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Simple Summary

Hepatopancreatobiliary (HPB) cancer surgery is one of the most challenging areas in cancer
treatment, requiring highly accurate decisions about risks and benefits for each patient.
In recent years, artificial intelligence (AI) has shown promise in helping doctors predict
important outcomes, such as the likelihood of cancer, possible complications after surgery,
and long-term survival. We reviewed all available studies that used AI to assist in these
decisions for HPB cancer surgery. We found that while AI can make accurate predictions in
research settings, most studies were small, retrospective, and rarely tested in real-world
clinical practice. Important factors such as cost, patient perspectives, and integration into
everyday surgical care have not yet been addressed. This review highlights the potential of
AI in improving decision-making for complex cancer surgeries and outlines the next steps
needed to bring these tools into routine clinical use.
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Abstract

Background: Hepatopancreatobiliary (HPB) surgery is among the most complex domains
in oncologic care, where decisions entail significant risk–benefit considerations. Artificial
intelligence (AI) has emerged as a promising tool for improving individualized decision-
making through enhanced risk stratification, complication prediction, and survival model-
ing. However, its role in HPB oncologic surgery has not been comprehensively assessed.
Methods: This systematic review was conducted in accordance with PRISMA guidelines
and registered with PROSPERO ID: CRD420251114173. A comprehensive search across
six databases was performed through 30 May 2025. Eligible studies evaluated AI appli-
cations in risk–benefit assessment in HPB cancer surgery. Inclusion criteria encompassed
peer-reviewed, English-language studies involving human s ubjects. Two independent
reviewers conducted study selection, data extraction, and quality appraisal. Results: Thir-
teen studies published between 2020 and 2024 met the inclusion criteria. Most studies
employed retrospective designs with sample sizes ranging from small institutional cohorts
to large national databases. AI models were developed for cancer risk prediction (n = 9),
postoperative complication modeling (n = 4), and survival prediction (n = 3). Common algo-
rithms included Random Forest, XGBoost, Decision Trees, Artificial Neural Networks, and
Transformer-based models. While internal performance metrics were generally favorable,
external validation was reported in only five studies, and calibration metrics were often
lacking. Integration into clinical workflows was described in just two studies. No study
addressed cost-effectiveness or patient perspectives. Overall risk of bias was moderate
to high, primarily due to retrospective designs and incomplete reporting. Conclusions:
AI demonstrates early promise in augmenting risk–benefit assessment for HPB oncologic
surgery, particularly in predictive modeling. However, its clinical utility remains limited by
methodological weaknesses and a lack of real-world integration. Future research should fo-
cus on prospective, multicenter validation, standardized reporting, clinical implementation,
cost-effectiveness analysis, and the incorporation of patient-centered outcomes.

Keywords: artificial intelligence; HPB surgery; risk assessment; machine learning;
oncologic surgery; decision-making; postoperative complications; survival prediction

1. Introduction
Hepatopancreatobiliary (HPB) surgery represents one of the most technically demand-

ing and high-risk domains within the field of oncologic and complex abdominal surgery. It
encompasses major liver resections, pancreaticoduodenectomy (Whipple procedures), and
bile duct reconstructions, often performed for malignancy or severe benign disease [1]. Pa-
tients undergoing HPB surgery frequently identified with advanced-stage disease, substan-
tial comorbidities, and a diminished physiological reserve [2]. Consequently, perioperative
decision-making carries considerable stakes with significant potential for both benefit and
harm. In this context, accurate and individualized risk/benefit assessment is essential for
guiding appropriate patient selection, preoperative optimization, and surgical planning.

Historically, risk stratification in HPB surgery has relied on clinical scoring systems
and surgeon experience. Certain classifications, such as the American Society of Anesthe-
siologists (ASA) classification, the Charlson Comorbidity Index, and procedure-specific
morbidity calculators, have provided some degree of risk estimation [3,4]. However, such
models often lack generalizability, as they often fail to capture the heterogeneity of patient
populations or the evolving complexity of contemporary surgical care. In addition, tra-
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ditional risk estimates offer limited value when applied to individual, patient-centered
clinical decisions.

In recent years, artificial intelligence (AI) has shown growing potential to transform
surgical decision-making [5]. Machine learning (ML) methods, in particular, can integrate
and analyze large volumes of clinical, imaging, and molecular data, enabling risk assess-
ments that move beyond the limitations of traditional tools [6]. Unlike conventional models,
which rely on linear associations and a limited set of predefined variables, AI-based ap-
proaches can identify complex, nonlinear patterns within diverse datasets. This allows
for dynamic, patient-specific predictions that better reflect the variability encountered
in clinical practice. Such precision is particularly relevant in HPB surgery, where subtle
differences in patient and tumor characteristics may have a significant impact on outcomes.

