Advances in Hereditary Colorectal Cancer: How Precision Medicine Is Changing the Game
Simple Summary
Abstract
1. Introduction
2. Precision Screening Strategies
2.1. Genomics
2.1.1. Multigene Panel Testing
2.1.2. ctDNA Detection
2.2. Other Multi-Omics Technologies
2.3. Artificial Intelligence
2.3.1. AI in Genetic Counseling and Cancer Risk Prediction
2.3.2. Advanced Endoscopic, Imaging Technology and AI-Assisted Diagnosis
3. Precision Treatment Strategies
3.1. Surgical and Endoscopic Interventions
3.2. Medication
3.2.1. Chemoprevention
3.2.2. Molecular Targeted Therapy
3.2.3. Immunotherapy
3.3. AI-Integrated Personalized Treatment
4. Precision Prevention and Assessment Strategies
4.1. Pre-Tumor: Lifestyle and HCRC Prevention
4.2. Post-Tumor: AI-Powered HCRC Prognosis Assessment
4.2.1. AI and Digital Pathology
4.2.2. AI and Image Assessment
4.2.3. Other Potential Applications
5. Conclusions and Prospect
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| HCRC | Hereditary colorectal cancer |
| MGPT | Multi-gene panel testing |
| ctDNA | circulating tumor DNA |
| dMMR | Mismatch repair deficiency |
| AUC | Area under the curve |
| CRC | Colorectal cancer |
| FAP | Familial adenomatous polyposis |
| IHC | Immunohistochemistry |
| MMR | Mismatch repair |
| MSI | Microsatellite instability |
| NGS | Next-generation sequencing |
| ORR | Objective remission rates |
| PCR | Polymerase chain reaction |
| PVs | Pathogenic variants |
| WSI | Whole slide imaging |
| AI | Artificial intelligence |
| LS | Lynch syndrome |
| OS | Overall survival |
References
- The Lancet Gastroenterology Hepatology. The rise in early-onset colorectal cancer: Now a global issue. Lancet Gastroenterol. Hepatol. 2025, 10, 95. [Google Scholar] [CrossRef]
- Vasen, H.F.; Tomlinson, I.; Castells, A. Clinical management of hereditary colorectal cancer syndromes. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 88–97. [Google Scholar] [CrossRef]
- Yu, H.; Hemminki, A.; Sundquist, K.; Hemminki, K. Familial Associations of Colorectal Cancer with Other Cancers. Sci. Rep. 2017, 7, 5243. [Google Scholar] [CrossRef]
- Ali, P.; Fonseca, C.; Heidenreich, A.; Ruthberg, R.; Damadi, A. Is colorectal neoplasia more aggressive in the young? A look at shifting guidelines. Am. J. Surg. 2022, 223, 496–498. [Google Scholar] [CrossRef]
- Srinivasan, S.; Hampel, H.; Leeman, J.; Patel, A.; Kulchak Rahm, A.; Reuland, D.S.; Roberts, M.C. Stakeholder Perspectives on Overcoming Barriers to Cascade Testing in Lynch Syndrome: A Qualitative Study. Cancer Prev. Res. 2020, 13, 1037–1046. [Google Scholar] [CrossRef]
- Edwards, P.; Monahan, K.J. Diagnosis and management of Lynch syndrome. Frontline Gastroenterol. 2022, 13, e80–e87. [Google Scholar] [CrossRef]
- Hunter, J.E.; Arnold, K.A.; Cook, J.E.; Zepp, J.; Gilmore, M.J.; Rope, A.F.; Davis, J.V.; Bergen, K.M.; Esterberg, E.; Muessig, K.R.; et al. Universal screening for Lynch syndrome among patients with colorectal cancer: Patient perspectives on screening and sharing results with at-risk relatives. Fam. Cancer 2017, 16, 377–387. [Google Scholar] [CrossRef]
- Pearlman, R.; Frankel, W.L.; Swanson, B.; Zhao, W.; Yilmaz, A.; Miller, K.; Bacher, J.; Bigley, C.; Nelsen, L.; Goodfellow, P.J.; et al. Prevalence and Spectrum of Germline Cancer Susceptibility Gene Mutations Among Patients with Early-Onset Colorectal Cancer. JAMA Oncol. 2017, 3, 464–471. [Google Scholar] [CrossRef]
- Seppälä, T.T.; Burkhart, R.A.; Katona, B.W. Hereditary colorectal, gastric, and pancreatic cancer: Comprehensive review. BJS Open 2023, 7, zrad023. [Google Scholar] [CrossRef]
- Kim, H.M.; Kim, T.I. Screening and surveillance for hereditary colorectal cancer. Intest. Res. 2024, 22, 119–130. [Google Scholar] [CrossRef]
- Ishida, H.; Yamaguchi, T.; Tanakaya, K.; Akagi, K.; Inoue, Y.; Kumamoto, K.; Shimodaira, H.; Sekine, S.; Tanaka, T.; Chino, A.; et al. Japanese Society for Cancer of the Colon and Rectum (JSCCR) Guidelines 2016 for the Clinical Practice of Hereditary Colorectal Cancer (Translated Version). J. Anus Rectum Colon 2018, 2, S1–S51. [Google Scholar] [CrossRef]
- Lu, D.; Dong, C.; Wang, K.; Ye, C.; Chen, L.; Yuan, Y.; Hu, H. Updates of CSCO guidelines for colorectal cancer version 2025. Chin. J. Cancer Res. 2025, 37, 297–302. [Google Scholar] [CrossRef]
- Li, C.; Song, W.; Xu, Y.; Guo, T.; Zhou, X.; Liu, F.; Xu, Y. A one-stop approach to diagnosing hereditary colorectal cancer in the Chinese population. J. Gastroenterol. Hepatol. 2023, 38, 1980–1987. [Google Scholar] [CrossRef]
- Wang, F.; Chen, G.; Zhang, Z.; Yuan, Y.; Wang, Y.; Gao, Y.H.; Sheng, W.; Wang, Z.; Li, X.; Yuan, X.; et al. The Chinese Society of Clinical Oncology (CSCO): Clinical guidelines for the diagnosis and treatment of colorectal cancer, 2024 update. Cancer Commun. 2025, 45, 332–379. [Google Scholar] [CrossRef]
- Jiang, T.J.; Wang, F.; Wang, Y.N.; Hu, J.J.; Ding, P.R.; Lin, J.Z.; Pan, Z.Z.; Chen, G.; Shao, J.Y.; Xu, R.H.; et al. Germline mutational profile of Chinese patients under 70 years old with colorectal cancer. Cancer Commun. 2020, 40, 620–632. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Ma, B.B. Personalizing therapy for colorectal cancer. Clin. Gastroenterol. Hepatol. 2014, 12, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Engel, C.; Ahadova, A.; Seppälä, T.T.; Aretz, S.; Bigirwamungu-Bargeman, M.; Bläker, H.; Bucksch, K.; Büttner, R.; de Vos Tot Nederveen Cappel, W.T.; Endris, V.; et al. Associations of Pathogenic Variants in MLH1, MSH2, and MSH6 with Risk of Colorectal Adenomas and Tumors and with Somatic Mutations in Patients with Lynch Syndrome. Gastroenterology 2020, 158, 1326–1333. [Google Scholar] [CrossRef]
- Olkinuora, A.P.; Peltomäki, P.T.; Aaltonen, L.A.; Rajamäki, K. From APC to the genetics of hereditary and familial colon cancer syndromes. Hum. Mol. Genet. 2021, 30, R206–R224. [Google Scholar] [CrossRef]
- Vos, J.R.; Fakkert, I.E.; Spruijt, L.; Willems, R.W.; Langenveld, S.; Mensenkamp, A.R.; Leter, E.M.; Nagtegaal, I.D.; Ligtenberg, M.J.L.; Hoogerbrugge, N. Evaluation of yield and experiences of age-related molecular investigation for heritable and nonheritable causes of mismatch repair deficient colorectal cancer to identify Lynch syndrome. Int. J. Cancer 2020, 147, 2150–2158. [Google Scholar] [CrossRef]
- Cercek, A.; Dos Santos Fernandes, G.; Roxburgh, C.S.; Ganesh, K.; Ng, S.; Sanchez-Vega, F.; Yaeger, R.; Segal, N.H.; Reidy-Lagunes, D.L.; Varghese, A.M.; et al. Mismatch Repair-Deficient Rectal Cancer and Resistance to Neoadjuvant Chemotherapy. Clin. Cancer Res. 2020, 26, 3271–3279. [Google Scholar] [CrossRef] [PubMed]
- Perrod, G.; Rahmi, G.; Cellier, C. Colorectal cancer screening in Lynch syndrome: Indication, techniques and future perspectives. Dig. Endosc. 2021, 33, 520–528. [Google Scholar] [CrossRef]
- Ishikawa, H.; Mutoh, M.; Sato, Y.; Doyama, H.; Tajika, M.; Tanaka, S.; Horimatsu, T.; Takeuchi, Y.; Kashida, H.; Tashiro, J.; et al. Chemoprevention with low-dose aspirin, mesalazine, or both in patients with familial adenomatous polyposis without previous colectomy (J-FAPP Study IV): A multicentre, double-blind, randomised, two-by-two factorial design trial. Lancet Gastroenterol. Hepatol. 2021, 6, 474–481. [Google Scholar] [CrossRef]
- Spadaccini, M.; Troya, J.; Khalaf, K.; Facciorusso, A.; Maselli, R.; Hann, A.; Repici, A. Artificial Intelligence-assisted colonoscopy and colorectal cancer screening: Where are we going? Dig. Liver Dis. 2024, 56, 1148–1155. [Google Scholar] [CrossRef]
- Lee, M.C.M.; Parker, C.H.; Liu, L.W.C.; Farahvash, A.; Jeyalingam, T. Impact of study design on adenoma detection in the evaluation of artificial intelligence-aided colonoscopy: A systematic review and meta-analysis. Gastrointest. Endosc. 2024, 99, 676–687.e16. [Google Scholar] [CrossRef]
- Kudo, S.E.; Misawa, M.; Mori, Y.; Hotta, K.; Ohtsuka, K.; Ikematsu, H.; Saito, Y.; Takeda, K.; Nakamura, H.; Ichimasa, K.; et al. Artificial Intelligence-assisted System Improves Endoscopic Identification of Colorectal Neoplasms. Clin. Gastroenterol. Hepatol. 2020, 18, 1874–1881.e2. [Google Scholar] [CrossRef]
- Thakur, N.; Yoon, H.; Chong, Y. Current Trends of Artificial Intelligence for Colorectal Cancer Pathology Image Analysis: A Systematic Review. Cancers 2020, 12, 1884. [Google Scholar] [CrossRef] [PubMed]
- Makar, J.; Abdelmalak, J.; Con, D.; Hafeez, B.; Garg, M. Use of artificial intelligence improves colonoscopy performance in adenoma detection: A systematic review and meta-analysis. Gastrointest. Endosc. 2025, 101, 68–81.e8. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.; Lu, C.; Fei, Z.; Wu, F.X.; Li, Y.; Wang, J.; Li, M. DMFLDA: A Deep Learning Framework for Predicting lncRNA-Disease Associations. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021, 18, 2353–2363. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Gabriel, R.A.; Vaida, F.; Eisenstein, S.; Schnickel, G.T.; Sicklick, J.K.; Clary, B.M. Using machine learning to construct nomograms for patients with metastatic colon cancer. Colorectal Dis. 2020, 22, 914–922. [Google Scholar] [CrossRef]
- Wu, X.; Li, Y.; Chen, X.; Huang, Y.; He, L.; Zhao, K.; Huang, X.; Zhang, W.; Huang, Y.; Li, Y.; et al. Deep Learning Features Improve the Performance of a Radiomics Signature for Predicting KRAS Status in Patients with Colorectal Cancer. Acad. Radiol. 2020, 27, e254–e262. [Google Scholar] [CrossRef]
- Kitaguchi, D.; Takeshita, N.; Matsuzaki, H.; Takano, H.; Owada, Y.; Enomoto, T.; Oda, T.; Miura, H.; Yamanashi, T.; Watanabe, M.; et al. Real-time automatic surgical phase recognition in laparoscopic sigmoidectomy using the convolutional neural network-based deep learning approach. Surg. Endosc. 2020, 34, 4924–4931. [Google Scholar] [CrossRef]
- Yamada, A.; Kondo, T. Hereditary Colorectal Cancer: Clinical Implications of Genomic Medicine and Precision Oncology. J. Anus Rectum Colon 2025, 9, 167–178. [Google Scholar] [CrossRef]
