The Intraoperative Utility of Raman Spectroscopy for Neurosurgical Oncology
Simple Summary
Abstract
1. Introduction
2. Current Applications of Raman Spectroscopy in Brain Tumor Surgery
3. Integration of Artificial Intelligence with Raman Spectroscopy
4. Disadvantages and Current Limitations of Raman Spectroscopy
5. Future Applications
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| ALA | Aminolevulinic Acid |
| ATRX | Alpha-thalassemia Mental Retardation X-linked |
| IDH | Isocitrate Dehydrogenase |
| SRH | Stimulated Raman Histology |
References
- Brown, T.J.; Brennan, M.C.; Li, M.; Church, E.W.; Brandmeir, N.J.; Rakszawski, K.L.; Patel, A.S.; Rizk, E.B.; Suki, D.; Sawaya, R.; et al. Association of the Extent of Resection with Survival in Glioblastoma: A Systematic Review and Meta-analysis. JAMA Oncol. 2016, 2, 1460–1469. [Google Scholar] [CrossRef] [PubMed]
- Molinaro, A.M.; Hervey-Jumper, S.; Morshed, R.A.; Young, J.; Han, S.J.; Chunduru, P.; Zhang, Y.; Phillips, J.J.; Shai, A.; Lafontaine, M.; et al. Association of Maximal Extent of Resection of Contrast-Enhanced and Non-Contrast-Enhanced Tumor with Survival Within Molecular Subgroups of Patients with Newly Diagnosed Glioblastoma. JAMA Oncol. 2020, 6, 495–503. [Google Scholar]
- Hatoum, R.; Chen, J.-S.; Lavergne, P.; Shlobin, N.A.; Wang, A.; Elkaim, L.M.; Dodin, P.; Couturier, C.P.; Ibrahim, G.M.; Fallah, A.; et al. Extent of Tumor Resection and Survival in Pediatric Patients with High-Grade Gliomas: A Systematic Review and Meta-analysis. JAMA Netw. Open. 2022, 5, e2226551. [Google Scholar] [CrossRef]
- Senft, C.; Bink, A.; Franz, K.; Vatter, H.; Gasser, T.; Seifert, V. Intraoperative MRI guidance and extent of resection in glioma surgery: A randomised, controlled trial. Lancet Oncol. 2011, 12, 997–1003. [Google Scholar] [CrossRef]
- Stummer, W.; Pichlmeier, U.; Meinel, T.; Wiestler, O.D.; Zanella, F.; Reulen, H.-J.; ALA-Glioma Study Group. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: A randomised controlled multicentre phase III trial. Lancet Oncol. 2006, 7, 392–401. [Google Scholar] [CrossRef]
- Willems, P.W.A.; Taphoorn, M.J.B.; Burger, H.; Berkelbach van der Sprenkel, J.W.; Tulleken, C.A.F. Effectiveness of neuronavigation in resecting solitary intracerebral contrast-enhancing tumors: A randomized controlled trial. J. Neurosurg. 2006, 104, 360–368. [Google Scholar] [CrossRef]
- Gerin, C.; Pallud, J.; Deroulers, C.; Varlet, P.; Oppenheim, C.; Roux, F.-X.; Chrétien, F.; Thomas, S.R.; Grammaticos, B.; Badoual, M. Quantitative characterization of the imaging limits of diffuse low-grade oligodendrogliomas. Neuro Oncol. 2013, 15, 1379–1388. [Google Scholar] [CrossRef]
- Zetterling, M.; Roodakker, K.R.; Berntsson, S.G.; Edqvist, P.-H.; Latini, F.; Landtblom, A.-M.; Pontén, F.; Alafuzoff, I.; Larsson, E.-M.; Smits, A. Extension of diffuse low-grade gliomas beyond radiological borders as shown by the coregistration of histopathological and magnetic resonance imaging data. J. Neurosurg. 2016, 125, 1155–1166. [Google Scholar] [CrossRef]
- Incekara, F.; Smits, M.; Dirven, L.; Bos, E.M.; Balvers, R.K.; Haitsma, I.K.; Schouten, J.W.; Vincent, A.J.P.E. Intraoperative B-Mode Ultrasound Guided Surgery and the Extent of Glioblastoma Resection: A Randomized Controlled Trial. Front. Oncol. 2021, 11, 649797. [Google Scholar] [CrossRef] [PubMed]