Thus far, several proof-of-concept studies suggest that AI-based models may outper-
form conventional risk scores in predicting key outcomes, such as perioperative complica-
tions, mortality, length of stay, and long-term survival in HPB surgery. AI applications have
also been explored across various phases of care, including preoperative imaging, intraoper-
ative guidance, and postoperative monitoring, highlighting their potential throughout the
surgical pathway. However, integration into routine clinical practice remains limited. Many
models rely on retrospective, single-center data with limited external validation, raising
concerns about their generalizability. Questions also persist regarding interpretability,
usability in real-world settings, and the broader ethical implications of algorithm-guided
decision-making.

AI’s potential to support shared decision-making is compelling. This process re-
quires an individualized balance between medical evidence and individual patient values.
Thoughtfully designed AI-powered models can help clarify complex risks and benefits
using extensive patient data to provide tailored predictions. This promotes transparent
discussions, better-informed consent, and, ultimately, care plans that are more aligned with
patient goals.

Still, it is critical to recognize that AI cannot replace surgical judgment or human
empathy. Its true value lies in complementing clinical expertise, enhancing rather than
taking over the surgeon’s role. To realize this potential, a thorough evaluation of AI applica-
tions in HPB surgery is essential, encompassing technical performance, clinical integration,
and patient-centered outcomes. A systematic review is therefore timely, providing an
opportunity to critically assess existing work, identify gaps, and set a direction for future
research and innovation in this evolving field.

2. Materials and Methods
2.1. Search Strategy

A comprehensive literature search was conducted across five electronic databases:
PubMed, Embase, Scopus, Web of Science, and the Cochrane Library. The search aimed to
identify studies on AI’s impact on risk–benefit assessment and clinical decision-making in
HPB oncologic surgery. The search strategy combined Medical Subject Headings (MeSHs)
with relevant free-text keywords related to AI applications in oncologic surgery. The
review was conducted in accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses Protocols (PRISMA-P 2020) guidelines [7]. We registered the
protocol for this systematic review in the International Prospective Register of Systematic
Reviews (PROSPERO) under registration number CRD420251114173. Search terms and
subject headings included variations of terms related to HPB malignancies (e.g., “pan-
creatic cancer,” “hepatobiliary neoplasms”), AI methodologies (e.g., “machine learning,”
“computational intelligence,” “computer vision”), and risk–benefit concepts (e.g., “risk
assessment,” “benefit–risk analysis,” “clinical decision-making”). The full search strategy
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for each database is available in the Supplementary Materials (Table S1). Searches covered
database inception to 30 May 2025, without geographic restrictions. Duplicate records
were identified and removed using Rayyan software (https://www.rayyan.ai/ accessed on
30 May 2025) [8].

2.2. Eligibility Criteria

Inclusion criteria for this manuscript were studies evaluating AI applications specifi-
cally designed to assess risk–benefit outcomes in HPB oncologic surgery. All peer reviewed
articles conducted on human subjects were eligible, with no language or publication date
restriction. Excluded studies consisted of narrative reviews, editorials, commentaries, opin-
ion pieces, studies not focused on AI-driven risk–benefit calculations, or purely theoretical
papers without clinical validation. Additionally, studies involving animals or those that
did not involve human subjects were also excluded.

2.3. Data Extraction

Four reviewers independently screened titles and abstracts using Rayyan software [8].
Full texts of eligible studies were reviewed, and any disagreements regarding inclusion
were resolved by consensus. Data extraction was performed by six reviewers in total, the
initial four from the screening process plus two additional reviewers. Extracted data were
compiled into a master table and cross-checked for accuracy. Across studies, data inputs
included structured clinical variables (e.g., age, comorbidities, labs), imaging (e.g., EUS, CT,
digital pathology), and registry-level demographics and diagnostic codes. The following
variables were collected from each included study:

• Study characteristics: titles, authors, year of publication, study design, and country
of origin.

• Population characteristics: sample size (total number of participants), surgical population.
• AI technologies: data source, AI model types, best-performing model, prediction target.
• Outcomes: effect sizes (OR, RR, HR) and corresponding 95% confidence intervals (CI)

for AUROC validation, sensitivity, specificity, key predictors, external validation, and
clinical use.