- Ghoreyshi, N.; Heidari, R.; Farhadi, A.; Chamanara, M.; Farahani, N.; Vahidi, M.; Behroozi, J. Next-generation sequencing in cancer diagnosis and treatment: Clinical applications and future directions. Discov. Oncol. 2025, 16, 578. [Google Scholar] [CrossRef] [PubMed]
- Tung, N.; Ricker, C.; Messersmith, H.; Balmaña, J.; Domchek, S.; Stoffel, E.M.; Almhanna, K.; Arun, B.; Chavarri-Guerra, Y.; Cohen, S.A.; et al. Selection of Germline Genetic Testing Panels in Patients with Cancer: ASCO Guideline. J. Clin. Oncol. 2024, 42, 2599–2615. [Google Scholar] [CrossRef] [PubMed]
- Hodan, R.; Gupta, S.; Weiss, J.M.; Axell, L.; Burke, C.A.; Chen, L.M.; Chung, D.C.; Clayback, K.M.; Felder, S.; Foda, Z.; et al. Genetic/Familial High-Risk Assessment: Colorectal, Endometrial, and Gastric, Version 3.2024, NCCN Clinical Practice Guidelines In Oncology. J. Natl. Compr. Cancer Netw. 2024, 22, 695–711. [Google Scholar] [CrossRef]
- Bach, S.; Sluiter, N.R.; Beagan, J.J.; Mekke, J.M.; Ket, J.C.F.; van Grieken, N.C.T.; Steenbergen, R.D.M.; Ylstra, B.; Kazemier, G.; Tuynman, J.B. Circulating Tumor DNA Analysis: Clinical Implications for Colorectal Cancer Patients. A Systematic Review. JNCI Cancer Spectr. 2019, 3, pkz042. [Google Scholar] [CrossRef] [PubMed]
- Dasari, A.; Morris, V.K.; Allegra, C.J.; Atreya, C.; Benson, A.B., 3rd; Boland, P.; Chung, K.; Copur, M.S.; Corcoran, R.B.; Deming, D.A.; et al. ctDNA applications and integration in colorectal cancer: An NCI Colon and Rectal-Anal Task Forces whitepaper. Nat. Rev. Clin. Oncol. 2020, 17, 757–770. [Google Scholar] [CrossRef]
- Park, J.S.; Park, J.W.; Shin, S.; Lee, S.T.; Shin, S.J.; Min, B.S.; Park, S.J.; Park, J.J.; Cheon, J.H.; Kim, W.H.; et al. Application of Multigene Panel Testing in Patients with High Risk for Hereditary Colorectal Cancer: A Descriptive Report Focused on Genotype-Phenotype Correlation. Dis. Colon Rectum 2022, 65, 793–803. [Google Scholar] [CrossRef]
- Mao, R.; Krautscheid, P.; Graham, R.P.; Ganguly, A.; Shankar, S.; Ferber, M.; Hegde, M. Genetic testing for inherited colorectal cancer and polyposis, 2021 revision: A technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2021, 23, 1807–1817. [Google Scholar] [CrossRef]
- Samadder, N.J.; Riegert-Johnson, D.; Boardman, L.; Rhodes, D.; Wick, M.; Okuno, S.; Kunze, K.L.; Golafshar, M.; Uson, P.L.S., Jr.; Mountjoy, L.; et al. Comparison of Universal Genetic Testing vs Guideline-Directed Targeted Testing for Patients with Hereditary Cancer Syndrome. JAMA Oncol. 2021, 7, 230–237. [Google Scholar] [CrossRef]
- Anaclerio, F.; Pilenzi, L.; Dell’Elice, A.; Ferrante, R.; Grossi, S.; Ferlito, L.M.; Marinelli, C.; Gildetti, S.; Calabrese, G.; Stuppia, L.; et al. Clinical usefulness of NGS multi-gene panel testing in hereditary cancer analysis. Front. Genet. 2023, 14, 1060504. [Google Scholar] [CrossRef]
- Reid, S.; Pal, T. Update on multi-gene panel testing and communication of genetic test results. Breast J. 2020, 26, 1513–1519. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.J.; Bernhisel, R.; Hughes, E.; Larson, K.; Rosenthal, E.T.; Singh, N.A.; Lancaster, J.M.; Kurian, A.W. Germline Pathogenic Variants in the Ataxia Telangiectasia Mutated (ATM) Gene are Associated with High and Moderate Risks for Multiple Cancers. Cancer Prev. Res. 2021, 14, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liu, K.; Li, C.; Li, M.; Liu, F.; Zhou, X.; Sun, M.; Ranganathan, M.; Zhang, L.; Wang, S.; et al. The Largest Chinese Cohort Study Indicates Homologous Recombination Pathway Gene Mutations as Another Major Genetic Risk Factor for Colorectal Cancer with Heterogeneous Clinical Phenotypes. Research 2023, 6, 0249. [Google Scholar] [CrossRef] [PubMed]
- Pal, T.; Schon, K.R.; Astiazaran-Symonds, E.; Balmaña, J.; Foulkes, W.D.; James, P.; Klugman, S.; Livinski, A.A.; Mak, J.S.; Ngeow, J.; et al. Management of individuals with heterozygous germline pathogenic variants in ATM: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2025, 27, 101243. [Google Scholar] [CrossRef]
- Bychkovsky, B.L.; Agaoglu, N.B.; Horton, C.; Zhou, J.; Yussuf, A.; Hemyari, P.; Richardson, M.E.; Young, C.; LaDuca, H.; McGuinness, D.L.; et al. Differences in Cancer Phenotypes Among Frequent CHEK2 Variants and Implications for Clinical Care-Checking CHEK2. JAMA Oncol. 2022, 8, 1598–1606. [Google Scholar] [CrossRef]
- Mundt, E.; Mabey, B.; Rainville, I.; Ricker, C.; Singh, N.; Gardiner, A.; Manley, S.; Slavin, T., Jr. Breast and colorectal cancer risks among over 6,000 CHEK2 pathogenic variant carriers: A comparison of missense versus truncating variants. Cancer Genet. 2023, 278–279, 84–90. [Google Scholar] [CrossRef]
- Momozawa, Y.; Sasai, R.; Usui, Y.; Shiraishi, K.; Iwasaki, Y.; Taniyama, Y.; Parsons, M.T.; Mizukami, K.; Sekine, Y.; Hirata, M.; et al. Expansion of Cancer Risk Profile for BRCA1 and BRCA2 Pathogenic Variants. JAMA Oncol. 2022, 8, 871–878. [Google Scholar] [CrossRef]
- Belhadj, S.; Quintana, I.; Mur, P.; Munoz-Torres, P.M.; Alonso, M.H.; Navarro, M.; Terradas, M.; Piñol, V.; Brunet, J.; Moreno, V.; et al. NTHL1 biallelic mutations seldom cause colorectal cancer, serrated polyposis or a multi-tumor phenotype, in absence of colorectal adenomas. Sci. Rep. 2019, 9, 9020. [Google Scholar] [CrossRef]
- Magrin, L.; Fanale, D.; Brando, C.; Fiorino, A.; Corsini, L.R.; Sciacchitano, R.; Filorizzo, C.; Dimino, A.; Russo, A.; Bazan, V. POLE, POLD1, and NTHL1: The last but not the least hereditary cancer-predisposing genes. Oncogene 2021, 40, 5893–5901. [Google Scholar] [CrossRef]
- Wang, J.; Xiu, J.; Farrell, A.; Baca, Y.; Arai, H.; Battaglin, F.; Kawanishi, N.; Soni, S.; Zhang, W.; Millstein, J.; et al. Mutational analysis of microsatellite-stable gastrointestinal cancer with high tumour mutational burden: A retrospective cohort study. Lancet Oncol. 2023, 24, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Mur, P.; García-Mulero, S.; Del Valle, J.; Magraner-Pardo, L.; Vidal, A.; Pineda, M.; Cinnirella, G.; Martín-Ramos, E.; Pons, T.; López-Doriga, A.; et al. Role of POLE and POLD1 in familial cancer. Genet. Med. 2020, 22, 2089–2100. [Google Scholar] [CrossRef]
- Valle, L.; Vilar, E.; Tavtigian, S.V.; Stoffel, E.M. Genetic predisposition to colorectal cancer: Syndromes, genes, classification of genetic variants and implications for precision medicine. J. Pathol. 2019, 247, 574–588. [Google Scholar] [CrossRef]
- Valle, L. Recent Discoveries in the Genetics of Familial Colorectal Cancer and Polyposis. Clin. Gastroenterol. Hepatol. 2017, 15, 809–819. [Google Scholar] [CrossRef]
- Hampel, H.; Frankel, W.; Panescu, J.; Lockman, J.; Sotamaa, K.; Fix, D.; Comeras, I.; La Jeunesse, J.; Nakagawa, H.; Westman, J.A.; et al. Screening for Lynch syndrome (hereditary nonpolyposis colorectal cancer) among endometrial cancer patients. Cancer Res. 2006, 66, 7810–7817. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.L.; Hicks, S.; Hawkins, N.J. Population-based molecular screening for Lynch syndrome: Implications for personalized medicine. J. Clin. Oncol. 2013, 31, 2554–2562. [Google Scholar] [CrossRef]
- Li, J.; Woods, S.L.; Healey, S.; Beesley, J.; Chen, X.; Lee, J.S.; Sivakumaran, H.; Wayte, N.; Nones, K.; Waterfall, J.J.; et al. Point Mutations in Exon 1B of APC Reveal Gastric Adenocarcinoma and Proximal Polyposis of the Stomach as a Familial Adenomatous Polyposis Variant. Am. J. Hum. Genet. 2016, 98, 830–842. [Google Scholar] [CrossRef]
- Thet, M.; Plazzer, J.P.; Capella, G.; Latchford, A.; Nadeau, E.A.W.; Greenblatt, M.S.; Macrae, F. Phenotype Correlations with Pathogenic DNA Variants in the MUTYH Gene: A Review of Over 2000 Cases. Hum. Mutat. 2024, 2024, 8520275. [Google Scholar] [CrossRef]
- Taupin, D.; Lam, W.; Rangiah, D.; McCallum, L.; Whittle, B.; Zhang, Y.; Andrews, D.; Field, M.; Goodnow, C.C.; Cook, M.C. A deleterious RNF43 germline mutation in a severely affected serrated polyposis kindred. Hum. Genome Var. 2015, 2, 15013. [Google Scholar] [CrossRef]
- Yan, H.H.N.; Lai, J.C.W.; Ho, S.L.; Leung, W.K.; Law, W.L.; Lee, J.F.Y.; Chan, A.K.W.; Tsui, W.Y.; Chan, A.S.Y.; Lee, B.C.H.; et al. RNF43 germline and somatic mutation in serrated neoplasia pathway and its association with BRAF mutation. Gut 2017, 66, 1645–1656. [Google Scholar] [CrossRef] [PubMed]
- Lammi, L.; Arte, S.; Somer, M.; Jarvinen, H.; Lahermo, P.; Thesleff, I.; Pirinen, S.; Nieminen, P. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am. J. Hum. Genet. 2004, 74, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- Bergendal, B.; Klar, J.; Stecksén-Blicks, C.; Norderyd, J.; Dahl, N. Isolated oligodontia associated with mutations in EDARADD, AXIN2, MSX1, and PAX9 genes. Am. J. Med. Genet. Part A 2011, 155, 1616–1622. [Google Scholar] [CrossRef]
- Rebuzzi, F.; Ulivi, P.; Tedaldi, G. Genetic Predisposition to Colorectal Cancer: How Many and Which Genes to Test? Int. J. Mol. Sci. 2023, 24, 2137. [Google Scholar] [CrossRef]
- Jaeger, E.; Leedham, S.; Lewis, A.; Segditsas, S.; Becker, M.; Cuadrado, P.R.; Davis, H.; Kaur, K.; Heinimann, K.; Howarth, K.; et al. Hereditary mixed polyposis syndrome is caused by a 40-kb upstream duplication that leads to increased and ectopic expression of the BMP antagonist GREM1. Nat. Genet. 2012, 44, 699–703. [Google Scholar] [CrossRef]
- Rashid, A.; Houlihan, P.S.; Booker, S.; Petersen, G.M.; Giardiello, F.M.; Hamilton, S.R. Phenotypic and molecular characteristics of hyperplastic polyposis. Gastroenterology 2000, 119, 323–332. [Google Scholar] [CrossRef]
- Allen, B.A.; Terdiman, J.P. Hereditary polyposis syndromes and hereditary non-polyposis colorectal cancer. Best Pract. Res. Clin. Gastroenterol. 2003, 17, 237–258. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Eu, K.W.; Kumarasinghe, M.P.; Li, H.H.; Loi, C.; Cheah, P.Y. Mapping of hereditary mixed polyposis syndrome (HMPS) to chromosome 10q23 by genomewide high-density single nucleotide polymorphism (SNP) scan and identification of BMPR1A loss of function. J. Med. Genet. 2006, 43, e13. [Google Scholar] [CrossRef] [PubMed]