- Šteňo, A.; Hollý, V.; Mendel, P.; Šteňová, V.; Petričková, Ľ.; Timárová, G.; Jezberová, M.; Belan, V.; Rychlý, B.; Šurkala, J.; et al. Navigated 3D-ultrasound versus conventional neuronavigation during awake resections of eloquent low-grade gliomas: A comparative study at a single institution. Acta Neurochir. 2018, 160, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Pichardo-Rojas, P.S.; Zarate, C.; Arguelles-Hernández, J.; Barrón-Lomelí, A.; Sanchez-Velez, R.; Hjeala-Varas, A.; Gutierrez-Herrera, E.; Tandon, N.; Esquenazi, Y. Intraoperative ultrasound for surgical resection of high-grade glioma and glioblastoma: A meta-analysis of 732 patients. Neurosurg. Rev. 2024, 47, 120. [Google Scholar] [CrossRef]
- Della Pepa, G.M.; Ius, T.; La Rocca, G.; Gaudino, S.; Isola, M.; Pignotti, F.; Rapisarda, A.; Mazzucchi, E.; Giordano, C.; Dragonetti, V.; et al. 5-Aminolevulinic Acid and Contrast-Enhanced Ultrasound: The Combination of the Two Techniques to Optimize the Extent of Resection in Glioblastoma Surgery. Neurosurgery 2020, 86, E529–E540. [Google Scholar] [CrossRef]
- Elmesallamy, W.A.E.A. The role of intraoperative ultrasound in gross total resection of brain mass lesions and outcome. Egypt. J. Neurol. Psychiatry Neurosurg. 2019, 55, 73. [Google Scholar] [CrossRef]
- Mosteiro, A.; Di Somma, A.; Ramos, P.R.; Ferrés, A.; De Rosa, A.; González-Ortiz, S.; Enseñat, J.; González, J.J. Is intraoperative ultrasound more efficient than magnetic resonance in neurosurgical oncology? An exploratory cost-effectiveness analysis. Front. Oncol. 2022, 12, 1016264. [Google Scholar] [CrossRef]
- Gerganov, V.M.; Samii, A.; Akbarian, A.; Stieglitz, L.; Samii, M.; Fahlbusch, R. Reliability of intraoperative high-resolution 2D ultrasound as an alternative to high-field strength MR imaging for tumor resection control: A prospective comparative study. J. Neurosurg. 2009, 111, 512–519. [Google Scholar] [CrossRef]
- Chen, L.F.; Yang, Y.; Ma, X.D.; Yu, X.G.; Gui, Q.P.; Xu, B.N.; Zhou, D.B. Optimizing the Extent of Resection and Minimizing the Morbidity in Insular High-Grade Glioma Surgery by High-Field Intraoperative MRI Guidance. Turk. Neurosurg. 2017, 27, 696–706. [Google Scholar]
- Napolitano, M.; Vaz, G.; Lawson, T.; Docquier, M.-A.; van Maanen, A.; Duprez, T.; Raftopoulos, C. Glioblastoma surgery with and without intraoperative MRI at 3.0T. Neurochirurgie 2014, 60, 143–150. [Google Scholar] [CrossRef]
- Wu, J.-S.; Gong, X.; Song, Y.-Y.; Zhuang, D.-X.; Yao, C.-J.; Qiu, T.-M.; Lu, J.-F.; Zhang, J.; Zhu, W.; Mao, Y.; et al. 3.0-T intraoperative magnetic resonance imaging-guided resection in cerebral glioma surgery: Interim analysis of a prospective, randomized, triple-blind, parallel-controlled trial. Neurosurgery 2014, 61 (Suppl. 1), 145–154. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, X.; Zhao, Y.; Wang, F.; Li, F.; Xu, B. Impact of intraoperative magnetic resonance imaging and functional neuronavigation on surgical outcome in patients with gliomas involving language areas. Neurosurg. Rev. 2015, 38, 319–330; discussion 330. [Google Scholar] [CrossRef]
- Roder, C.; Bisdas, S.; Ebner, F.; Honegger, J.; Naegele, T.; Ernemann, U.; Tatagiba, M. Maximizing the extent of resection and survival benefit of patients in glioblastoma surgery: High-field iMRI versus conventional and 5-ALA-assisted surgery. Eur. J. Surg. Oncol. 2014, 40, 297–304. [Google Scholar] [CrossRef]
- Golub, D.; Hyde, J.; Dogra, S.; Nicholson, J.; Kirkwood, K.A.; Gohel, P.; Loftus, S.; Schwartz, T.H. Intraoperative MRI versus 5-ALA in high-grade glioma resection: A network meta-analysis. J. Neurosurg. 2021, 134, 484–498. [Google Scholar] [CrossRef]