2.4. Quality Assessment and Synthesis Technique

The methodological quality of the included studies was assessed using the Newcastle–
Ottawa Scale (NOS) [9] for cohort studies and the QUADAS-2 tool [10] for studies evalu-
ating diagnostic or predictive accuracy. Quality assessment was conducted by multiple
reviewers, with discrepancies addressed collaboratively. Given the anticipated hetero-
geneity in study designs, AI models, and outcome measures, the primary data synthesis
was narrative. Key findings were summarized in structured tables. Results are presented
descriptively with tables and figures provided to support transparency.

3. Results
3.1. Study Selection

Based on a systematic search conducted across five databases, PubMed (26), Cochrane
(8), Embase (39), Science Direct (519), and Scopus (44), a total of 636 articles were retrieved.
After the removal of 141 duplicates, 495 titles and abstracts were screened using the Rayyan
platform. Of these, 478 studies were excluded after title and abstract screening due to
irrelevance or non-compliance with inclusion criteria. A full-text review was performed for
the remaining 17 articles. Following this step, four articles were excluded for the following
reasons: one was a review article, one was a pre-print version of an article included in
these 17 articles, and two did not fulfill the inclusion criteria. Finally, 13 studies met the

https://www.rayyan.ai/
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inclusion criteria for qualitative synthesis. The included studies were published between
2020 and 2024. The study selection process is illustrated in Figure 1, created using the web
application developed by Haddaway et al. [11].

Figure 1. PRISMA flow diagram illustrating the screening, inclusion, and exclusion processes for
studies incorporated in this work.

3.2. Study Characteristics

The included studies originated primarily from the United States 5 (38%), with other
studies from China 3 (23%), Denmark 2 (15%), Germany 1 (7.6%), the Netherlands 1 (7.6%),
and Sweden 1 (7.6%). These studies employed a range of methodological designs, including
nine retrospective cohort studies, two prospective observational studies (including one post
hoc analysis), one retrospective observational study, and one randomized multicenter trial.
Among these, three studies, those by Leupold et al. [12], Màlyi et al. [13], and Machicado
et al. [14], specifically leveraged advanced imaging modalities (e.g., EUS-nCLE, digital
pathology, or confocal laser endomicroscopy) as primary data sources. Table 1 illustrates
the characteristics of all included studies.

Table 1. Characteristics of all included manuscripts (n = 13) based on authors, journal, publication
year, country, study type, and sample size.

Authors Journal Publication Year Country Study Type Sample Size

Leupold M, et al. [12] Gastrointestinal
Endoscopy 2024 USA Observational 64

Khan S, et al. [15] Journal of Clinical
Gastroenterology 2024 USA Retrospective

Cohort 81,213

Wang H, et al. [16] Frontiers in
Oncology 2024 China Retrospective

Cohort 749
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Table 1. Cont.

Authors Journal Publication Year Country Study Type Sample Size

Hu K, et al. [17]
BMC (BioMed

Central)
Gastroenterology

2024 China Retrospective
Cohort 142

Màlyi A, et al. [13] HPB (Hepato-
Pancreato-Biliary) 2024 Germany Randomized

Multicenter Trial 320

Cichosz SL, et al. [18]
Computer Methods

and Programs in
Biomedicine

2024 Denmark Retrospective
Cohort 1432

Chen W, et al. [19] Pancreatology 2023 USA Retrospective
Cohort 4,500,000

Ingwersen EW, et al. [20] Surgery 2023 Netherlands Retrospective
Observational 4912

Placido D, et al. [21] Nature Medicine 2023 Denmark Retrospective
Cohort 9,200,000

Li Q, et al. [22] Disease Markers 2022 China Retrospective
Cohort 47,919

Machicado JD, et al. [14] Gastrointestinal
Endoscopy 2021 USA Prospective

Single-Center 35

Aronsson L, et al. [23] PLOS One 2021 Sweden Retrospective
Cohort 440

Merath K, et al. [24]
Journal of

Gastroenterology
Surgery

2020 USA Retrospective
Cohort 15,657

3.3. Study Objectives and Data Sources

The primary objectives of these studies centered on the application of AI in oncologic
surgery, specifically for cancer risk prediction (n = 9), postoperative complication modeling
(n = 4), and long-term prognostication (n = 3). The data sources varied, including national
cancer registries (e.g., SEER, DNPR), institutional electronic health records (EHRs), imaging
databases, and multi-institutional datasets (e.g., ACS NSQIP, TriNetX). Sample sizes varied
substantially across studies, from small imaging-based cohorts of 64 patients to expansive
national registries encompassing over four million individuals.