- Lorans, M.; Dow, E.; Macrae, F.A.; Winship, I.M.; Buchanan, D.D. Update on Hereditary Colorectal Cancer: Improving the Clinical Utility of Multigene Panel Testing. Clin. Color. Cancer 2018, 17, e293–e305. [Google Scholar] [CrossRef]
- Syngal, S.; Brand, R.E.; Church, J.M.; Giardiello, F.M.; Hampel, H.L.; Burt, R.W. ACG clinical guideline: Genetic testing and management of hereditary gastrointestinal cancer syndromes. Am. J. Gastroenterol. 2015, 110, 223–262. [Google Scholar] [CrossRef]
- Chung, D.C. Genetic Testing and Early Onset Colon Cancer. Gastroenterology 2018, 154, 788–789. [Google Scholar] [CrossRef]
- Nieminen, T.T.; O’Donohue, M.F.; Wu, Y.; Lohi, H.; Scherer, S.W.; Paterson, A.D.; Ellonen, P.; Abdel-Rahman, W.M.; Valo, S.; Mecklin, J.P.; et al. Germline mutation of RPS20, encoding a ribosomal protein, causes predisposition to hereditary nonpolyposis colorectal carcinoma without DNA mismatch repair deficiency. Gastroenterology 2014, 147, 595–598.e5. [Google Scholar] [CrossRef]
- Bonadona, V.; Bonaïti, B.; Olschwang, S.; Grandjouan, S.; Huiart, L.; Longy, M.; Guimbaud, R.; Buecher, B.; Bignon, Y.J.; Caron, O.; et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA 2011, 305, 2304–2310. [Google Scholar] [CrossRef]
- Møller, P.; Seppälä, T.T.; Bernstein, I.; Holinski-Feder, E.; Sala, P.; Gareth Evans, D.; Lindblom, A.; Macrae, F.; Blanco, I.; Sijmons, R.H.; et al. Cancer risk and survival in path_MMR carriers by gene and gender up to 75 years of age: A report from the Prospective Lynch Syndrome Database. Gut 2018, 67, 1306–1316. [Google Scholar] [CrossRef]
- Dominguez-Valentin, M.; Sampson, J.R.; Seppälä, T.T.; Ten Broeke, S.W.; Plazzer, J.P.; Nakken, S.; Engel, C.; Aretz, S.; Jenkins, M.A.; Sunde, L.; et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: Findings from the Prospective Lynch Syndrome Database. Genet. Med. 2020, 22, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Agaoglu, N.B.; Bychkovsky, B.L.; Horton, C.; Lo, M.T.; Polfus, L.; Carraway, C.; Hemyari, P.; Young, C.; Richardson, M.E.; Scheib, R.; et al. Cancer burden in individuals with single versus double pathogenic variants in cancer susceptibility genes. Genet. Med. Open 2024, 2, 101829. [Google Scholar] [CrossRef] [PubMed]
- Agaoglu, N.B.; Doganay, L. Concurrent pathogenic variations in patients with hereditary cancer syndromes. Eur. J. Med. Genet. 2021, 64, 104366. [Google Scholar] [CrossRef]
- Côrtes, L.; Basso, T.R.; Villacis, R.A.R.; Souza, J.D.S.; Jørgensen, M.M.A.; Achatz, M.I.; Rogatto, S.R. Co-Occurrence of Germline Genomic Variants and Copy Number Variations in Hereditary Breast and Colorectal Cancer Patients. Genes 2023, 14, 1580. [Google Scholar] [CrossRef]
- Agaoglu, N.B.; Ng, O.H.; Unal, B.; Dogan, O.A.; Amanvermez, U.; Yildiz, J.; Doganay, L.; Ghazani, A.A.; Rana, H.Q. Concurrent Pathogenic Variants of BRCA1, MUTYH and CHEK2 in a Hereditary Cancer Family. Cancer Genet. 2022, 268–269, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Khorram, E.; Tabatabaiefar, M.A.; Zeinalian, M. Two Distinct Deleterious Causative Variants in a Family with Multiple Cancer-Affected Patients. Adv. Biomed. Res. 2023, 12, 203. [Google Scholar] [CrossRef]
- Deycmar, S.; Johnson, B.J.; Ray, K.; Schaaf, G.W.; Ryan, D.P.; Cullin, C.; Dozier, B.L.; Ferguson, B.; Bimber, B.N.; Olson, J.D.; et al. Epigenetic MLH1 silencing concurs with mismatch repair deficiency in sporadic, naturally occurring colorectal cancer in rhesus macaques. J. Transl. Med. 2024, 22, 292. [Google Scholar] [CrossRef]
- Nolano, A.; Rossi, G.B.; D’Angelo, V.; Liccardo, R.; Rosa, M.; Izzo, P.; Duraturo, F. Germline Variants in MLH1 and ATM Genes in a Young Patient with MSI-H in a Precancerous Colonic Lesion. Int. J. Mol. Sci. 2023, 24, 5970. [Google Scholar] [CrossRef]
- Meijers-Heijboer, H.; Wijnen, J.; Vasen, H.; Wasielewski, M.; Wagner, A.; Hollestelle, A.; Elstrodt, F.; van den Bos, R.; de Snoo, A.; Fat, G.T.; et al. The CHEK2 1100delC mutation identifies families with a hereditary breast and colorectal cancer phenotype. Am. J. Hum. Genet. 2003, 72, 1308–1314. [Google Scholar] [CrossRef]
- Yurgelun, M.B.; Allen, B.; Kaldate, R.R.; Bowles, K.R.; Judkins, T.; Kaushik, P.; Roa, B.B.; Wenstrup, R.J.; Hartman, A.R.; Syngal, S. Identification of a Variety of Mutations in Cancer Predisposition Genes in Patients with Suspected Lynch Syndrome. Gastroenterology 2015, 149, 604–613.e20. [Google Scholar] [CrossRef]
- Incorvaia, L.; Bazan Russo, T.D.; Gristina, V.; Perez, A.; Brando, C.; Mujacic, C.; Di Giovanni, E.; Bono, M.; Contino, S.; Ferrante Bannera, C.; et al. The intersection of homologous recombination (HR) and mismatch repair (MMR) pathways in DNA repair-defective tumors. NPJ Precis. Oncol. 2024, 8, 190. [Google Scholar] [CrossRef]
- Bertelsen, B.; Tuxen, I.V.; Yde, C.W.; Gabrielaite, M.; Torp, M.H.; Kinalis, S.; Oestrup, O.; Rohrberg, K.; Spangaard, I.; Santoni-Rugiu, E.; et al. High frequency of pathogenic germline variants within homologous recombination repair in patients with advanced cancer. NPJ Genom. Med. 2019, 4, 13. [Google Scholar] [CrossRef] [PubMed]
- Sorscher, S. Primary Care Implications of the Expanded National Guidelines for Germline Testing of Patients Previously Diagnosed with Colorectal Cancer. J. Am. Board. Fam. Med. 2023, 36, 360–365. [Google Scholar] [CrossRef]
- Uson, P.L.S., Jr.; Riegert-Johnson, D.; Boardman, L.; Kisiel, J.; Mountjoy, L.; Patel, N.; Lizaola-Mayo, B.; Borad, M.J.; Ahn, D.; Sonbol, M.B.; et al. Germline Cancer Susceptibility Gene Testing in Unselected Patients with Colorectal Adenocarcinoma: A Multicenter Prospective Study. Clin. Gastroenterol. Hepatol. 2022, 20, e508–e528. [Google Scholar] [CrossRef]
- Idos, G.E.; Kurian, A.W.; Ricker, C.; Sturgeon, D.; Culver, J.O.; Kingham, K.E.; Koff, R.; Chun, N.M.; Rowe-Teeter, C.; Lebensohn, A.P.; et al. Multicenter Prospective Cohort Study of the Diagnostic Yield and Patient Experience of Multiplex Gene Panel Testing For Hereditary Cancer Risk. JCO Precis. Oncol. 2019, 3, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Weigl, K.; Tikk, K.; Hoffmeister, M.; Hampe, J.; Igel, S.; Kolligs, F.; Klug, S.J.; Mansmann, U.; Müller, O.; Nagel, J.M.; et al. Prevalence of a First-Degree Relative with Colorectal Cancer and Uptake of Screening Among Persons 40 to 54 Years Old. Clin. Gastroenterol. Hepatol. 2020, 18, 2535–2543.e3. [Google Scholar] [CrossRef] [PubMed]
- Cross, A.J.; Robbins, E.C.; Saunders, B.P.; Duffy, S.W.; Wooldrage, K. Higher Adenoma Detection Rates at Screening Associated with Lower Long-Term Colorectal Cancer Incidence and Mortality. Clin. Gastroenterol. Hepatol. 2022, 20, e148–e167. [Google Scholar] [CrossRef]
- Montminy, E.M.; Zhou, M.; Maniscalco, L.; Abualkhair, W.; Kim, M.K.; Siegel, R.L.; Wu, X.C.; Itzkowitz, S.H.; Karlitz, J.J. Contributions of Adenocarcinoma and Carcinoid Tumors to Early-Onset Colorectal Cancer Incidence Rates in the United States. Ann. Intern. Med. 2021, 174, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Kharazmi, E.; Brenner, H.; Xu, X.; Sundquist, K.; Sundquist, J.; Fallah, M. Calculating the Starting Age for Screening in Relatives of Patients with Colorectal Cancer Based on Data From Large Nationwide Data Sets. Gastroenterology 2020, 159, 159–168.e3. [Google Scholar] [CrossRef]
- Gupta, S.; Bharti, B.; Ahnen, D.J.; Buchanan, D.D.; Cheng, I.C.; Cotterchio, M.; Figueiredo, J.C.; Gallinger, S.J.; Haile, R.W.; Jenkins, M.A.; et al. Potential impact of family history-based screening guidelines on the detection of early-onset colorectal cancer. Cancer 2020, 126, 3013–3020. [Google Scholar] [CrossRef]
- Cuomo, R.E.; Mackey, T.K. Examining the association between international migration and colorectal cancer among multiple ancestry groups in the United States. Ethn. Health 2022, 27, 275–283. [Google Scholar] [CrossRef]
- Belachew, A.A.; Reyes, M.E.; Ye, Y.; Raju, G.S.; Rodriguez, M.A.; Wu, X.; Hildebrandt, M.A.T. Patterns of racial/ethnic disparities in baseline health-related quality of life and relationship with overall survival in patients with colorectal cancer. Qual. Life Res. 2020, 29, 2977–2986. [Google Scholar] [CrossRef]
- Seagle, H.M.; Keller, S.R.; Tavtigian, S.V.; Horton, C.; Holowatyj, A.N. Clinical Multigene Panel Testing Identifies Racial and Ethnic Differences in Germline Pathogenic Variants Among Patients with Early-Onset Colorectal Cancer. J. Clin. Oncol. 2023, 41, 4279–4289. [Google Scholar] [CrossRef]
- Boeri, M.; Signoroni, S.; Ciniselli, C.M.; Gariboldi, M.; Zanutto, S.; Rausa, E.; Segale, M.; Zanghì, A.; Ricci, M.T.; Verderio, P.; et al. Detection of (pre)cancerous colorectal lesions in Lynch syndrome patients by microsatellite instability liquid biopsy. Cancer Gene Ther. 2024, 31, 842–850. [Google Scholar] [CrossRef]
- Tieng, F.Y.F.; Abu, N.; Lee, L.H.; Ab Mutalib, N.S. Microsatellite Instability in Colorectal Cancer Liquid Biopsy-Current Updates on Its Potential in Non-Invasive Detection, Prognosis and as a Predictive Marker. Diagnostics 2021, 11, 544. [Google Scholar] [CrossRef]
- Ceccon, C.; Angerilli, V.; Rasola, C.; Procaccio, L.; Sabbadin, M.; Bergamo, F.; Malapelle, U.; Lonardi, S.; Fassan, M. Microsatellite Instable Colorectal Adenocarcinoma Diagnostics: The Advent of Liquid Biopsy Approaches. Front. Oncol. 2022, 12, 930108. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Makrigiorgos, A.; Leong, K.W.; Makrigiorgos, G.M. Sensitive detection of microsatellite instability in tissues and liquid biopsies: Recent developments and updates. Comput. Struct. Biotechnol. J. 2021, 19, 4931–4940. [Google Scholar] [CrossRef] [PubMed]
- Eikenboom, E.L.; Wilting, S.M.; Deger, T.; Srebniak, M.I.; Van Veghel-Plandsoen, M.; Boers, R.G.; Boers, J.B.; van IJcken, W.F.J.; Gribnau, J.H.; Atmodimedjo, P.; et al. Liquid Biopsies for Colorectal Cancer and Advanced Adenoma Screening and Surveillance: What to Measure? Cancers 2023, 15, 4607. [Google Scholar] [CrossRef]