- Díez Valle, R.; Slof, J.; Galván, J.; Arza, C.; Romariz, C.; Vidal, C.; on behalf of the VISIONA study researchers. Observational, retrospective study of the effectiveness of 5-aminolevulinic acid in malignant glioma surgery in Spain (The VISIONA study). Neurologia 2014, 29, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Choi, S.H.; Kim, Y.H.; Park, C.-K. Impact of fluorescence-guided surgery on the improvement of clinical outcomes in glioblastoma patients. Neurooncol. Pract. 2014, 1, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Eljamel, M.S.; Goodman, C.; Moseley, H. ALA and Photofrin fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: A single centre Phase III randomised controlled trial. Lasers Med. Sci. 2008, 23, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Kondepudi, A.; Pekmezci, M.; Hou, X.; Scotford, K.; Jiang, C.; Rao, A.; Harake, E.S.; Chowdury, A.; Al-Holou, W.; Wang, L.; et al. Foundation models for fast, label-free detection of glioma infiltration. Nature 2024, 637, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Livermore, L.J.; Isabelle, M.; Bell, I.M.; Edgar, O.; Voets, N.L.; Stacey, R.; Ansorge, O.; Vallance, C.; Plaha, P. Raman spectroscopy to differentiate between fresh tissue samples of glioma and normal brain: A comparison with 5-ALA-induced fluorescence-guided surgery. J. Neurosurg. 2021, 135, 469–479. [Google Scholar] [CrossRef]
- Herta, J.; Cho, A.; Roetzer-Pejrimovsky, T.; Höftberger, R.; Marik, W.; Kronreif, G.; Peilnsteiner, T.; Rössler, K.; Wolfsberger, S. Optimizing maximum resection of glioblastoma: Raman spectroscopy versus 5-aminolevulinic acid. J. Neurosurg. 2023, 139, 334–343. [Google Scholar] [CrossRef]
- Krafft, C.; Sobottka, S.B.; Schackert, G.; Salzer, R. Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors. Analyst 2005, 130, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Amharref, N.; Beljebbar, A.; Dukic, S.; Venteo, L.; Schneider, L.; Pluot, M.; Manfait, M. Discriminating healthy from tumor and necrosis tissue in rat brain tissue samples by Raman spectral imaging. Biochim. Biophys. Acta 2007, 1768, 2605–2615. [Google Scholar] [PubMed]
- Krafft, C.; Belay, B.; Bergner, N.; Romeike, B.F.M.; Reichart, R.; Kalff, R.; Popp, J. Advances in optical biopsy--correlation of malignancy and cell density of primary brain tumors using Raman microspectroscopic imaging. Analyst 2012, 137, 5533–5537. [Google Scholar] [PubMed]
- Banerjee, H.; Verma, M. Intraoperative brain cancer detection with Raman spectroscopy in humans. Ann. Transl. Med. 2016, 4, 68. [Google Scholar] [PubMed]
- Jermyn, M.; Desroches, J.; Mercier, J.; St-Arnaud, K.; Guiot, M.-C.; Leblond, F.; Petrecca, K. Raman spectroscopy detects distant invasive brain cancer cells centimeters beyond MRI capability in humans. Biomed. Opt. Express 2016, 7, 5129–5137. [Google Scholar] [CrossRef] [PubMed]
- Uckermann, O.; Yao, W.; Juratli, T.A.; Galli, R.; Leipnitz, E.; Meinhardt, M.; Koch, E.; Schackert, G.; Steiner, G.; Kirsch, M. IDH1 mutation in human glioma induces chemical alterations that are amenable to optical Raman spectroscopy. J. Neurooncol. 2018, 139, 261–268. [Google Scholar] [CrossRef]
- Livermore, L.J.; Isabelle, M.; Mac Bell, I.; Scott, C.; Walsby-Tickle, J.; Gannon, J.; Plaha, P.; Vallance, C.; Ansorge, O.; Bell, I.M. Rapid intraoperative molecular genetic classification of gliomas using Raman spectroscopy. Neurooncol. Adv. 2019, 1, vdz008. [Google Scholar] [CrossRef]
- Hollon, T.; Jiang, C.; Chowdury, A.; Nasir-Moin, M.; Kondepudi, A.; Aabedi, A.; Adapa, A.; Al-Holou, W.; Heth, J.; Sagher, O.; et al. Artificial-intelligence-based molecular classification of diffuse gliomas using rapid, label-free optical imaging. Nat. Med. 2023, 29, 828–832. [Google Scholar] [CrossRef]