3.4. Artificial Intelligence (AI) Models Applied

A broad spectrum of ML and deep learning (DL) techniques were used across the
studies. Commonly applied models included Random Forest, XGBoost, Cox regression,
Decision Trees, Gradient Boosting Machines, Convolutional Neural Networks (CNNs),
Transformers, and Artificial Neural Networks (ANNs). Some studies compared these AI
models with traditional scoring systems, while others employed multimodal approaches
that integrated clinical, imaging, and histopathological data to optimize model performance.
Table 2 illustrates the AI models applied from the included studies.

Table 2. Artificial intelligence (AI) models applied in the included manuscripts.

Authors Publication Year Country Sample Size AI Model Used Best Model *

Leupold M, et al. [12] 2024 USA 64 EUS-nCLE

Combined model
(EUS-nCLE + 2024

Kyoto High-
Risk Stigmata)
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Table 2. Cont.

Authors Publication Year Country Sample Size AI Model Used Best Model *

Khan S, et al. [15] 2024 USA 81,213 XGBoost, END-PAC
Boursi XGBoost

Wang H, et al. [16] 2024 China 749 Decision Tree Decision Tree

Hu K, et al. [17] 2024 China 142
DenseNet121,

ResNet18
MobileNet_v3_small

Combined Model
(Pathological Risk

Signature + Clinical
Risk Signature)

Màlyi A, et al. [13] 2024 Germany 320
QuPath AI

Generalized Linear
Model (GLM)

Generalized Linear
Model (GLM)

Cichosz SL, et al. [18] 2024 Denmark 1432 Random Forest (RF) Random Forest (RF)

Chen W, et al. [19] 2023 USA 4,500,000

Random Survival
Forest (RSF)

eXtreme Gradient
Boosting (XGB)

Cox Proportional
Hazards (COX)

eXtreme Gradient
Boosting (XGB)

Ingwersen EW,
et al. [20] 2023 Netherlands 4912

Random Forest
Neural Network
Support Vector

Machine
Gradient Boosting

Gradient Boosting

Placido D, et al. [21] 2023 Denmark 9,200,000

Bag-of-Words
Multilayer Perceptron

(MLP) Gated
Recurrent Unit (GRU)

Transformer

Transformer

Li Q, et al. [22] 2022 China 47,919

Random Forest (RF)
XGBoost

SVM
Deep Neural Network

(DNN)
Logistic Regression

(LR)

Random Forest (RF)

Machicado JD,
et al. [14] 2021 USA 35

Segmentation-Based
Model (SBM)

Holistic-Based Model
(HBM)

Holistic-Based Model
(HBM)

Aronsson L, et al. [23] 2021 Sweden 440

Artificial Neural
Network (ANN)

LASSO
Logistic Regression

Artificial Neural
Networks (ANNs)

Merath K, et al. [24] 2020 USA 15,657 Decision Tree Decision Tree

* Best model refers to the algorithm reported by the study authors as achieving the highest performance (AU-
ROC/F1/accuracy).

3.5. Model Performance Across Clinical Use Cases
3.5.1. Cancer Risk Prediction

Across studies focusing on pancreatic cancer risk prediction, AI models consistently
demonstrated superior discriminatory performance compared to traditional scoring sys-
tems. For instance, Cichosz et al. (2024) [18] achieved an AUROC of 0.78 using a Random
Forest classifier to distinguish pancreatic cancer–related diabetes from type 2 diabetes in a
Danish national cohort. In the United States, Khan et al. (2024) [15] utilized an XGBoost
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model to distinguish the same pathologies in a large multi-institutional dataset and re-
ported an AUROC of 0.80, outperforming established clinical tools such as END-PAC and
the Boursi model. Placido et al. (2023) [21] developed a Transformer-based model for
predicting pancreatic cancer from a wider range of diagnoses trained on over 6 million
patients. The latter study achieved an AUROC of 0.879 in Danish data and 0.710 in external
validation using a U.S. Veterans Affairs cohort, demonstrating both strong predictive po-
tential and notable limitations in generalizability across populations. Table 3 demonstrates
the AUROC scores regarding cancer risk prediction evaluation in the included studies.

Table 3. AUROC scores to assess cancer risk prediction in included manuscripts.

