dobbs, R.W.; Vigneswaran, H.T.; Talamini, S.; Antonelli, A.; Simeone, C.; Crivellaro, S. Single-Port robot assisted partial nephrectomy: Initial experience and technique with the da Vinci Single-Port platform (IDEAL Phase 1). Minerva Urol. Nephrol. 2022, 74, 216–224. [Google Scholar] [CrossRef]
- Ganesan, V.; Goueli, R.; Rodriguez, D.; Hess, D.; Carmel, M. Single-port robotic-assisted laparoscopic sacrocolpopexy with magnetic retraction: First experience using the SP da Vinci platform. J. Robot. Surg. 2020, 14, 753–758. [Google Scholar] [CrossRef]
- Beksac, A.T.; Abou Zeinab, M.; Ferguson, E.; Kaviani, A.; Kaouk, J. Single-port retroperitoneal robotic pyeloplasty: Description of technique. Urol. Video J. 2022, 15, 100178. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Munn, Z.; Moola, S.; Lisy, K.; Riitano, D.; Tufanaru, C. Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. Int. J. Evid. Based Healthc. 2015, 13, 147–153. [Google Scholar] [CrossRef]
- Dindo, D.; Demartines, N.; Clavien, P.-A. Classification of Surgical Complications. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [PubMed]
- Knoll, T.; Omar, M.I.; Maclennan, S.; Hernández, V.; Canfield, S.; Yuan, Y.; Bruins, M.; Marconi, L.; Van Poppel, H.; N’dow, J.; et al. Key Steps in Conducting Systematic Reviews for Underpinning Clinical Practice Guidelines: Methodology of the European Association of Urology. Eur. Urol. 2018, 73, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, J.; Rashid, M. Visualizing Mean, Median, Mean Deviation, and Standard Deviation of a Set of Numbers. Am. Stat. 2016, 70, 304–312. [Google Scholar] [CrossRef]
- Lee, I.A.; Kim, J.K.; Kim, K.; Kang, S.-W.; Lee, J.; Jeong, J.J.; Nam, K.-H.; Chung, W.Y. Robotic Adrenalectomy Using the da Vinci SP Robotic System: Technical Feasibility Comparison with Single-Port Access Using the da Vinci Multi-arm Robotic System. Ann. Surg. Oncol. 2022, 29, 3085–3092. [Google Scholar] [CrossRef]
- Fang, A.M.; Fazendin, J.M.; Rais-Bahrami, S.; Porterfield, J.R. Comparison of Perioperative Outcomes Between Single-Port and Multi-Port Robotic Adrenalectomy. Am. Surg. 2023, 89, 1668–1672. [Google Scholar] [CrossRef]
- Kim, B.-C.; Kwon, D.; Pak, S.J.; Cho, J.W.; Kim, W.W.; Sung, T.-Y.; Chung, K.-W.; Lee, Y.-M. Safety and feasibility of single-port surgery for posterior retroperitoneal adrenalectomy using the da Vinci SP robotic system: A retrospective cohort study. Surg. Endosc. 2023, 37, 8269–8276. [Google Scholar] [CrossRef]
- Rudnick, B.; Billah, M.S.; Nguyen, J.; Sheckley, F.; Ahmed, M. Surgical Technique and Perioperative Outcomes Following Single-Port Robotic Adrenalectomy: A Single Institutional Experience. J. Endourol. 2024, 38, 353–357. [Google Scholar] [CrossRef]
- Esposito, G.; Mullineris, B.; Colli, G.; Curia, S.; Piccoli, M. Robotic Versus Laparoscopic Adrenalectomy for Adrenal Tumors: An Up-to-Date Meta-Analysis on Perioperative Outcomes. Cancers 2025, 17, 150. [Google Scholar] [CrossRef]
- Moughnyeh, M.; Lindeman, B.; Porterfield, J.R.; Dream, S. Outpatient robot-assisted adrenalectomy: Is it safe? Am. J. Surg. 2020, 220, 296–297. [Google Scholar] [CrossRef]
- Ortiz, D.I.; Findling, J.W.; Carroll, T.B.; Javorsky, B.R.; Carr, A.A.; Evans, D.B.; Yen, T.W.; Wang, T.S. Cosyntropin stimulation testing on postoperative day 1 allows for selective glucocorticoid replacement therapy after adrenalectomy for hypercortisolism: Results of a novel, multidisciplinary institutional protocol. Surgery 2016, 159, 259–266. [Google Scholar] [CrossRef]
- Yilmaz, T.; Foster, R.; Hao, Y. Detecting Vital Signs with Wearable Wireless Sensors. Sensors 2010, 10, 10837–10862. [Google Scholar] [CrossRef] [PubMed]
- McCulloch, P.; Altman, D.G.; Campbell, W.B.; Flum, D.R.; Glasziou, P.; Marshall, J.C.; Nicholl, J. No surgical innovation without evaluation: The IDEAL recommendations. Lancet 2009, 374, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Marcus, H.J.; Ramirez, P.T.; Khan, D.Z.; Layard Horsfall, H.; Hanrahan, J.G.; Williams, S.C.; Beard, D.J.; Bhat, R.; Catchpole, K.; Cook, A.; et al. The IDEAL framework for surgical robotics: Development, comparative evaluation and long-term monitoring. Nat. Med. 2024, 30, 61–75. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Study Design | Country | Robot | Number of Patients | Sex n (%) | BMI (Kg/m2) Mean (SD) | Prior Abdominal Surgeries n (%) | Adrenal Mass Diameter (cm) Mean (SD) |