- Wijnenga, M.M.J.; French, P.J.; Dubbink, H.J.; Dinjens, W.N.M.; Atmodimedjo, P.N.; Kros, J.M.; Smits, M.; Gahrmann, R.; Rutten, G.-J.; Verheul, J.B.; et al. The impact of surgery in molecularly defined low-grade glioma: An integrated clinical, radiological, and molecular analysis. Neuro Oncol. 2018, 20, 103–112. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Sonoda, Y.; Shibahara, I.; Saito, R.; Kanamori, M.; Kumabe, T.; Tominaga, T. Impact of gross total resection in patients with WHO grade III glioma harboring the IDH 1/2 mutation without the 1p/19q co-deletion. J. Neurooncol. 2016, 129, 505–514. [Google Scholar] [CrossRef]
- Beiko, J.; Suki, D.; Hess, K.R.; Fox, B.D.; Cheung, V.; Cabral, M.; Shonka, N.; Gilbert, M.R.; Sawaya, R.; Prabhu, S.S.; et al. IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection. Neuro Oncol. 2014, 16, 81–91. [Google Scholar] [CrossRef]
- Rahman, M.; Abbatematteo, J.; De Leo, E.K.; Kubilis, P.S.; Vaziri, S.; Bova, F.; Sayour, E.; Mitchell, D.; Quinones-Hinojosa, A. The effects of new or worsened postoperative neurological deficits on survival of patients with glioblastoma. J. Neurosurg. 2017, 127, 123–131. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, Y.; Wu, B.; Zhang, S.; Zhu, K.; Liu, C.-H.; Yu, X.; Alfano, R.R. Intraoperative detection of human meningioma using a handheld visible resonance Raman analyzer. Lasers Med. Sci. 2022, 37, 1311–1319. [Google Scholar] [CrossRef]
- Jelke, F.; Mirizzi, G.; Borgmann, F.K.; Husch, A.; Slimani, R.; Klamminger, G.G.; Klein, K.; Mombaerts, L.; Gérardy, J.-J.; Mittelbronn, M.; et al. Intraoperative discrimination of native meningioma and dura mater by Raman spectroscopy. Sci. Rep. 2021, 11, 23583. [Google Scholar] [CrossRef]
- Morais, C.L.M.; Lilo, T.; Ashton, K.M.; Davis, C.; Dawson, T.P.; Gurusinghe, N.; Martin, F.L. Determination of meningioma brain tumour grades using Raman microspectroscopy imaging. Analyst 2019, 144, 7024–7031. [Google Scholar] [CrossRef] [PubMed]
- Gousias, K.; Schramm, J.; Simon, M. The Simpson grading revisited: Aggressive surgery and its place in modern meningioma management. J. Neurosurg. 2016, 125, 551–560. [Google Scholar] [CrossRef]
- Lilo, T.; Morais, C.L.; Ashton, K.M.; Davis, C.; Dawson, T.P.; Martin, F.L.; Alder, J.; Roberts, G.; Ray, A.; Gurusinghe, N. Raman hyperspectral imaging coupled to three-dimensional discriminant analysis: Classification of meningiomas brain tumour grades. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 273, 121018. [Google Scholar] [CrossRef]
- Jermyn, M.; Mercier, J.; Aubertin, K.; Desroches, J.; Urmey, K.; Karamchandiani, J.; Marple, E.; Guiot, M.-C.; Leblond, F.; Petrecca, K. Highly Accurate Detection of Cancer with Intraoperative, Label-Free, Multimodal Optical Spectroscopy. Cancer Res. 2017, 77, 3942–3950. [Google Scholar] [CrossRef]
- Galli, R.; Meinhardt, M.; Koch, E.; Schackert, G.; Steiner, G.; Kirsch, M.; Uckermann, O. Rapid Label-Free Analysis of Brain Tumor Biopsies by Near Infrared Raman and Fluorescence Spectroscopy-A Study of 209 Patients. Front. Oncol. 2019, 9, 1165. [Google Scholar] [CrossRef] [PubMed]
- Ember, K.; Dallaire, F.; Plante, A.; Sheehy, G.; Guiot, M.-C.; Agarwal, R.; Yadav, R.; Douet, A.; Selb, J.; Tremblay, J.P.; et al. In situ brain tumor detection using a Raman spectroscopy system-results of a multicenter study. Sci. Rep. 2024, 14, 13309. [Google Scholar] [CrossRef]