Authors Publication
Year Country Sample Size AUROC (DK)

AUROC (US
Cross-

Validation)

AUROC (US
Independent

Training)

AUROC
(Internal)

Cichosz SL,
et al. [18] 2024 Denmark 1432 0.78

(CI 0.75–0.83) N/A N/A N/A

Khan S,
et al. [15] 2024 USA 81,213 N/A

0.81 (XGBoost);
0.66

(END-PAC);
0.71 (Boursi)

N/A

0.80 (XGBoost);
0.63

(END-PAC);
0.68 (Boursi)

Placido D,
et al. [21] 2023 Denmark 9,200,000 0.879 0.710 (Danish-

trained model)
0.775 (US-VA

model) N/A

3.5.2. Postoperative Complication Prediction

Four studies, by Wang H. et al. (2024) [16], Màlyi A. et al. (2024) [13], Ingwersen
E.W. et al. (2023) [20], and Merath K. et al. (2020) [24], focused on modeling the risk of
postoperative complications, particularly clinically relevant postoperative pancreatic fistula
(CR-POPF) and delayed gastric emptying (DGE). Wang H. et al. (2024) [16] reported an
AUROC of an internal test set in China of 0.88 for survival and 0.79 for complications with a
sensitivity of 67% for survival rate and 77% for complications. Specificity was not reported.
Màlyi A. et al. (2024) [13], with a model based on the quantification of fibrotic tissue content,
reported an internal AUROC of 0.73 and a sensitivity and specificity of 80% and 62%,
respectively, using a generalized linear model. In the Netherlands, Ingwersen E.W. et al.
(2023) [20] used gradient boosting methods and achieved AUROCs of approximately 0.74
for CR-POPF, marginally outperforming logistic regression. However, models predicting
DGE generally showed lower discrimination, with AUROCs around 0.59. Sensitivity and
specificity were not reported. Finally, Merath K. et al. (2020) [24] reported an AUROC of
0.74 for overall complications. Sensitivity and specificity were not reported.

Despite these encouraging results, none of the complication models reported external
validation, and calibration statistics were generally lacking, limiting confidence in their
real-world applicability. Table 4 illustrates the postoperative complication prediction across
the included studies.

Table 4. Postoperative Complication Prediction.

Authors Publication
Year Country Sample Size AUROC (Internal) Sensitivity Specificity

Wang H, et al. [16] 2024 China 749 0.79 77% N/A

Màlyi A, et al. [13] 2024 Germany 320 0.73 80% 62%
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Table 4. Cont.

Authors Publication
Year Country Sample Size AUROC (Internal) Sensitivity Specificity

Ingwersen EW,
et al. [20] 2023 Netherlands 4912

CR-POPF
Gradient Boosting
(ML model) = 0.74
DGE-Both models
(ML and logistic
regression) = 0.59

N/A N/A

Merath K, et al. [24] 2020 USA 15,657 0.74 N/A N/A

3.5.3. Survival Prognostication

Two studies, by Wang H. et al. (2024) [16] and Aronsson L. et al. (2021) [23], examined
the use of AI models to predict long-term oncologic outcomes, such as five-year disease-
specific survival. Wang H. et al. (2024) [16] applied Decision Tree models to predict both
postoperative complications and 1-year survival after pancreatoduodenectomy, reporting
an AUROC of 0.88 for survival prediction with a sensitivity of 67%. Specificity was
not reported. Aronsson L. et al. (2021) [23] used Artificial Neural Networks to predict
5-year survival for invasive IPMN, reporting an F1 score of 0.89 and an accuracy of 0.82.
The sensitivity and specificity reports were 95% and 42%, respectively. Despite these
promising results, most prognostic models lacked external validation and did not report
calibration or decision curve analyses. Thus, while internal performance appeared to be
robust, generalizability and clinical interpretability remain uncertain. Table 5 illustrates the
survival prognostication across the included studies.

Table 5. Survival prognostication across investigated studies.