- Song, Y.; Loomans-Kropp, H.; Baugher, R.N.; Somerville, B.; Baxter, S.S.; Kerr, T.D.; Plona, T.M.; Mellott, S.D.; Young, T.B.; Lawhorn, H.E.; et al. Frameshift mutations in peripheral blood as a biomarker for surveillance of Lynch syndrome. J. Natl. Cancer Inst. 2024, 116, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Sei, S.; Ahadova, A.; Keskin, D.B.; Bohaumilitzky, L.; Gebert, J.; von Knebel Doeberitz, M.; Lipkin, S.M.; Kloor, M. Lynch syndrome cancer vaccines: A roadmap for the development of precision immunoprevention strategies. Front. Oncol. 2023, 13, 1147590. [Google Scholar] [CrossRef]
- Chen, W.; Frankel, W.L. A practical guide to biomarkers for the evaluation of colorectal cancer. Mod. Pathol. 2019, 32, 1–15. [Google Scholar] [CrossRef]
- Buglyó, G.; Styk, J.; Pös, O.; Csók, Á.; Repiska, V.; Soltész, B.; Szemes, T.; Nagy, B. Liquid Biopsy as a Source of Nucleic Acid Biomarkers in the Diagnosis and Management of Lynch Syndrome. Int. J. Mol. Sci. 2022, 23, 4284. [Google Scholar] [CrossRef]
- Veselovsky, E.; Lebedeva, A.; Kuznetsova, O.; Kravchuk, D.; Belova, E.; Taraskina, A.; Grigoreva, T.; Kavun, A.; Yudina, V.; Belyaeva, L.; et al. Evaluation of blood MSI burden dynamics to trace immune checkpoint inhibitor therapy efficacy through the course of treatment. Sci. Rep. 2024, 14, 23454. [Google Scholar] [CrossRef]
- Hitchins, M.P.; Vogelaar, I.P.; Brennan, K.; Haraldsdottir, S.; Zhou, N.; Martin, B.; Alvarez, R.; Yuan, X.; Kim, S.; Guindi, M.; et al. Methylated SEPTIN9 plasma test for colorectal cancer detection may be applicable to Lynch syndrome. BMJ Open Gastroenterol. 2019, 6, e000299. [Google Scholar] [CrossRef] [PubMed]
- Silveira, A.B.; Bidard, F.C.; Kasperek, A.; Melaabi, S.; Tanguy, M.L.; Rodrigues, M.; Bataillon, G.; Cabel, L.; Buecher, B.; Pierga, J.Y.; et al. High-Accuracy Determination of Microsatellite Instability Compatible with Liquid Biopsies. Clin. Chem. 2020, 66, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zhang, S.; Zhou, D.C.; Wang, D.; He, X.; Yuan, D.; Li, R.; He, J.; Duan, X.; Wendl, M.C.; et al. MSIsensor-ct: Microsatellite instability detection using cfDNA sequencing data. Brief. Bioinform. 2021, 22, bbaa402. [Google Scholar] [CrossRef]
- Huang, F.; Zhao, L.; Xie, H.; Han, T.; Huang, J.; Wang, X.; Yang, J.; Hong, Y.; Shu, J.; Yu, J.; et al. A Systematic Method to Detect Next-Generation Sequencing-Based Microsatellite Instability in Plasma Cell-Free DNA: PlasmaMSI. J. Mol. Diagn. 2025, 27, 62–73. [Google Scholar] [CrossRef]
- Lee, B.C.H.; Robinson, P.S.; Coorens, T.H.H.; Yan, H.H.N.; Olafsson, S.; Lee-Six, H.; Sanders, M.A.; Siu, H.C.; Hewinson, J.; Yue, S.S.K.; et al. Mutational landscape of normal epithelial cells in Lynch Syndrome patients. Nat. Commun. 2022, 13, 2710. [Google Scholar] [CrossRef]
- Bommi, P.V.; Bowen, C.M.; Reyes-Uribe, L.; Wu, W.; Katayama, H.; Rocha, P.; Parra, E.R.; Francisco-Cruz, A.; Ozcan, Z.; Tosti, E.; et al. The Transcriptomic Landscape of Mismatch Repair-Deficient Intestinal Stem Cells. Cancer Res. 2021, 81, 2760–2773. [Google Scholar] [CrossRef]
- Joanito, I.; Wirapati, P.; Zhao, N.; Nawaz, Z.; Yeo, G.; Lee, F.; Eng, C.L.P.; Macalinao, D.C.; Kahraman, M.; Srinivasan, H.; et al. Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer. Nat. Genet. 2022, 54, 963–975. [Google Scholar] [CrossRef]
- Li, L.; Jiang, D.; Liu, H.; Guo, C.; Zhang, Q.; Li, X.; Chen, X.; Chen, Z.; Feng, J.; Tan, S.; et al. Comprehensive Proteogenomic Profiling Reveals the Molecular Characteristics of Colorectal Cancer at Distinct Stages of Progression. Cancer Res. 2024, 84, 2888–2910. [Google Scholar] [CrossRef]
- Jokela, T.A.; Karppinen, J.E.; Kärkkäinen, M.; Mecklin, J.P.; Walker, S.; Seppälä, T.T.; Laakkonen, E.K. Circulating metabolome landscape in Lynch syndrome. Cancer Metab. 2024, 12, 4. [Google Scholar] [CrossRef]
- Zhou, S.; Yu, L.; Zhao, J.; Xiao, Q.; Sun, J.; Wang, L.; Zhou, Y.; Lu, Y.; Dunlop, M.G.; Theodoratou, E.; et al. Integration of multi-omics data to unveil the molecular landscape and role of piRNAs in early-onset colorectal cancer. BMC Med. 2025, 23, 250. [Google Scholar] [CrossRef] [PubMed]
- Cabot, D.; Brun, S.; Paco, N.; Ginesta, M.M.; Gendrau-Sanclemente, N.; Abuasaker, B.; Ruiz-Fariña, T.; Barceló, C.; Cuatrecasas, M.; Bosch, M.; et al. KRAS phosphorylation regulates cell polarization and tumorigenic properties in colorectal cancer. Oncogene 2021, 40, 5730–5740. [Google Scholar] [CrossRef] [PubMed]
- Salim, F.; Mizutani, S.; Shiba, S.; Takamaru, H.; Yamada, M.; Nakajima, T.; Yachida, T.; Soga, T.; Saito, Y.; Fukuda, S.; et al. Fusobacterium species are distinctly associated with patients with Lynch syndrome colorectal cancer. iScience 2024, 27, 110181. [Google Scholar] [CrossRef]
- Mori, G.; Orena, B.S.; Cultrera, I.; Barbieri, G.; Albertini, A.M.; Ranzani, G.N.; Carnevali, I.; Tibiletti, M.G.; Pasca, M.R. Gut Microbiota Analysis in Postoperative Lynch Syndrome Patients. Front. Microbiol. 2019, 10, 1746. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Ling, Z.; Li, L. The Intestinal Microbiota and Colorectal Cancer. Front. Immunol. 2020, 11, 615056. [Google Scholar] [CrossRef]
- Lang, M.; Baumgartner, M.; Rożalska, A.; Frick, A.; Riva, A.; Jarek, M.; Berry, D.; Gasche, C. Crypt residing bacteria and proximal colonic carcinogenesis in a mouse model of Lynch syndrome. Int. J. Cancer 2020, 147, 2316–2326. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, Q.; Lin, Q.; Liu, F.; Pan, X.; Wei, C.; Chen, J.; Huang, T.; Fang, M.; Yang, W.; et al. Multi-omics analysis reveals associations between gut microbiota and host transcriptome in colon cancer patients. mSystems 2025, 10, e0080524. [Google Scholar] [CrossRef]
- Sardo, E.; Napolitano, S.; Della Corte, C.M.; Ciardiello, D.; Raucci, A.; Arrichiello, G.; Troiani, T.; Ciardiello, F.; Martinelli, E.; Martini, G. Multi-Omic Approaches in Colorectal Cancer beyond Genomic Data. J. Pers. Med. 2022, 12, 128. [Google Scholar] [CrossRef]
- Su, A.; Lee, H.; Tran, M.; Cruz, R.D.; Sathe, A.; Bai, X.; Wichmann, I.; Pflieger, L.; Moulton, B.; Barker, T.; et al. The single-cell spatial landscape of stage III colorectal cancers. bioRxiv 2024. [Google Scholar] [CrossRef] [PubMed]
- Quek, C.; Pratapa, A.; Bai, X.; Al-Eryani, G.; Pires da Silva, I.; Mayer, A.; Bartonicek, N.; Harvey, K.; Maher, N.G.; Conway, J.W.; et al. Single-cell spatial multiomics reveals tumor microenvironment vulnerabilities in cancer resistance to immunotherapy. Cell Rep. 2024, 43, 114392. [Google Scholar] [CrossRef]
- AlMusawi, S.; Ahmed, M.; Nateri, A.S. Understanding cell-cell communication and signaling in the colorectal cancer microenvironment. Clin. Transl. Med. 2021, 11, e308. [Google Scholar] [CrossRef]
- Longo, S.K.; Guo, M.G.; Ji, A.L.; Khavari, P.A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat. Rev. Genet. 2021, 22, 627–644. [Google Scholar] [CrossRef] [PubMed]
- Mitsala, A.; Tsalikidis, C.; Pitiakoudis, M.; Simopoulos, C.; Tsaroucha, A.K. Artificial Intelligence in Colorectal Cancer Screening, Diagnosis and Treatment. A New Era. Curr. Oncol. 2021, 28, 1581–1607. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, W.S.; Rashid, M. A review of deep learning applications in human genomics using next-generation sequencing data. Hum. Genom. 2022, 16, 26. [Google Scholar] [CrossRef]
- Muiños, F.; Martínez-Jiménez, F.; Pich, O.; Gonzalez-Perez, A.; Lopez-Bigas, N. In silico saturation mutagenesis of cancer genes. Nature 2021, 596, 428–432. [Google Scholar] [CrossRef]
- Rodriguez-Salamanca, J.; Angulo-Aguado, M.; Orjuela-Amarillo, S.; Duque, C.; Sierra-Díaz, D.C.; Contreras Bravo, N.; Figueroa, C.; Restrepo, C.M.; López-Cortés, A.; Cabrera, R.; et al. Integrating next-generation sequencing and artificial intelligence for the identification and validation of pathogenic variants in colorectal cancer. Front. Oncol. 2025, 15, 1568205. [Google Scholar] [CrossRef]
- Hamamoto, R.; Koyama, T.; Kouno, N.; Yasuda, T.; Yui, S.; Sudo, K.; Hirata, M.; Sunami, K.; Kubo, T.; Takasawa, K.; et al. Introducing AI to the molecular tumor board: One direction toward the establishment of precision medicine using large-scale cancer clinical and biological information. Exp. Hematol. Oncol. 2022, 11, 82. [Google Scholar] [CrossRef]
- Munir, K.; Elahi, H.; Ayub, A.; Frezza, F.; Rizzi, A. Cancer Diagnosis Using Deep Learning: A Bibliographic Review. Cancers 2019, 11, 1235. [Google Scholar] [CrossRef]
- Piau, A.; Crissey, R.; Brechemier, D.; Balardy, L.; Nourhashemi, F. A smartphone Chatbot application to optimize monitoring of older patients with cancer. Int. J. Med. Inform. 2019, 128, 18–23. [Google Scholar] [CrossRef]
- Kaphingst, K.A.; Kohlmann, W.K.; Lorenz Chambers, R.; Bather, J.R.; Goodman, M.S.; Bradshaw, R.L.; Chavez-Yenter, D.; Colonna, S.V.; Espinel, W.F.; Everett, J.N.; et al. Uptake of Cancer Genetic Services for Chatbot vs Standard-of-Care Delivery Models: The BRIDGE Randomized Clinical Trial. JAMA Netw. Open 2024, 7, e2432143. [Google Scholar] [CrossRef]
- Briggs, S.E.W.; Law, P.; East, J.E.; Wordsworth, S.; Dunlop, M.; Houlston, R.; Hippisley-Cox, J.; Tomlinson, I. Integrating genome-wide polygenic risk scores and non-genetic risk to predict colorectal cancer diagnosis using UK Biobank data: Population based cohort study. BMJ 2022, 379, e071707. [Google Scholar] [CrossRef]
- Herrera, D.J.; Seibert, D.M.; Feyen, K.; van Loo, M.; Van Hal, G.; van de Veerdonk, W. Development and Internal Validation of a Machine Learning-Based Colorectal Cancer Risk Prediction Model. Gastrointest. Disord. 2025, 7, 26. [Google Scholar] [CrossRef]
- Haltaufderheide, J.; Ranisch, R. The ethics of ChatGPT in medicine and healthcare: A systematic review on Large Language Models (LLMs). NPJ Digit. Med. 2024, 7, 183. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.H. Large Language Models in Medicine: Clinical Applications, Technical Challenges, and Ethical Considerations. Healthc. Inform. Res. 2025, 31, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Fatima, A.; Shafique, M.A.; Alam, K.; Fadlalla Ahmed, T.K.; Mustafa, M.S. ChatGPT in medicine: A cross-disciplinary systematic review of ChatGPT’s (artificial intelligence) role in research, clinical practice, education, and patient interaction. Medicine 2024, 103, e39250. [Google Scholar] [CrossRef]