- Fullwood, L.M.; Clemens, G.; Griffiths, D.; Ashton, K.; Dawson, T.P.; Lea, R.W.; Davis, C.; Bonnier, F.; Byrne, H.J.; Baker, M.J. Investigating the use of Raman and immersion Raman spectroscopy for spectral histopathology of metastatic brain cancer and primary sites of origin. Anal. Methods 2014, 6, 3948–3961. [Google Scholar] [CrossRef]
- Marhold, F.; Mercea, P.A.; Scheichel, F.; Berghoff, A.S.; Heicappell, P.; Kiesel, B.; Mischkulnig, M.; Borkovec, M.; Wolfsberger, S.; Woehrer, A.; et al. Detailed analysis of 5-aminolevulinic acid induced fluorescence in different brain metastases at two specialized neurosurgical centers: Experience in 157 cases. J. Neurosurg. 2020, 133, 1032–1043. [Google Scholar] [CrossRef]
- Ji, M.; Orringer, D.A.; Freudiger, C.W.; Ramkissoon, S.; Liu, X.; Lau, D.; Golby, A.J.; Norton, I.; Hayashi, M.; Agar, N.Y.R.; et al. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci. Transl. Med. 2013, 5, 201ra119. [Google Scholar] [CrossRef]
- Orringer, D.A.; Pandian, B.; Niknafs, Y.S.; Hollon, T.C.; Boyle, J.; Lewis, S.; Garrard, M.; Hervey-Jumper, S.L.; Garton, H.J.L.; Maher, C.O.; et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat. Biomed. Eng. 2017, 1, 0027. [Google Scholar] [CrossRef]
- Hollon, T.C.; Pandian, B.; Adapa, A.R.; Urias, E.; Save, A.V.; Khalsa, S.S.S.; Eichberg, D.G.; D’amico, R.S.; Farooq, Z.U.; Lewis, S.; et al. Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. Nat. Med. 2020, 26, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Horgan, C.C.; Jensen, M.; Nagelkerke, A.; St-Pierre, J.-P.; Vercauteren, T.; Stevens, M.M.; Bergholt, M.S. High-Throughput Molecular Imaging via Deep-Learning-Enabled Raman Spectroscopy. Anal. Chem. 2021, 93, 15850–15860. [Google Scholar] [CrossRef] [PubMed]
- Azizi, S.; Culp, L.; Freyberg, J.; Mustafa, B.; Baur, S.; Kornblith, S.; Chen, T.; Tomasev, N.; Mitrović, J.; Strachan, P.; et al. Robust and data-efficient generalization of self-supervised machine learning for diagnostic imaging. Nat. Biomed. Eng. 2023, 7, 756–779. [Google Scholar] [CrossRef]
- Jermyn, M.; Mok, K.; Mercier, J.; Desroches, J.; Pichette, J.; Saint-Arnaud, K.; Bernstein, L.; Guiot, M.-C.; Petrecca, K.; Leblond, F. Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci. Transl. Med. 2015, 7, 274ra19. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, Y.; Wu, B.; Zhang, S.; Zhu, K.; Liu, C.-H.; Yu, X.; Alfano, R.R. A Handheld Visible Resonance Raman Analyzer Used in Intraoperative Detection of Human Glioma. Cancers 2023, 15, 1752. [Google Scholar] [CrossRef]
- Hollon, T.C.; Lewis, S.; Pandian, B.; Niknafs, Y.S.; Garrard, M.R.; Garton, H.; Maher, C.O.; McFadden, K.; Snuderl, M.; Lieberman, A.P.; et al. Rapid Intraoperative Diagnosis of Pediatric Brain Tumors Using Stimulated Raman Histology. Cancer Res. 2018, 78, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Bhattacharya, A.; Linzey, J.R.; Joshi, R.S.; Cha, S.J.; Srinivasan, S.; Alber, D.; Kondepudi, A.; Urias, E.; Pandian, B.; et al. Rapid Automated Analysis of Skull Base Tumor Specimens Using Intraoperative Optical Imaging and Artificial Intelligence. Neurosurgery 2022, 90, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Lauwerends, L.J.; Abbasi, H.; Schut, T.C.B.; Van Driel, P.B.A.A.; Hardillo, J.A.U.; Santos, I.P.; Barroso, E.M.; Koljenović, S.; Vahrmeijer, A.L.; de Jong, R.J.B.; et al. The complementary value of intraoperative fluorescence imaging and Raman spectroscopy for cancer surgery: Combining the incompatibles. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2364–2376. [Google Scholar] [CrossRef]