Authors Publication
Year Country Sample Size

AUROC (US
Cross

Validation)

AUROC
(Internal) Sensitivity Specificity

Wang H,
et al. [16] 2024 China 749 N/A 0.88 67% N/A

Aronsson L,
et al. [23] 2021 Sweden 440 ANN1 = 0.82

F1 0.89 N/A 95% 42%

3.6. Validation and Clinical Integration

Five studies, by Khan S. et al. (2024) [15], Hu K. et al. (2024) [17], Cichosz SL. et al.
(2024) [18], Chen W. et al. (2023) [19], and Placido D. et al. (2023) [21], performed some
form of external validation by applying their models to independent cohorts or split
datasets from separate institutions. Among these, Chen W. et al. (2023) [19] externally
validated their machine learning model on a U.S. Veterans Affairs cohort, while Placido D.
et al. (2023) [21] tested a Transformer model trained on Danish health data against a U.S.
Veterans Affairs population, demonstrating performance degradation across populations.
Khan S. et al. (2024) [15] and Cichosz SL. et al. (2024) [18] used large registry-based cohorts
with hold-out test sets or pseudo-external validation splits within national data. Hu K. et al.
(2024) [17] employed separate multicenter hospital datasets for validation of a deep learning
pathology model for PDAC survival prediction. Notably, only Chen W. et al. (2023) [19] and
Placido et al. (2023) [21] demonstrated preliminary integration of AI tools into prototype
electronic health record workflows, enabling real-time or near-real-time risk stratification.
However, detailed decision curve analysis and calibration reporting were rarely performed,
limiting the interpretability and the practical applicability of these AI models in real-
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world clinical settings. Table 6 illustrates the validation and clinical integration across the
included studies.

Table 6. Validation and clinical integration.

Authors Publication
Year Country Sample Size External Validation Clinical Use Case

Khan S, et al. [15] 2024 USA 81,213 N/A

Stratify patients with
new-onset diabetes to
identify high PDAC

risk for early imaging
(e.g., MRI, EUS).

Hu K, et al. [17] 2024 China 142 N/A

Prognosis of PDAC
based on integrated

histopathological and
clinical data.

Cichosz SL, et al. [18] 2024 Denmark 1432 N/A

Future implication, not
yet in clinical use
Stratify patients

≥50 years old with
new-onset diabetes
(NOD) into high- vs.

low-risk for pancreatic
cancer (PCRD).

Chen W, et al. [19] 2023 USA 4,500,000

Externally validated
using an independent
cohort from the U.S.

Veterans Affairs (VA)
Health System

Risk stratification for
PDAC screening using

EHR data.

Placido D, et al. [21] 2023 Denmark 9,200,000
Cross-application of

Danish-trained model
to US-VA data

Identifying high-risk
patients (e.g., top 0.1%)

for cost-effective
surveillance and early

detection of
pancreatic cancer.

Because the included studies were heterogeneous and unsuitable for meta-analysis,
formal assessments of study bias, heterogeneity, and reporting bias could not be performed
in the Results and are instead discussed narratively in Section 4.2.

4. Discussion
This systematic review evaluated the role of AI in risk–benefit assessment and clinical

decision-making within HPB oncologic surgery. Although AI has been explored extensively
across other surgical specialties, its application in the HPB context remains comparatively
limited. Our findings show that AI models have been employed most commonly for cancer
risk prediction, postoperative complication modeling, and long-term survival prognostica-
tion. In these areas, AI systems generally demonstrated strong internal performance and,
in many cases, outperformed traditional statistical approaches. Across studies, AI models
typically achieved AUROCs in the 0.74–0.88 range, whereas traditional logistic regression
or clinical scores such as END-PAC and Boursi achieved lower values (0.63–0.71), underlin-
ing incremental but not yet definitive clinical value. However, the clinical translation of
these models remains modest, and the quality and consistency of reporting across studies
varied considerably.

From the perspective of patients and an economic impact viewpoint, a notable gap
in the current literature is the absence of studies investigating patient perspectives on the
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integration of AI into surgical decision-making [25]. As these technologies are introduced
into clinical environments, understanding how patients perceive algorithm-supported care
will be critical for creating trust, promoting transparency, and supporting shared decision-
making. Without this insight, there is a risk that AI implementation may proceed in ways
that overlook individual preferences, values, or concerns, which could compromise patient
engagement or even undermine the therapeutic alliance between patients and clinicians.

Similarly, none of the included studies evaluated the cost-effectiveness or broader
economic implications of deploying AI systems in surgical workflows [26]. Although
many AI models show promising accuracy in retrospective datasets, their development,
validation, and maintenance often require substantial financial and technical investment.
Without rigorous economic evaluation, it is difficult to determine whether these tools offer
practical value beyond their performance metrics. Future research should incorporate
patient-centered outcomes and health economic analyses to determine whether AI offers
added value not only in terms of predictive accuracy but also in cost-efficiency and pa-
tient satisfaction. Addressing these economic dimensions would help establish a more
complete framework for evaluating AI in surgical practice, informing not only clinical
decision-making but also strategic planning and policy development at institutional and
national levels.