- King, D.R.; Nanda, G.; Stoddard, J.; Dempsey, A.; Hergert, S.; Shore, J.H.; Torous, J. An Introduction to Generative Artificial Intelligence in Mental Health Care: Considerations and Guidance. Curr. Psychiatry Rep. 2023, 25, 839–846. [Google Scholar] [CrossRef]
- Coen, E.; Del Fiol, G.; Kaphingst, K.A.; Borsato, E.; Shannon, J.; Smith, H.; Masino, A.; Allen, C.G. Chatbot for the Return of Positive Genetic Screening Results for Hereditary Cancer Syndromes: Prompt Engineering Project. JMIR Cancer 2025, 11, e65848. [Google Scholar] [CrossRef]
- Ortiz, O.; Daca-Alvarez, M.; Rivero-Sanchez, L.; Gimeno-Garcia, A.Z.; Carrillo-Palau, M.; Alvarez, V.; Ledo-Rodriguez, A.; Ricciardiello, L.; Pierantoni, C.; Hüneburg, R.; et al. An artificial intelligence-assisted system versus white light endoscopy alone for adenoma detection in individuals with Lynch syndrome (TIMELY): An international, multicentre, randomised controlled trial. Lancet Gastroenterol. Hepatol. 2024, 9, 802–810. [Google Scholar] [CrossRef]
- Luo, X.; Wang, J.; Han, Z.; Yu, Y.; Chen, Z.; Huang, F.; Xu, Y.; Cai, J.; Zhang, Q.; Qiao, W.; et al. Artificial intelligence-enhanced white-light colonoscopy with attention guidance predicts colorectal cancer invasion depth. Gastrointest. Endosc. 2021, 94, 627–638.e1. [Google Scholar] [CrossRef]
- Mirda, D.; Dungan, M.; Ren, Y.; Li, H.; Katona, B.W. Colorectal Neoplasia Detection Rates in Lynch Syndrome. Cancers 2024, 16, 4021. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Liu, K.; Gao, L.; Zhao, X.; Zhu, S.; Han, Y.; Liu, Z. Computer-aided diagnosis in predicting the invasion depth of early colorectal cancer: A systematic review and meta-analysis of diagnostic test accuracy. Surg. Endosc. 2023, 37, 6627–6639. [Google Scholar] [CrossRef]
- Borsotti, E.; Nava, F.L.; Benedicenti, F.; Cini, L.; Magarotto, A.; Ferrari, D.; Cantù, P.; Vitellaro, M.; Rausa, E.; Cavalcoli, F. Hereditary Colorectal Cancer Syndromes: Small Bowel Cancer Risk and Endoscopic Surveillance Strategies. Diagnostics 2025, 15, 819. [Google Scholar] [CrossRef]
- Alkabbany, I.; Ali, A.M.; Mohamed, M.; Elshazly, S.M.; Farag, A. An AI-Based Colonic Polyp Classifier for Colorectal Cancer Screening Using Low-Dose Abdominal CT. Sensors 2022, 22, 9761. [Google Scholar] [CrossRef] [PubMed]
- Endo, S.; Nagata, K.; Utano, K.; Nozu, S.; Yasuda, T.; Takabayashi, K.; Hirayama, M.; Togashi, K.; Ohira, H. Development and validation of computer-aided detection for colorectal neoplasms using deep learning incorporated with computed tomography colonography. BMC Gastroenterol. 2025, 25, 149. [Google Scholar] [CrossRef]
- Grosu, S.; Wesp, P.; Graser, A.; Maurus, S.; Schulz, C.; Knösel, T.; Cyran, C.C.; Ricke, J.; Ingrisch, M.; Kazmierczak, P.M. Machine Learning-based Differentiation of Benign and Premalignant Colorectal Polyps Detected with CT Colonography in an Asymptomatic Screening Population: A Proof-of-Concept Study. Radiology 2021, 299, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Rivero-Sánchez, L.; Gavric, A.; Herrero, J.; Remedios, D.; Alvarez, V.; Albéniz, E.; Gordillo, J.; Puig, I.; López-Vicente, J.; Huerta, A.; et al. The “diagnose and leave in” strategy for diminutive rectosigmoid polyps in Lynch syndrome: A post hoc analysis from a randomized controlled trial. Endoscopy 2022, 54, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Amjad, A.; Xu, J.; Thill, D.; Zhang, Y.; Ding, J.; Paulson, E.; Hall, W.; Erickson, B.A.; Li, X.A. Deep learning auto-segmentation on multi-sequence magnetic resonance images for upper abdominal organs. Front. Oncol. 2023, 13, 1209558. [Google Scholar] [CrossRef]
- Metachronous colorectal cancer risks after extended or segmental resection in MLH1, MSH2, and MSH6 Lynch syndrome: Multicentre study from the Prospective Lynch Syndrome Database. Br. J. Surg. 2025, 112, znaf061. [CrossRef]
- Grigorie, T.R.; Potlog, G.; Alexandrescu, S.T. Lynch Syndrome-Impact of the Type of Deficient Mismatch Repair Gene Mutation on Diagnosis, Clinical Presentation, Surveillance and Therapeutic Approaches. Medicina 2025, 61, 120. [Google Scholar] [CrossRef]
- Eikenboom, E.L.; Moen, S.; van Leerdam, M.E.; Papageorgiou, G.; Doukas, M.; Tanis, P.J.; Dekker, E.; Wagner, A.; Spaander, M.C.W. Metachronous colorectal cancer risk according to Lynch syndrome pathogenic variant after extensive versus partial colectomy in the Netherlands: A retrospective cohort study. Lancet Gastroenterol. Hepatol. 2023, 8, 1106–1117. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, R.N.; Burggraaff, M.F.; Maas, M.H.; van der Biessen-van Beek, D.T.; van Kouwen, M.C.; Bisseling, T.M. Endoscopic surveillance for colorectal cancer and its precursor lesions in Lynch syndrome; time for some policy shifts? Hered. Cancer Clin. Pract. 2025, 23, 13. [Google Scholar] [CrossRef]
- Lim, N.; Hickey, M.; Young, G.P.; Macrae, F.A.; Kelly, C. Screening and risk reducing surgery for endometrial or ovarian cancers in Lynch syndrome: A systematic review. Int. J. Gynecol. Cancer 2022, 32, 646–655. [Google Scholar] [CrossRef]
- Vitellaro, M.; Piozzi, G.; Signoroni, S.; Ricci, M.T.; Ciniselli, C.M.; Cardani, A.; Vecchi, I.; Mancini, A.; Magarotto, A.; Verderio, P.; et al. Short-term and long-term outcomes after preventive surgery in adolescent patients with familial adenomatous polyposis. Pediatr. Blood Cancer 2020, 67, e28110. [Google Scholar] [CrossRef]
- Hyer, W.; Cohen, S.; Attard, T.; Vila-Miravet, V.; Pienar, C.; Auth, M.; Septer, S.; Hawkins, J.; Durno, C.; Latchford, A. Management of Familial Adenomatous Polyposis in Children and Adolescents: Position Paper From the ESPGHAN Polyposis Working Group. J. Pediatr. Gastroenterol. Nutr. 2019, 68, 428–441. [Google Scholar] [CrossRef]
- Aoun, R.J.N.; Kalady, M.F. The importance of genetics for timing and extent of surgery in inherited colorectal cancer syndromes. Surg. Oncol. 2022, 43, 101765. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Iturra, J.; Sánchez, A.; Balaguer, F. Colonoscopic surveillance in Lynch syndrome: Guidelines in perspective. Fam. Cancer 2024, 23, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Dal Buono, A.; Puccini, A.; Franchellucci, G.; Airoldi, M.; Bartolini, M.; Bianchi, P.; Santoro, A.; Repici, A.; Hassan, C. Lynch Syndrome: From Multidisciplinary Management to Precision Prevention. Cancers 2024, 16, 849. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, S.; Gorgun, E. Endoscopic Mucosal Resection and Endoscopic Submucosal Dissection. Clin. Colon Rectal Surg. 2024, 37, 277–288. [Google Scholar] [CrossRef]
- Jung, Y. Approaches and considerations in the endoscopic treatment of T1 colorectal cancer. Korean J. Intern. Med. 2024, 39, 563–576. [Google Scholar] [CrossRef]
- Widder, A.; Kelm, M.; Reibetanz, J.; Wiegering, A.; Matthes, N.; Germer, C.T.; Seyfried, F.; Flemming, S. Robotic-Assisted versus Laparoscopic Left Hemicolectomy-Postoperative Inflammation Status, Short-Term Outcome and Cost Effectiveness. Int. J. Environ. Res. Public Health 2022, 19, 10606. [Google Scholar] [CrossRef]
- Kciuk, M.; Wanke, K.; Kruczkowska, W.; Marciniak, B.; Kontek, R. Focus on PD-1/PD-L1-Targeting Antibodies in Colorectal Cancer: Are There Options Beyond Dostarlimab, Nivolumab, and Pembrolizumab? A Comprehensive Review. Molecules 2025, 30, 2686. [Google Scholar] [CrossRef]
- Burn, J.; Sheth, H.; Elliott, F.; Reed, L.; Macrae, F.; Mecklin, J.P.; Möslein, G.; McRonald, F.E.; Bertario, L.; Evans, D.G.; et al. Cancer prevention with aspirin in hereditary colorectal cancer (Lynch syndrome), 10-year follow-up and registry-based 20-year data in the CAPP2 study: A double-blind, randomised, placebo-controlled trial. Lancet 2020, 395, 1855–1863. [Google Scholar] [CrossRef] [PubMed]
- Cercek, A.; Lumish, M.; Sinopoli, J.; Weiss, J.; Shia, J.; Lamendola-Essel, M.; El Dika, I.H.; Segal, N.; Shcherba, M.; Sugarman, R.; et al. PD-1 Blockade in Mismatch Repair-Deficient, Locally Advanced Rectal Cancer. N. Engl. J. Med. 2022, 386, 2363–2376. [Google Scholar] [CrossRef]
- Serrano, D.; Patrignani, P.; Stigliano, V.; Turchetti, D.; Sciallero, S.; Roviello, F.; D’Arpino, A.; Grattagliano, I.; Testa, S.; Oliani, C.; et al. Aspirin Colorectal Cancer Prevention in Lynch Syndrome: Recommendations in the Era of Precision Medicine. Genes 2022, 13, 460. [Google Scholar] [CrossRef]
- Burke, C.A.; Dekker, E.; Lynch, P.; Samadder, N.J.; Balaguer, F.; Hüneburg, R.; Burn, J.; Castells, A.; Gallinger, S.; Lim, R.; et al. Eflornithine plus Sulindac for Prevention of Progression in Familial Adenomatous Polyposis. N. Engl. J. Med. 2020, 383, 1028–1039. [Google Scholar] [CrossRef]
- Daca-Álvarez, M.; Latchford, A.; Pellisé, M.; Balaguer, F. Familial adenomatous polyposis: Non-surgical management of large bowel disease: Endoscopic and chemoprevention strategies. Fam. Cancer 2025, 24, 53. [Google Scholar] [CrossRef] [PubMed]
- Mraz, K.A.; Hodan, R.; Rodgers-Fouche, L.; Arora, S.; Balaguer, F.; Guillem, J.G.; Jeter, J.M.; Kanth, P.; Li, D.; Liska, D.; et al. Current chemoprevention approaches in Lynch syndrome and Familial adenomatous polyposis: A global clinical practice survey. Front. Oncol. 2023, 13, 1141810. [Google Scholar] [CrossRef]
- Przewoźny, S.; Rogaliński, J.; de Mezer, M.; Markowska, A.; Markowska, J.; Żurawski, J. Estrogen Receptor (ER) and Progesterone Receptor (PgR) Expression in Endometrial Cancer-An Immunohistochemical Assessment. Diagnostics 2024, 14, 322. [Google Scholar] [CrossRef]
- Crosbie, E.J.; Ryan, N.A.J.; Arends, M.J.; Bosse, T.; Burn, J.; Cornes, J.M.; Crawford, R.; Eccles, D.; Frayling, I.M.; Ghaem-Maghami, S.; et al. The Manchester International Consensus Group recommendations for the management of gynecological cancers in Lynch syndrome. Genet. Med. 2019, 21, 2390–2400. [Google Scholar] [CrossRef]