- Wahl, J.; Klint, E.; Hallbeck, M.; Hillman, J.; Wårdell, K.; Ramser, K. Impact of preprocessing methods on the Raman spectra of brain tissue. Biomed. Opt. Express 2022, 13, 6763–6777. [Google Scholar] [CrossRef]
- Hollon, T.C.; Pandian, B.; Urias, E.; Save, A.V.; Adapa, A.R.; Srinivasan, S.; Jairath, N.K.; Farooq, Z.; Marie, T.; Al-Holou, W.N.; et al. Rapid, label-free detection of diffuse glioma recurrence using intraoperative stimulated Raman histology and deep neural networks. Neuro Oncol. 2021, 23, 144–155. [Google Scholar] [CrossRef]
- Malik, A.; Sahu, A.; Singh, S.P.; Deshmukh, A.; Chaturvedi, P.; Nair, D.; Nair, S.; Krishna, C.M. In vivo Raman spectroscopy-assisted early identification of potential second primary/recurrences in oral cancers: An exploratory study. Head Neck 2017, 39, 2216–2223. [Google Scholar] [CrossRef] [PubMed]
| Tool | Advantages | Limitations | Comparative Data |
|---|---|---|---|
| Neuronavigation | Cost - Affordable technology Availability - Ubiquitous across institutions Processing Time - Real-time feedback between preoperative imaging and resection cavity | Tumor Resection Correction - Does not account for changes in tumor size, shape, and location throughout resection Interval Assessments - Multiple interval images of resection progress not possible Identification of Complications - Unable to identify active, intraoperative complications | See rows below |
| Intraoperative Ultrasound (iUS) | Cost - Affordable technology Availability - Ubiquitous across institutions Processing Time - Real-time feedback between imaging and resection cavity Interval Assessments - Multiple interval images of resection progress is feasible Tumor Resection Correction - Accounts for changes in tumor size, shape, and location throughout resection | Granularity of Data - Limited correlation of echogenicity to tumor grade, type, and molecular features - Lower ability to distinguish residual tumor margins Learning Curve - Interpreting intraoperative findings requires more experience to guide resection | Vs. Neuronavigation - Greater rate of GTR [9,10,11,12,13] - Longer OS [11] - Fewer complications [13] - Better functional status [13] Vs. iMRI - Lower rate of GTR [14] - More misinterpreted or undetected tumor [15] - Less expensive [14] - Faster acquisition [15] Vs. 5-ALA - More misinterpreted or undetected tumor [12] - Shorter OS or PFS [12] |
| Intraoperative MRI (iMRI) | Tumor Resection Correction - Accounts for changes in tumor size, shape, and location throughout resection Granularity of Data - Greater ability to distinguish residual tumor margins Identification of Complications - Complete brain imaging allows for earlier identification and intervention of complications | Processing Time - Longer operative duration due to image acquisition, patient positioning, and transfer/transport (1 h longer on average) Interval Assessments - Multiple interval images of resection progress possible but not logistically feasible given processing time Cost - Expensive technology and installation ($3–8 million) - Higher operative costs from longer processing time Availability - Predominantly found at tertiary, academic institutions | Vs. Neuronavigation - Greater rate of GTR [4,16,17,18,19] - Longer OS or PFS [4,16,19] - Better functional status [4,16,18,19] Vs. iUS - See iUS row above Vs. 5-ALA - Greater rate of GTR [20,21] - Lower sensitivity [12] - Greater specificity [12] |