In parallel, the absence of patient-centered and ethical considerations across the
reviewed studies represents an important gap. As AI becomes more present in surgical
planning, understanding how patients interpret algorithm-based recommendations is
essential to support shared decision-making. A lack of attention to concerns such as
transparency, data use, and equitable access may affect how these technologies are received
in clinical settings. Ethical issues, particularly those related to consent, privacy, and fairness,
also remain underexplored. Moving forward, studies should aim to include qualitative and
ethics-oriented perspectives to ensure that AI tools reflect not only technical performance,
but also the values and expectations of the individuals they are designed to serve.

4.1. Observations in Producing an Effective Model

Several of the included studies made observations about factors that contributed to
the effectiveness of their AI models. Placedo et al. noted that AI predicted pancreatic cancer
when given the time-onset of predictive factors rather than just the presence of predictive
factors. This temporal context allowed the model to identify patterns of disease emergence
more realistically and aligned with how clinical symptoms and risk factors often evolve.
This group also noted that their model’s accuracy softened when applied to a region outside
of what the model was trained on, suggesting the need to train models in each new area to
maintain generalizability. This reinforces a broader challenge in AI deployment, which is
the trade-off between model performance and portability, particularly in geographically or
demographically distinct populations.

One group supports the use of multiple models together to improve efficiency [19],
while another group provides that complexity can be reduced by selecting variables to elim-
inate from the machine’s training without compromising efficacy [23]. These observations
indicate an important balancing act between model accuracy and interpretability, especially
when considering clinical adoption. For models that read histologic slides, simple global
image processing may be sufficient compared to models that were fed histologic decom-
position data, as they performed equivocally [17]. This finding raises questions about the
value of more computationally expensive preprocessing steps and suggests that, in some
contexts, streamlined approaches may be sufficient.

Wang et al. reported strong results using their decision-tree-based model on a 9:1
training to testing ratio. This underscores how model performance can be sensitive to the
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training strategy employed, particularly the partitioning of data for internal validation.
The decision tree is highlighted by another group as a modality that yields accurate results
and remains relatively easy to interpret [24]. This interpretability is a critical advantage
in clinical settings where transparency and trust in algorithmic outputs are important.
Lastly, Ingwersen et al. noted that machine learning shows particular usefulness over linear
regression when unstructured data is included in the comparison, such as that from MRI
and CT scans. This shows AI’s capacity to handle complex and high-dimensional data
types that traditional statistical approaches may not accommodate well, which is especially
relevant in the imaging-rich environment of HPB surgery.

4.2. Limitations and Risk of Bias

This systematic review has several limitations. Despite a comprehensive search across
multiple databases, it is possible that relevant studies in the gray literature or unpub-
lished sources were not captured. This may have led to an incomplete representation of
the evidence base, particularly given the rapid and often fragmented nature of research
dissemination in the field of AI. Additionally, the included studies displayed consider-
able heterogeneity in terms of study design, patient populations, cancer subtypes, AI
model architecture, and outcome measures. This methodological diversity limited our
ability to conduct meaningful quantitative synthesis and restricted the generalizability of
aggregated findings.

Another key limitation relates to the inconsistent quality and transparency of reporting
across studies. Few studies adhered to established reporting guidelines that are necessary
to assess clinical applicability, including the documentation of model calibration, external
validation, strategies for handling missing data, and the use of decision curve analysis.
The absence of these critical elements reduces interpretability and weakens the strength of
evidence supporting real-world deployment of the proposed models.

A further limitation relates to the considerable heterogeneity in sample size and data
source across the included studies. While some models were developed using highly
granular datasets from single centers with fewer than 100 patients, others relied on national
or multinational registries encompassing millions of records. This variability complicates
direct comparison between studies and may affect both the internal consistency and the
external validity of the models. For instance, the Transformer-based model developed by
Placido et al. achieved a high AUROC of 0.879 when validated within the Danish National
Patient Registry but demonstrated reduced performance (AUROC 0.710) when applied
to an external cohort from the U.S. Veterans Affairs system. This decline underscores the
risks of geographic and population-specific overfitting, particularly when training data
lacks demographic or clinical diversity [27]. Moreover, many studies that relied on large
national or multinational datasets offered limited reporting on key aspects such as data
completeness, the handling of missing values, and underlying biases within the source
populations. These omissions raise concerns about the transparency and reproducibility
of findings, especially when registry data may include heterogeneous coding practices
or an imbalanced representation of clinical subgroups. Without adequate detail on data
preprocessing and quality control, it becomes challenging to assess the reliability of model
outputs or compare performance across studies.