- Baxter, N.N.; Kennedy, E.B.; Bergsland, E.; Berlin, J.; George, T.J.; Gill, S.; Gold, P.J.; Hantel, A.; Jones, L.; Lieu, C.; et al. Adjuvant Therapy for Stage II Colon Cancer: ASCO Guideline Update. J. Clin. Oncol. 2022, 40, 892–910. [Google Scholar] [CrossRef]
- Qiu, W.; Ding, K.; Liao, L.; Ling, Y.; Luo, X.; Wang, J. Analysis of the Expression and Prognostic Value of MSH2 in Pan-Cancer Based on Bioinformatics. BioMed Res. Int. 2021, 2021, 9485273. [Google Scholar] [CrossRef] [PubMed]
- Roudko, V.; Bozkus, C.C.; Orfanelli, T.; McClain, C.B.; Carr, C.; O’Donnell, T.; Chakraborty, L.; Samstein, R.; Huang, K.L.; Blank, S.V.; et al. Shared Immunogenic Poly-Epitope Frameshift Mutations in Microsatellite Unstable Tumors. Cell 2020, 183, 1634–1649.e17. [Google Scholar] [CrossRef] [PubMed]
- Roudko, V.; Cimen Bozkus, C.; Greenbaum, B.; Lucas, A.; Samstein, R.; Bhardwaj, N. Lynch Syndrome and MSI-H Cancers: From Mechanisms to “Off-The-Shelf” Cancer Vaccines. Front. Immunol. 2021, 12, 757804. [Google Scholar] [CrossRef]
- Devall, M.; Ali, M.W.; Eaton, S.; Weisenberger, D.J.; Reilley, M.J.; Powell, S.M.; Li, L.; Casey, G. Multi-omic analysis in normal colon organoids highlights MSH4 as a novel marker of defective mismatch repair in Lynch syndrome and microsatellite instability. Cancer Med. 2023, 12, 13551–13572. [Google Scholar] [CrossRef]
- Li, J.; Ni, H.; Wang, X.; Cheng, W.; Li, L.; Cheng, Y.; Liu, C.; Li, Y.; Deng, A. Association of a novel frameshift variant and a known deleterious variant in MMR genes with Lynch syndrome in Chinese families. World J. Surg. Oncol. 2024, 22, 36. [Google Scholar] [CrossRef]
- Sveen, A.; Kopetz, S.; Lothe, R.A. Biomarker-guided therapy for colorectal cancer: Strength in complexity. Nat. Rev. Clin. Oncol. 2020, 17, 11–32. [Google Scholar] [CrossRef]
- Tabernero, J.; Grothey, A.; Van Cutsem, E.; Yaeger, R.; Wasan, H.; Yoshino, T.; Desai, J.; Ciardiello, F.; Loupakis, F.; Hong, Y.S.; et al. Encorafenib Plus Cetuximab as a New Standard of Care for Previously Treated BRAF V600E-Mutant Metastatic Colorectal Cancer: Updated Survival Results and Subgroup Analyses from the BEACON Study. J. Clin. Oncol. 2021, 39, 273–284. [Google Scholar] [CrossRef]
- Yaeger, R.; Weiss, J.; Pelster, M.S.; Spira, A.I.; Barve, M.; Ou, S.I.; Leal, T.A.; Bekaii-Saab, T.S.; Paweletz, C.P.; Heavey, G.A.; et al. Adagrasib with or without Cetuximab in Colorectal Cancer with Mutated KRAS G12C. N. Engl. J. Med. 2023, 388, 44–54. [Google Scholar] [CrossRef]
- Casak, S.J.; Horiba, M.N.; Yuan, M.; Cheng, J.; Lemery, S.J.; Shen, Y.L.; Fu, W.; Moore, J.N.; Li, Y.; Bi, Y.; et al. FDA Approval Summary: Tucatinib with Trastuzumab for Advanced Unresectable or Metastatic, Chemotherapy Refractory, HER2-Positive RAS Wild-Type Colorectal Cancer. Clin. Cancer Res. 2023, 29, 4326–4330. [Google Scholar] [CrossRef] [PubMed]
- Strickler, J.H.; Cercek, A.; Siena, S.; André, T.; Ng, K.; Van Cutsem, E.; Wu, C.; Paulson, A.S.; Hubbard, J.M.; Coveler, A.L.; et al. Tucatinib plus trastuzumab for chemotherapy-refractory, HER2-positive, RAS wild-type unresectable or metastatic colorectal cancer (MOUNTAINEER): A multicentre, open-label, phase 2 study. Lancet Oncol. 2023, 24, 496–508. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.S.; DuBois, S.G.; Kummar, S.; Farago, A.F.; Albert, C.M.; Rohrberg, K.S.; van Tilburg, C.M.; Nagasubramanian, R.; Berlin, J.D.; Federman, N.; et al. Larotrectinib in patients with TRK fusion-positive solid tumours: A pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2020, 21, 531–540. [Google Scholar] [CrossRef]
- Christenson, E.S.; Tsai, H.L.; Le, D.T.; Jaffee, E.M.; Dudley, J.; Xian, R.R.; Gocke, C.D.; Eshleman, J.R.; Lin, M.T. Colorectal cancer in patients of advanced age is associated with increased incidence of BRAF p.V600E mutation and mismatch repair deficiency. Front. Oncol. 2023, 13, 1193259. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.Z.; He, C.Y.; Yang, X.H.; Yang, L.Q.; Lin, J.Z.; Zhou, D.L.; Long, Y.K.; Guan, W.L.; Jin, Y.; Li, Y.H.; et al. Relationship of HER2 Alteration and Microsatellite Instability Status in Colorectal Adenocarcinoma. Oncologist 2021, 26, e1161–e1170. [Google Scholar] [CrossRef]
- Sahin, I.H.; Ciombor, K.K.; Diaz, L.A.; Yu, J.; Kim, R. Immunotherapy for Microsatellite Stable Colorectal Cancers: Challenges and Novel Therapeutic Avenues. Am. Soc. Clin. Oncol. Educ. Book 2022, 42, 242–253. [Google Scholar] [CrossRef]
- Hirano, H.; Takashima, A.; Hamaguchi, T.; Shida, D.; Kanemitsu, Y. Current status and perspectives of immune checkpoint inhibitors for colorectal cancer. Jpn. J. Clin. Oncol. 2021, 51, 10–19. [Google Scholar] [CrossRef]
- André, T.; Shiu, K.K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef] [PubMed]
- Trojan, J.; Stintzing, S.; Haase, O.; Koch, C.; Ziegler, P.; Demes, M.; Jelas, I. Complete Pathological Response After Neoadjuvant Short-Course Immunotherapy with Ipilimumab and Nivolumab in Locally Advanced MSI-H/dMMR Rectal Cancer. Oncologist 2021, 26, e2110–e2114. [Google Scholar] [CrossRef]
- Pastor, D.M.; Schlom, J. Immunology of Lynch Syndrome. Curr. Oncol. Rep. 2021, 23, 96. [Google Scholar] [CrossRef]
- Kapoulitsa, F.; Mauri, D.; Tsilidis, K.K.; Katsanos, K.; Timotheadou, E.; Vlachou, M.S.; Kamposioras, K. Microsatellite Stable Colorectal Tumours in Patients with Lynch Syndrome: A Case Report and Systematic Review Analysing Clinical Features and Implications for Immunotherapy. J. Gastrointest. Cancer 2025, 56, 86. [Google Scholar] [CrossRef]
- Bolivar, A.M.; Duzagac, F.; Deng, N.; Reyes-Uribe, L.; Chang, K.; Wu, W.; Bowen, C.M.; Taggart, M.W.; Thirumurthi, S.; Lynch, P.M.; et al. Genomic Landscape of Lynch Syndrome Colorectal Neoplasia Identifies Shared Mutated Neoantigens for Immunoprevention. Gastroenterology 2024, 166, 787–801.e11. [Google Scholar] [CrossRef]
- Kloor, M.; Reuschenbach, M.; Pauligk, C.; Karbach, J.; Rafiyan, M.R.; Al-Batran, S.E.; Tariverdian, M.; Jäger, E.; von Knebel Doeberitz, M. A Frameshift Peptide Neoantigen-Based Vaccine for Mismatch Repair-Deficient Cancers: A Phase I/IIa Clinical Trial. Clin. Cancer Res. 2020, 26, 4503–4510. [Google Scholar] [CrossRef]
- Reyes-Uribe, L.; Wu, W.; Gelincik, O.; Bommi, P.V.; Francisco-Cruz, A.; Solis, L.M.; Lynch, P.M.; Lim, R.; Stoffel, E.M.; Kanth, P.; et al. Naproxen chemoprevention promotes immune activation in Lynch syndrome colorectal mucosa. Gut 2021, 70, 555–566. [Google Scholar] [CrossRef]
- Bowen, C.M.; Deng, N.; Reyes-Uribe, L.; Parra, E.R.; Rocha, P.; Solis, L.M.; Wistuba, I.I.; Sepeda, V.O.; Vornik, L.; Perloff, M.; et al. Naproxen chemoprevention induces proliferation of cytotoxic lymphocytes in Lynch Syndrome colorectal mucosa. Front. Immunol. 2023, 14, 1162669. [Google Scholar] [CrossRef] [PubMed]
- Bowen, C.M.; Duzagac, F.; Martel-Martel, A.; Reyes-Uribe, L.; Zaheer, M.; Thompson, J.; Deng, N.; Sinha, R.; Mazumdar, S.; Taggart, M.W.; et al. Inhibition of histone methyltransferase EZH2 for immune interception of colorectal cancer in Lynch syndrome. JCI Insight 2025, 10, e177545. [Google Scholar] [CrossRef] [PubMed]
- Salewski, I.; Henne, J.; Engster, L.; Schneider, B.; Lemcke, H.; Skorska, A.; Berlin, P.; Henze, L.; Junghanss, C.; Maletzki, C. Combined Gemcitabine and Immune-Checkpoint Inhibition Conquers Anti-PD-L1 Resistance in Low-Immunogenic Mismatch Repair-Deficient Tumors. Int. J. Mol. Sci. 2021, 22, 5990. [Google Scholar] [CrossRef]
- Maletzki, C.; Wiegele, L.; Nassar, I.; Stenzel, J.; Junghanss, C. Chemo-immunotherapy improves long-term survival in a preclinical model of MMR-D-related cancer. J. Immunother. Cancer 2019, 7, 8. [Google Scholar] [CrossRef]
- Fukuoka, S.; Hara, H.; Takahashi, N.; Kojima, T.; Kawazoe, A.; Asayama, M.; Yoshii, T.; Kotani, D.; Tamura, H.; Mikamoto, Y.; et al. Regorafenib Plus Nivolumab in Patients with Advanced Gastric or Colorectal Cancer: An Open-Label, Dose-Escalation, and Dose-Expansion Phase Ib Trial (REGONIVO, EPOC1603). J. Clin. Oncol. 2020, 38, 2053–2061. [Google Scholar] [CrossRef]
- Gupta, S.; Lieberman, D.; Anderson, J.C.; Burke, C.A.; Dominitz, J.A.; Kaltenbach, T.; Robertson, D.J.; Shaukat, A.; Syngal, S.; Rex, D.K. Recommendations for Follow-Up After Colonoscopy and Polypectomy: A Consensus Update by the US Multi-Society Task Force on Colorectal Cancer. Am. J. Gastroenterol. 2020, 115, 415–434. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Gurudu, S.R.; Koptiuch, C.; Agrawal, D.; Buxbaum, J.L.; Abbas Fehmi, S.M.; Fishman, D.S.; Khashab, M.A.; Jamil, L.H.; Jue, T.L.; et al. American Society for Gastrointestinal Endoscopy guideline on the role of endoscopy in familial adenomatous polyposis syndromes. Gastrointest. Endosc. 2020, 91, 963–982.e2. [Google Scholar] [CrossRef]
- Cohen, S.; Hyer, W.; Mas, E.; Auth, M.; Attard, T.M.; Spalinger, J.; Latchford, A.; Durno, C. Management of Juvenile Polyposis Syndrome in Children and Adolescents: A Position Paper From the ESPGHAN Polyposis Working Group. J. Pediatr. Gastroenterol. Nutr. 2019, 68, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Boland, C.R.; Idos, G.E.; Durno, C.; Giardiello, F.M.; Anderson, J.C.; Burke, C.A.; Dominitz, J.A.; Gross, S.; Gupta, S.; Jacobson, B.C.; et al. Diagnosis and Management of Cancer Risk in the Gastrointestinal Hamartomatous Polyposis Syndromes: Recommendations From the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology 2022, 162, 2063–2085. [Google Scholar] [CrossRef]
- Aune, D.; Chan, D.S.; Lau, R.; Vieira, R.; Greenwood, D.C.; Kampman, E.; Norat, T. Dietary fibre, whole grains, and risk of colorectal cancer: Systematic review and dose-response meta-analysis of prospective studies. BMJ 2011, 343, d6617. [Google Scholar] [CrossRef]
- Rock, C.L.; Thomson, C.; Gansler, T.; Gapstur, S.M.; McCullough, M.L.; Patel, A.V.; Andrews, K.S.; Bandera, E.V.; Spees, C.K.; Robien, K.; et al. American Cancer Society guideline for diet and physical activity for cancer prevention. CA Cancer J. Clin. 2020, 70, 245–271. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Yang, W.; Wang, X.; Zhou, W.; Zhang, Y.; Liu, J.; Zhang, H.; Zhao, Q.; Hong, L.; Fan, D. Advances in prognostic markers for colorectal cancer *. Expert Rev. Mol. Diagn. 2019, 19, 313–324. [Google Scholar] [CrossRef]