| 5-ALA | Cost - Affordable Availability - FDA-approved for HGG Processing Time - Real-time feedback between fluorescence and cavity - Direct visualization of tumor boundary Interval Assessments - Multiple interval fluorescence evaluations of resection progress is feasible Tumor Resection Correction - Accounts for changes in tumor size, shape, and location throughout resection Granularity of Data - Fluorescent signal can correlate to tumor molecular features and histology | Adverse Medication Effects - Oral ingestion associated with hypotension, gastrointestinal complaints, transaminitis, and photosensitivity Applicability - Limited fluorescence signal in low-grade and non-glial tumors | Vs. Neuronavigation - Greater rate of GTR [5,20,22,23,24] - Longer OS or PFS [5,24] Vs. iUS - See iUS row above Vs. iMRI - See iMRI row above |
| Raman Spectroscopy | Processing Time - Real/near-real time feedback between signal detection and tissue classification - Can be augmented by artificial intelligence Interval Assessments - Multiple interval tissue sampling/probing of resection cavity are feasible Tumor Resection Correction - Accounts for changes in tumor size, shape, and location throughout resection Granularity of Data - Spectroscopy data can be highly predictive of tumor type, molecular features and histologic grading - High spatial resolution increases ability to detect microscopic residual tumor Applicability - Technology is very generalizable across different brain tumor pathologies | Quality of Signal - Susceptible to interference by fluorescence and background noise - Dependent on good equipment and personnel to extract interpretable spectroscopy data Cost and Availability - Financing of proper equipment and personnel makes its use currently limited to select centers and institutions Tissue Sampling - Acquisition of data with certain processing pipelines (stimulated Raman spectroscopy) requires tissue samples, which creates risk for injury to the brain | Vs. Neuronavigation - Greater accuracy for tumor detection [25] Vs. 5-ALA - Greater accuracy and sensitivity for tumor detection [25,26,27] |
| Pipeline | Device/Wavelength/AI Algorithm | Processing Time | Application | Comparative Data |
|---|---|---|---|---|
| Jermyn et al., 2015 [55] | Device: Handheld contact near-infrared Raman spectroscopy probe attached to laser and spectroscopic detector (785 nm) Algorithm: Boosted trees machine learning | 0.2 s | Intraoperative classification of Grade II–IV glioma versus normal brain tissue in 17 patients | Accuracy of 92%, sensitivity of 93%, specificity of 91% relative to neurosurgeon’s classification under surgical microscope (73%, 67%, 86%) |
| Ember et al., 2024 (Sentry System) [47] | Device: Handheld contact near-infrared Raman spectroscopy probe attached to laser and spectroscopic detector (785 nm) Algorithm: Linear support vector machine | 0.1 s | Intraoperative classification of glioblastoma, brain metastasis, or meningioma versus normal brain tissue in 67 patients | Accuracy of 91%, 97%, and 96% for glioblastoma, brain metastasis, and meningioma, respectively |
| Zhang et al., 2023 [56] | Device: Handheld contact visible-resonance Raman spectroscopy probe attached to a portable analyzer (532 nm) Algorithm: Principal component analysis-support vector machine | 5 s | Intraoperative classification of Grade I-IV glioma versus normal brain tissue in 52 patients | Accuracy of 93%, sensitivity of 97%, specificity of 50% across all grades |