Although several AI models demonstrated promising results, limited reporting of
performance metrics and a lack of transparency in model architecture hindered a thorough
assessment of interpretability. As clinician trust in AI depends strongly on explainability,
particularly for complex models such as neural networks and Transformers, future research
should prioritize incorporating interpretability frameworks and transparent reporting
standards to support clinical adoption.
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The risk of bias was judged to be moderate to high in many studies, often stemming
from a retrospective design, an absence of predefined thresholds, and a lack of blinding in
outcome assessment. Most studies relied on retrospective data, which may be subject to
selection bias, incomplete records, and unmeasured confounders. Furthermore, the obser-
vational nature of retrospective designs restricts the ability to draw causal conclusions from
associations identified by AI models. Without prospective validation or randomization, it
remains unclear whether these algorithms are capturing true mechanistic relationships or
merely reflecting correlations within the data.

The infrequent use of prospective methodologies and external datasets further con-
strains the robustness and reproducibility of reported results. In addition, the potential
for publication bias should be acknowledged. As is common in emerging areas of re-
search, studies with favorable or novel findings may be disproportionately represented
in the published literature, skewing the perceived effectiveness of AI applications in HPB
oncologic surgery.

4.3. Future Directions

Further research is needed to move beyond the development of AI models and toward
their practical, ethical, and effective integration into clinical care. Prospective, multicenter
studies that include diverse patient populations are critical to improving the generalizability
and clinical relevance of AI in HPB oncologic surgery. These designs would allow for a
more accurate assessment of how AI performs under real-world conditions, across various
healthcare systems and demographic groups.

Equally important is the emphasis on external validation, consistent reporting, and
the creation of tools that are both technically sound and clinically usable. User-friendly
design, interpretability, and seamless integration into existing clinical workflows should
be prioritized to promote uptake by surgical teams. The use of standardized reporting
frameworks, including TRIPOD-ML, PROBAST-AI, and CONSORT-AI, will help ensure
methodological transparency and comparability across future studies.

Cross-disciplinary collaboration between clinicians, data scientists, implementation
researchers, and healthcare administrators will be essential to ensure that these models are
not only accurate but also ethically designed, interpretable, and aligned with the realities
of surgical practice. Beyond technical validation, future studies should also explore patient
perspectives, assess the cost-effectiveness of AI implementation, and evaluate the long-
term impact of these systems on health outcomes and care delivery. Together, these efforts
will support the meaningful integration of AI into HPB surgery, enabling more informed
decisions, fostering patient trust, and ultimately improving clinical outcomes.

5. Conclusions
This systematic review emphasized the growing convergence between technological

advancements and complex surgical procedures, placing AI as a potentially transformative
tool to optimize risk–benefit analysis in HPB oncologic surgery. Through multiple method-
ologies and applications to the clinic, AI is reshaping the risk analysis and the prediction
of HPB oncology outcomes. While the progress in model development has been rapidly
evolving, the translation into a meaningful clinical integration is still ongoing.

AI’s true potential not only lies in its precision but in its ability to support clini-
cal judgment when applied deliberately, requiring rigorous validation, multidisciplinary
collaboration, and alignment with real-world surgical decision-making to realize its trans-
formative potential in HPB oncology. While current AI models reflect improved predictive
performance in cancer risk stratification, complication predictions, and survival analysis
compared to the traditional methodologies, use in clinical practice still remains limited
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with heterogeneous factors such as limited external validation, heterogeneous reporting,
and a lack of prospective, multicenter studies.

Notably, none of the included studies assessed patient perspectives or cost-effectiveness,
which are critical dimensions for real-world adoption. These omissions urge a paradigm
shift from model-centric algorithmic refinement to ethically grounded, patient-focused, and
clinically embedded AI solutions. Bridging this gap can be attained through collaborative
efforts among clinicians, data scientists, and policymakers to prioritize real-world applica-
bility, transparency, and equitable implementation in HPB surgical care. Such integration
will allow AI to become a valuable ally in HPB oncology, empowering clinicians to navigate
high-stakes decisions while improving outcomes for patients facing complex oncologic
operations by guiding safer, more individualized approaches.
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