- Chen, K.; Collins, G.; Wang, H.; Toh, J.W.T. Pathological Features and Prognostication in Colorectal Cancer. Curr. Oncol. 2021, 28, 5356–5383. [Google Scholar] [CrossRef]
- Chandler, I.; Houlston, R.S. Interobserver agreement in grading of colorectal cancers-findings from a nationwide web-based survey of histopathologists. Histopathology 2008, 52, 494–499. [Google Scholar] [CrossRef]
- Smits, L.J.H.; Vink-Börger, E.; van Lijnschoten, G.; Focke-Snieders, I.; van der Post, R.S.; Tuynman, J.B.; van Grieken, N.C.T.; Nagtegaal, I.D. Diagnostic variability in the histopathological assessment of advanced colorectal adenomas and early colorectal cancer in a screening population. Histopathology 2022, 80, 790–798. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Xiong, X.; Liu, X.; Lin, B.; Xu, B. Recent advances of pathomics in colorectal cancer diagnosis and prognosis. Front. Oncol. 2023, 13, 1094869. [Google Scholar] [CrossRef]
- Baxi, V.; Edwards, R.; Montalto, M.; Saha, S. Digital pathology and artificial intelligence in translational medicine and clinical practice. Mod. Pathol. 2022, 35, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Waqas, A.; Bui, M.M.; Glassy, E.F.; El Naqa, I.; Borkowski, P.; Borkowski, A.A.; Rasool, G. Revolutionizing Digital Pathology with the Power of Generative Artificial Intelligence and Foundation Models. Lab. Investig. 2023, 103, 100255. [Google Scholar] [CrossRef]
- Idos, G.E.; Kwok, J.; Bonthala, N.; Kysh, L.; Gruber, S.B.; Qu, C. The Prognostic Implications of Tumor Infiltrating Lymphocytes in Colorectal Cancer: A Systematic Review and Meta-Analysis. Sci. Rep. 2020, 10, 3360. [Google Scholar] [CrossRef] [PubMed]
- Guitton, T.; Allaume, P.; Rabilloud, N.; Rioux-Leclercq, N.; Henno, S.; Turlin, B.; Galibert-Anne, M.D.; Lièvre, A.; Lespagnol, A.; Pécot, T.; et al. Artificial Intelligence in Predicting Microsatellite Instability and KRAS, BRAF Mutations from Whole-Slide Images in Colorectal Cancer: A Systematic Review. Diagnostics 2023, 14, 99. [Google Scholar] [CrossRef] [PubMed]
- Saillard, C.; Dubois, R.; Tchita, O.; Loiseau, N.; Garcia, T.; Adriansen, A.; Carpentier, S.; Reyre, J.; Enea, D.; von Loga, K.; et al. Validation of MSIntuit as an AI-based pre-screening tool for MSI detection from colorectal cancer histology slides. Nat. Commun. 2023, 14, 6695. [Google Scholar] [CrossRef]
- Echle, A.; Grabsch, H.I.; Quirke, P.; van den Brandt, P.A.; West, N.P.; Hutchins, G.G.A.; Heij, L.R.; Tan, X.; Richman, S.D.; Krause, J.; et al. Clinical-Grade Detection of Microsatellite Instability in Colorectal Tumors by Deep Learning. Gastroenterology 2020, 159, 1406–1416.e11. [Google Scholar] [CrossRef]
- Faa, G.; Coghe, F.; Pretta, A.; Castagnola, M.; Van Eyken, P.; Saba, L.; Scartozzi, M.; Fraschini, M. Artificial Intelligence Models for the Detection of Microsatellite Instability from Whole-Slide Imaging of Colorectal Cancer. Diagnostics 2024, 14, 1605. [Google Scholar] [CrossRef]
- Kim, K.; Lee, K.; Cho, S.; Kang, D.U.; Park, S.; Kang, Y.; Kim, H.; Choe, G.; Moon, K.C.; Lee, K.S.; et al. PAIP 2020: Microsatellite instability prediction in colorectal cancer. Med. Image Anal. 2023, 89, 102886. [Google Scholar] [CrossRef] [PubMed]
- Swaerts, K.; Dedeurwaerdere, F.; De Smet, D.; De Jaeger, P.; Martens, G.A. DeltaMSI: Artificial intelligence-based modeling of microsatellite instability scoring on next-generation sequencing data. BMC Bioinform. 2023, 24, 73. [Google Scholar] [CrossRef] [PubMed]
- Bokhorst, J.M.; Nagtegaal, I.D.; Zlobec, I.; Dawson, H.; Sheahan, K.; Simmer, F.; Kirsch, R.; Vieth, M.; Lugli, A.; van der Laak, J.; et al. Semi-Supervised Learning to Automate Tumor Bud Detection in Cytokeratin-Stained Whole-Slide Images of Colorectal Cancer. Cancers 2023, 15, 2079. [Google Scholar] [CrossRef]
- Bokhorst, J.M.; Ciompi, F.; Öztürk, S.K.; Oguz Erdogan, A.S.; Vieth, M.; Dawson, H.; Kirsch, R.; Simmer, F.; Sheahan, K.; Lugli, A.; et al. Fully Automated Tumor Bud Assessment in Hematoxylin and Eosin-Stained Whole Slide Images of Colorectal Cancer. Mod. Pathol. 2023, 36, 100233. [Google Scholar] [CrossRef]
- Pihlmann Kristensen, M.; Korsgaard, U.; Timm, S.; Hansen, T.F.; Zlobec, I.; Hager, H.; Kjær-Frifeldt, S. The prognostic value of tumor budding in a thoroughly characterized stage II colon cancer population in the context of a national screening program. Hum. Pathol. 2024, 146, 15–22. [Google Scholar] [CrossRef]
- Haddad, T.S.; Bokhorst, J.M.; Berger, M.D.; Dobbelsteen, L.V.D.; Simmer, F.; Ciompi, F.; Galon, J.; Laak, J.V.D.; Pagès, F.; Zlobec, I.; et al. Combining immunoscore and tumor budding in colon cancer: An insightful prognostication based on the tumor-host interface. J. Transl. Med. 2024, 22, 1090. [Google Scholar] [CrossRef] [PubMed]
- Qu, Q.; Wu, D.; Li, Z.; Yin, H. Tumor budding and the prognosis of patients with metastatic colorectal cancer: A meta-analysis. Int. J. Color. Dis. 2023, 38, 141. [Google Scholar] [CrossRef]
- Xie, H.; Zeng, Z.; Hou, Y.; Ye, F.; Cai, T.; Cai, Y.; Xiong, L.; Li, W.; Liu, Z.; Liang, Z.; et al. Effects of tumour budding on adjuvant chemotherapy in colorectal cancer. BJS Open 2024, 8, zrad115. [Google Scholar] [CrossRef]
- Bera, K.; Braman, N.; Gupta, A.; Velcheti, V.; Madabhushi, A. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat. Rev. Clin. Oncol. 2022, 19, 132–146. [Google Scholar] [CrossRef]
- Bodalal, Z.; Hong, E.K.; Trebeschi, S.; Kurilova, I.; Landolfi, F.; Bogveradze, N.; Castagnoli, F.; Randon, G.; Snaebjornsson, P.; Pietrantonio, F.; et al. Non-invasive CT radiomic biomarkers predict microsatellite stability status in colorectal cancer: A multicenter validation study. Eur. Radiol. Exp. 2024, 8, 98. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xu, G.; Cui, Y.; Wang, M.; Wang, H.; Xu, X.; Duan, S.; Shi, J.; Feng, F. CT-based radiomics nomogram for the preoperative prediction of microsatellite instability and clinical outcomes in colorectal cancer: A multicentre study. Clin. Radiol. 2023, 78, e741–e751. [Google Scholar] [CrossRef]
- Dai, W.; Mo, S.; Han, L.; Xiang, W.; Li, M.; Wang, R.; Tong, T.; Cai, G. Prognostic and predictive value of radiomics signatures in stage I-III colon cancer. Clin. Transl. Med. 2020, 10, 288–293. [Google Scholar] [CrossRef]
- Soria-Utrilla, V.; Sánchez-Torralvo, F.J.; Palmas-Candia, F.X.; Fernández-Jiménez, R.; Mucarzel-Suarez-Arana, F.; Guirado-Peláez, P.; Olveira, G.; García-Almeida, J.M.; Burgos-Peláez, R. AI-Assisted Body Composition Assessment Using CT Imaging in Colorectal Cancer Patients: Predictive Capacity for Sarcopenia and Malnutrition Diagnosis. Nutrients 2024, 16, 1869. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, A.; Religioni, U.; Czerw, A.; Deptała, A.; Karakiewicz, B.; Partyka, O.; Pajewska, M.; Sygit, K.; Cipora, E.; Kmieć, K.; et al. Nutritional Treatment of Patients with Colorectal Cancer. Int. J. Environ. Res. Public Health 2022, 19, 6881. [Google Scholar] [CrossRef]
- Balachandran, R.; Thaysen, H.V.; Christensen, P.; Nissen, E.R.; O’Toole, M.S.; Knutzen, S.M.; Buskbjerg, C.D.R.; Wu, L.M.; Tauber, N.; Amidi, A.; et al. Psychological Intervention for Patients with Biopsychosocial Late Effects Following Surgery for Colorectal Cancer with Peritoneal Metastases—A Feasibility Study. Cancers 2025, 17, 1127. [Google Scholar] [CrossRef] [PubMed]
- Sguanci, M.; Palomares, S.M.; Cangelosi, G.; Petrelli, F.; Sandri, E.; Ferrara, G.; Mancin, S. Artificial Intelligence in the Management of Malnutrition in Cancer Patients: A Systematic Review. Adv. Nutr. 2025, 16, 100438. [Google Scholar] [CrossRef]
- Soelling, S.J.; Rubio-Chavez, A.; Ingram, Z.; Baird, L.; Brindle, M.E.; Cooper, Z.; Vranceanu, A.M.; Ritchie, C.S.; Cauley, C.E. Challenges faced by patients undergoing fecal ostomy surgery: A qualitative study of colorectal cancer patient perspectives. J. Gastrointest. Surg. 2025, 29, 101963. [Google Scholar] [CrossRef]
- Kovoor, J.G.; Jacobsen, J.H.W.; Stretton, B.; Bacchi, S.; Gupta, A.K.; Claridge, B.; Steen, M.V.; Bhanushali, A.; Bartholomeusz, L.; Edwards, S.; et al. Depression after stoma surgery: A systematic review and meta-analysis. BMC Psychiatry 2023, 23, 352. [Google Scholar] [CrossRef]
- Mol, M.J.; Bouchiba, H.; Aelvoet, A.S.; Bennebroek Evertsz, F.; Duijkers, F.A.M.; Karstensen, J.G.; Bastiaansen, B.A.J.; Dekker, E.; Bleiker, E.M.A. Mental Health in Familial Adenomatous Polyposis: A Systematic Review. Psychooncology 2025, 34, e70176. [Google Scholar] [CrossRef] [PubMed]
- Akdogan, O.; Uyar, G.C.; Yesilbas, E.; Baskurt, K.; Malkoc, N.A.; Ozdemir, N.; Yazici, O.; Oksuzoglu, B.; Uner, A.; Ozet, A.; et al. Effect of a ChatGPT-based digital counseling intervention on anxiety and depression in patients with cancer: A prospective, randomized trial. Eur. J. Cancer 2025, 221, 115408. [Google Scholar] [CrossRef] [PubMed]
- Sottoriva, A.; Kang, H.; Ma, Z.; Graham, T.A.; Salomon, M.P.; Zhao, J.; Marjoram, P.; Siegmund, K.; Press, M.F.; Shibata, D.; et al. A Big Bang model of human colorectal tumor growth. Nat. Genet. 2015, 47, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Marisa, L.; Blum, Y.; Taieb, J.; Ayadi, M.; Pilati, C.; Le Malicot, K.; Lepage, C.; Salazar, R.; Aust, D.; Duval, A.; et al. Intratumor CMS Heterogeneity Impacts Patient Prognosis in Localized Colon Cancer. Clin. Cancer Res. 2021, 27, 4768–4780. [Google Scholar] [CrossRef]
- Sobral, D.; Martins, M.; Kaplan, S.; Golkaram, M.; Salmans, M.; Khan, N.; Vijayaraghavan, R.; Casimiro, S.; Fernandes, A.; Borralho, P.; et al. Genetic and microenvironmental intra-tumor heterogeneity impacts colorectal cancer evolution and metastatic development. Commun. Biol. 2022, 5, 937. [Google Scholar] [CrossRef]
- Biller, L.H.; Ng, K. The “scope” of colorectal cancer screening in Lynch syndrome: Is there an optimal interval? J. Natl. Cancer Inst. 2023, 115, 775–777. [Google Scholar] [CrossRef]