---|---|---|---|---|---|---|---|---|
Rudnick 2024 [27] | Case series | USA | Da Vinci Single-Port | 19 | M: 10 (52.6) F: 9 (47.4) | 31 (4.5) | 13 (68.4) | 5.2 (3.9) |
Fang 2023 [25] | Case–control | USA | Da Vinci Single-Port | 11 | M: 3 (27.3) F: 8 (72.7) | 31.8 (5.9) | 8 (72.7) | 2.8 (1.3) |
Da Vinci Multi-Port | 25 | M: 12 (48%) F: 13 (52%) | 32 (8.3) | 15 (60) | 4.1 (1.8) | |||
Kim 2023 [26] | Case–control | Korea | Da Vinci Single-Port | 30 | M: 12 (40) F: 18 (60) | 24.7 (3.9) | - | 2.1 (1) |
Da Vinci Multi-Port (3 ports) | 117 | M: 41 (35.2) F: 76 (64.8) | 24.6 (3.6) | - | 3.9 (2.7) | |||
Da Vinci Multi-Port (2 ports) | 103 | M: 32 (31) F: 71 (69) | 25.2 (5.4) | - | 3 (1.4) | |||
Lee 2022 [24] | Case–control | Korea | Da Vinci Single-Port | 8 | M: 4 (50) F: 4 (50) | 24.8 (3.1) | 2/8 (25) | 1.7 (1) |
Da Vinci Multi-Port | 11 | M: 4 (36.4) F: 7 (63.6) | 22.2 (1.8) | 3/11 (27.2) | 2.3 (1.9) | |||
Abaza 2021 [12] | Case–control | Ireland | Da Vinci Single-Port | 4 | - | - | - | - |
Da Vinci Multi-Port | 14 | - | - | - | - |
Author, Year | Robot | Total Operative Time (min) Mean (SD) | Docking Time (min) Mean (SD) | Console Time (min) Mean (SD) | Additional Assistant Port Required n (%) | EBL (mL) Mean (SD) | Perioperative Complications n (%) | Conversion to Open n (%) | PSM n (%) |
---|---|---|---|---|---|---|---|---|---|
Rudnick 2024 [27] | Da Vinci Single-Port | 80.7 (22.9) | 7.6 (2) | 68 (12.6) | 2/19 (10.5) | 63.9 (52) | C-D < 3: 2/19 (10.5) C-D ≥ 3: 1/19 (5) | 0/19 (0) | 1/19 (5) |
Fang 2023 [25] | Da Vinci Single-Port | 124.6 (38.5) | - | - | 5/11 (45.4) | 18.1 (13) | C-D ≥ 3: 0/11 (0) | 0/11 (0) | 1/11 (9) |
Da Vinci Multi-Port | 146.4 (48.1) | - | - | - | 65.6 (95) | C-D ≥ 3: 1/25 (4) | 0/25 (0) | 0/25 (0) | |
Kim 2023 [26] | Da Vinci Single-Port | 80.9 (22.1) | - | - | 0/30 (0) | - | C-D ≥ 1: 0/30 (0) | 0/30 (0) | - |
Da Vinci Multi-Port (3 ports) | 134.6 (65.8) | - | - | - | - | C-D ≥ 1: 4/117 (3.4) | 0/117 (0) | - | |
Da Vinci Multi-Port (2 ports) | 99.9 (27.6) | - | - | - | - | C-D ≥ 1: 1/103 (1) | 0/103 (0) | - | |
Lee 2022 [24] | Da Vinci Single-Port | 99 (16.2) | 4.8 (2.4) | 57.1 (15.2) | 1/8 (12.5) | 2.5 (4.6) | C-D ≥ 1: 0/8 (0) | 0/8 (0) | - |
Da Vinci Multi-Port | 121.9 (50.7) | 7.7 (4.4) | 49.1 (10.6) | - | 17.3 (18.5) | C-D ≥ 1: 0/11 (0) | 0/11 (0) * | - | |
Abaza 2020 [12] | Da Vinci Single-Port | 106.4 ** | - | - | 0/4 (0) | - | 0/4 (0) | 0/4 (0) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reitano, G.; Tumminello, A.; Prevato, C.; Cacco, A.; Gaggiato, G.; Baù, G.; Sabato, L.; Tonet, E.; Gambarotto, A.; Fusca, V.; et al. Adrenalectomy Performed with the Da Vinci Single-Port Robotic System: A Systematic Review and Pooled Analysis. Cancers 2025, 17, 1372. https://doi.org/10.3390/cancers17081372
Reitano G, Tumminello A, Prevato C, Cacco A, Gaggiato G, Baù G, Sabato L, Tonet E, Gambarotto A, Fusca V, et al. Adrenalectomy Performed with the Da Vinci Single-Port Robotic System: A Systematic Review and Pooled Analysis. Cancers. 2025; 17(8):1372. https://doi.org/10.3390/cancers17081372
Chicago/Turabian StyleReitano, Giuseppe, Arianna Tumminello, Carlo Prevato, Anna Cacco, Greta Gaggiato, Giorgia Baù, Lorenzo Sabato, Elisa Tonet, Anna Gambarotto, Valerio Fusca, and et al. 2025. "Adrenalectomy Performed with the Da Vinci Single-Port Robotic System: A Systematic Review and Pooled Analysis" Cancers 17, no. 8: 1372. https://doi.org/10.3390/cancers17081372
APA StyleReitano, G., Tumminello, A., Prevato, C., Cacco, A., Gaggiato, G., Baù, G., Sabato, L., Tonet, E., Gambarotto, A., Fusca, V., Martina, K., Visentin, S., Betto, G., Novara, G., Dal Moro, F., & Zattoni, F. (2025). Adrenalectomy Performed with the Da Vinci Single-Port Robotic System: A Systematic Review and Pooled Analysis. Cancers, 17(8), 1372. https://doi.org/10.3390/cancers17081372