| Livermore et al., 2019 [34] | Device: Renishaw bench-top RA800 series Raman spectrometer (785 nm) Algorithm: Principal component analysis-fed linear discriminant analysis | <15 min (including biopsy acquisition) | Intraoperative classification of glioma molecular subtype (IDH-wild type vs. mutant) and tumor type (astrocytoma vs. oligodendroglioma) in 62 patients | Accuracy of 98%, sensitivity of 91%, specificity of 95% for IDH-mutant classification. Accuracy of 92%, sensitivity of 79%, specificity of 100% for oligodendroglioma classification. |
| Hollon et al., 2018 [57] | Device: Standard stimulated Raman spectroscopy microscope with Cell Profiler pipeline for image feature extraction (790 nm) Algorithm: Random forest machine learning | Not reported | Classification of pediatric brain tumor versus normal brain tissue, as well as low versus high histologic grading in 33 patients | Accuracy of 97%, sensitivity of 96%, specificity of 90% for lesional tissue classification. Accuracy of 96%, sensitivity of 92%, specificity of 87% for low-grade vs. high-grade classification. |
| Hollon et al., 2020 (SRH-CNN) [52] | Device: NIO stimulated Raman histology imaging system (790 nm) Algorithm: Inception-ResNet v2 convolutional neural network deep learning architecture | Not reported | Classification of recurrent glioma, pseudoprogression, or non-diagnostic tissue in an external testing set of 48 patients | Accuracy of 92%, sensitivity of 100%, specificity of 82% for tumor recurrence |
| Jiang et al., 2022 [58] | Device: NIO stimulated Raman histology imaging system (790 nm) Algorithm: ResNet50 deep convolutional neural network with supervised contrastive representation learning | <2 min | Classification of skull base tumor versus normal brain tissue in 118 patients | Accuracy of 97% for skull base tumor identification |
| Hollon et al., 2023 (DeepGlioma) [35] | Device: NIO stimulated Raman histology imaging system (790 nm) Algorithm: ResNet50 deep convolutional neural network with patch-based contrastive learning | <90 s | Classification of glioma molecular features including IDH mutation, 1p19q-codeletion, and ATRX mutation in 153 patients | Accuracy of 97%, sensitivity of 94%, specificity of 100% relative to IHC (90%, 80%, 100%) for IDH mutant classification Accuracy of 94% for 1p19q-codeletion and 91% for ATRX mutation |
| Kondepudi et al., 2024 (FastGlioma) [25] | Device: NIO stimulated Raman histology imaging system (790 nm) Algorithm: Visual foundation model based upon the ResNet34 architecture and a whole-slide transformer for self-supervised learning | <10 s | Classification of diffuse glioma infiltration in 129 patients relative to other surgical adjuncts including neuronavigation and 5-ALA | Accuracy of 98% relative to 76% for neuronavigation and 89% for 5-ALA fluorescence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.-S.; Oh, J.Y.; Hollon, T.C.; Hervey-Jumper, S.L.; Young, J.S.; Berger, M.S. The Intraoperative Utility of Raman Spectroscopy for Neurosurgical Oncology. Cancers 2025, 17, 3920. https://doi.org/10.3390/cancers17243920
Chen J-S, Oh JY, Hollon TC, Hervey-Jumper SL, Young JS, Berger MS. The Intraoperative Utility of Raman Spectroscopy for Neurosurgical Oncology. Cancers. 2025; 17(24):3920. https://doi.org/10.3390/cancers17243920
Chicago/Turabian StyleChen, Jia-Shu, Jun Yeop Oh, Todd C. Hollon, Shawn L. Hervey-Jumper, Jacob S. Young, and Mitchel S. Berger. 2025. "The Intraoperative Utility of Raman Spectroscopy for Neurosurgical Oncology" Cancers 17, no. 24: 3920. https://doi.org/10.3390/cancers17243920
APA StyleChen, J.-S., Oh, J. Y., Hollon, T. C., Hervey-Jumper, S. L., Young, J. S., & Berger, M. S. (2025). The Intraoperative Utility of Raman Spectroscopy for Neurosurgical Oncology. Cancers, 17(24), 3920. https://doi.org/10.3390/cancers17243920