- Nieuwenhuis, M.H.; Vasen, H.F. Correlations between mutation site in APC and phenotype of familial adenomatous polyposis (FAP): A review of the literature. Crit. Rev. Oncol. Hematol. 2007, 61, 153–161. [Google Scholar] [CrossRef]
- de Oliveira, J.C.; Viana, D.V.; Zanardo, C.; Santos, E.M.M.; de Paula, A.E.; Palmero, E.I.; Rossi, B.M. Genotype-phenotype correlation in 99 familial adenomatous polyposis patients: A prospective prevention protocol. Cancer Med. 2019, 8, 2114–2122. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Rodgers-Fouche, L.; Arora, S.; Ricker, C.; Li, D.; Farooqi, M.; Balaguer, F.; Dominguez-Valentin, M.; Guillem, J.G.; Kanth, P.; Liska, D.; et al. Exploring Stakeholders’ Perspectives on Implementing Universal Germline Testing for Colorectal Cancer: Findings From a Clinical Practice Survey. JCO Precis. Oncol. 2023, 7, e2300440. [Google Scholar] [CrossRef]
- Kamaraju, S.; Conroy, M.; Harris, A.; Georgen, M.; Min, H.; Powell, M.; Kurzrock, R. Challenges to genetic testing for germline mutations associated with breast cancer among African Americans. Cancer Treat. Rev. 2024, 124, 102695. [Google Scholar] [CrossRef]
- Prince, A.E.; Roche, M.I. Genetic information, non-discrimination, and privacy protections in genetic counseling practice. J. Genet. Couns. 2014, 23, 891–902. [Google Scholar] [CrossRef] [PubMed]
- Wauters, A.; Van Hoyweghen, I. Global trends on fears and concerns of genetic discrimination: A systematic literature review. J. Hum. Genet. 2016, 61, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Galiatsatos, P.; Rothenmund, H.; Aubin, S.; Foulkes, W.D. Psychosocial Impact of Lynch Syndrome on Affected Individuals and Families. Dig. Dis. Sci. 2015, 60, 2246–2250. [Google Scholar] [CrossRef] [PubMed]
- Stoffel, E.M.; Ford, B.; Mercado, R.C.; Punglia, D.; Kohlmann, W.; Conrad, P.; Blanco, A.; Shannon, K.M.; Powell, M.; Gruber, S.B.; et al. Sharing genetic test results in Lynch syndrome: Communication with close and distant relatives. Clin. Gastroenterol. Hepatol. 2008, 6, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.E.; Riddle, L.; Joseph, G.; Amendola, L.M.; Gilmore, M.J.; Zepp, J.M.; Shuster, E.; Bulkley, J.E.; Muessig, K.R.; Anderson, K.P.; et al. Most people share genetic test results with relatives even if the findings are normal: Family communication in a diverse population. Genet. Med. 2023, 25, 100923. [Google Scholar] [CrossRef]
- Corines, M.J.; Hamilton, J.G.; Glogowski, E.; Anrig, C.A.; Goldberg, R.; Niehaus, K.; Salo-Mullen, E.; Harlan, M.; Sheehan, M.R.; Trottier, M.; et al. Educational and Psychosocial Support Needs in Lynch Syndrome: Implementation and Assessment of an Educational Workshop and Support Group. J. Genet. Couns. 2017, 26, 232–243. [Google Scholar] [CrossRef]
- Chalabi, M.; Verschoor, Y.L.; Tan, P.B.; Balduzzi, S.; Van Lent, A.U.; Grootscholten, C.; Dokter, S.; Büller, N.V.; Grotenhuis, B.A.; Kuhlmann, K.; et al. Neoadjuvant Immunotherapy in Locally Advanced Mismatch Repair-Deficient Colon Cancer. N. Engl. J. Med. 2024, 390, 1949–1958. [Google Scholar] [CrossRef]
- Kagawa, Y.; Smith, J.J.; Fokas, E.; Watanabe, J.; Cercek, A.; Greten, F.R.; Bando, H.; Shi, Q.; Garcia-Aguilar, J.; Romesser, P.B.; et al. Future direction of total neoadjuvant therapy for locally advanced rectal cancer. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 444–455. [Google Scholar] [CrossRef]
- Gao, Y.; Cao, D.; Li, M.; Zhao, F.; Wang, P.; Mei, S.; Song, Q.; Wang, P.; Nie, Y.; Zhao, W.; et al. Integration of multiomics features for blood-based early detection of colorectal cancer. Mol. Cancer 2024, 23, 173. [Google Scholar] [CrossRef]

| Gene | Features | Syndrome | Mechanism | CRC Risk | References |
|---|---|---|---|---|---|
| ATM | Serine-threonine kinase | No typical syndrome | Germline mutations cause defects in DNA double-strand break repair and damage checkpoint function. | Low risk | Hall et al., 2021 [43] Xu et al., 2023 [44] Tuya et al., 2025 [45] |
| CHEK2 | Serine-threonine kinase | No typical syndrome | Embryonic heterozygous mutations reduce the ability of cells to detect and repair double-strand breaks in DNA. | Low risk | Bychkovsky et al., 2022 [46] Erin et al., 2023 [47] |
| BRCA2 | Tumor suppressor | Hereditary ovarian cancer syndrome | Germline mutations impair homologous recombination repair functions, leading to increased genomic instability. | Low risk | Momozawa et al., 2022 [48] |
| NTHL1 | DNA glycosylase | NTHL1-associated polyposis syndrome | Embryonic double allelic nonsense mutations cause base excision repair defects, accumulating C:G to T:A mutations. | High risk | Belhadj et al., 2019 [49] Magrin et al., 2021 [50] |
| POLE | DNA polymerase ε | Polymerase proofreading-associated polyposis | Exonic enzyme domain germline mutations cause defects in DNA replication proofreading function. | Medium risk | Wang et al., 2023 [51] |
| POLD1 | DNA polymerase δ | Polymerase proofreading-associated polyposis | Exonic enzyme domain germline mutations cause defects in DNA replication proofreading function. | Medium risk | Mur et al., 2020 [52] |
| MLH1 | DNA mismatch repair enzyme | Lynch syndrome | Embryonic mutations cause MMR function defects. | High risk | Valle et al., 2019 [53] |
| MSH2 | DNA mismatch repair enzyme | Lynch syndrome | Embryonic mutations cause MMR function defects. | High risk | Valle et al., 2016 [54] Valle et al., 2019 [53] |
| MSH6 | DNA mismatch repair enzyme | Lynch syndrome | Embryonic mutations cause MMR function defects. | Medium risk | Valle et al., 2019 [53] |
| PMS2 | DNA mismatch repair enzyme | Lynch syndrome | Embryonic mutations cause MMR function defects. | Medium risk | Hampel et al., 2006 [55] Ward et al., 2013 [56] |
| EPCAM | Cell adhesion molecules | Lynch syndrome | Heterozygous deletion of the 3′ end of the EPCAM gene can lead to hypermethylation of the adjacent MSH2 promoter. | High risk | Hampel et al., 2006 [55] Ward et al., 2013 [56] |
| APC | Tumor suppressor | Familial adenomatous polyposis | Embryonic mutations cause APC inactivation, which prevents the suppression of β-catenin. | High risk | Li et al., 2016 [57] |
| MUTYH | Base excision repair enzyme | MUTYH-associated polyposis | Embryonic double-allele mutations cause defects in DNA oxidative damage repair, leading to the accumulation of G:C to T:A transitions. | High risk | Thet et al., 2024 [58] |
| MSH3 | DNA mismatch repair protein | MSH3-associated adenomatous polyposis | Embryonic double allelic mutation causing MSH3 deficiency. | Low risk | Taupin et al., 2015 [59] Yan et al., 2017 [60] |
| AXIN2 | Wnt signaling regulator | AXIN2-related oligodontia | Nonsense mutations in the germline can cause Wnt signaling dysregulation. | Low risk | Lammi et al., 2004 [61] Bergendal et al., 2011 [62] Rebuzzi et al., 2023 [63] |
| GREM1 | Secretory antagonistic factor | Hereditary mixed polyposis syndrome | A 40 kb tandem duplication upstream of the GREM1 gene in the 15q13.3 region leads to increased GREM1 expression. | Medium risk | Jaeger et al., 2012 [64] |
| RNF43 | E3 ubiquitin ligase | Serrated polyposis syndrome | Embryonic lineage truncation mutation causes RNF43 inactivation and Wnt signaling overactivation. | Low risk | Jaeger et al., 2012 [64] |
| STK11 | Serine-threonine kinase | Peutz–Jeghers syndrome | Embryonic mutations cause STK11 inactivation. | Medium risk | Rebuzzi et al., 2023 [63] |
| SMAD4 | Signal transduction protein | Juvenile polyposis syndrome | Embryonic mutations cause TGF-β signaling pathway disruption. | Medium risk | Rashid et al., 2000 [65] Allen et al., 2003 [66] |
| BMPR1A | Bone morphogenetic protein receptor | Juvenile polyposis syndrome | Embryonic mutations cause BMP signaling damage. | Medium risk | Cao et al., 2006 [67] Lorans et al., 2018 [68] |
| PTEN | Phosphatase | Cowden syndrome | Embryonic mutations cause PTEN dysfunction. | Low risk | Syngal et al., 2015 [69] Rebuzzi et al., 2023 [63] |
| TP53 | Transcription factor | Li-Fraumeni syndrome | Embryonic mutations cause TP53 inactivation, resulting in the absence of p53-mediated cell cycle checkpoints and apoptosis mechanisms. | Low risk | Chung, 2018 [70] |
| RPS20 | Ribosomal protein S20 | Familial colorectal cancer | Embryonic truncation mutation causes loss of function of ribosomal protein S20. | Low risk | Nieminen et al., 2014 [71] |
| Target Gene | Mutation Type | Targeted Drugs | Therapeutic Effect | References |
|---|---|---|---|---|
| BRAF | V600E | Encorafenib + Cetuximab | ORR ≈ 19.5%, mPFS ≈ 4.3 months | Tabernero et al., 2021 [182] |
| KRAS | G12C | Adagrasib + Cetuximab | ORR ≈ 46%, mPFS ≈ 6.9 months | Yaeger et al., 2023 [183] |
| HER2 | Gene overexpression | Tucatinib + Trastuzumab | ORR ≈ 38%, mDoR 12.4 months | J. Casak et al., 2023 [184] |
| NTRK | Fusion gene | Larotrectinib | ORR ≈ 79%, with some patients achieving CR | S. Hong et al., 2020 [186] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.; Zhou, C.; Chen, H.; Zhou, X.; Yang, H.; Sun, L.; Zhang, L.; Zhang, Y. Advances in Hereditary Colorectal Cancer: How Precision Medicine Is Changing the Game. Cancers 2025, 17, 3461. https://doi.org/10.3390/cancers17213461
Lin S, Zhou C, Chen H, Zhou X, Yang H, Sun L, Zhang L, Zhang Y. Advances in Hereditary Colorectal Cancer: How Precision Medicine Is Changing the Game. Cancers. 2025; 17(21):3461. https://doi.org/10.3390/cancers17213461
Chicago/Turabian StyleLin, Shenghao, Chenxi Zhou, Hanlin Chen, Xinlei Zhou, Hujia Yang, Leitao Sun, Leyin Zhang, and Yuxin Zhang. 2025. "Advances in Hereditary Colorectal Cancer: How Precision Medicine Is Changing the Game" Cancers 17, no. 21: 3461. https://doi.org/10.3390/cancers17213461
APA StyleLin, S., Zhou, C., Chen, H., Zhou, X., Yang, H., Sun, L., Zhang, L., & Zhang, Y. (2025). Advances in Hereditary Colorectal Cancer: How Precision Medicine Is Changing the Game. Cancers, 17(21), 3461. https://doi.org/10.3390/cancers17213461

