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Simple Summary

Glioblastoma remains lethal despite standard therapy. We identify that RNF135, an immune-
related gene, marks a dominant subset of tumor-associated macrophages in GBM. Across
TCGA/CGGA and single-cell datasets, RNF135-positive TAMs predict poorer survival
and exhibit an immune state that is simultaneously activated and suppressive. Network
analysis (CellChat) reveals that RNF135 organizes chemokine-centric communication with
aggressive tumor states, driven by the CCL3/CCL3L3–CCR1 axis, which strengthens
TAM-to-TAM and TAM-to-tumor crosstalk. Spatial data localize RNF135 to microvascular-
proliferation regions. Drug-response modeling suggests that RNF135-high tumors are
more sensitive to the MEK1/2 inhibitor selumetinib, consistent with MAPK-driven CCL
signaling. Together, RNF135 defines a macrophage program that promotes an inflamed
yet immunosuppressive microenvironment and highlights the CCL–CCR1 axis and MEK
inhibition as therapeutic avenues.

Abstract

Background: Tumor-associated macrophages (TAMs) are essential regulators of the glioblas-
toma (GBM) microenvironment; their functional heterogeneity and interaction networks are
not fully elucidated. We identify RNF135 as a novel TAM-enriched gene associated with im-
mune activation and adverse prognosis in GBM. Methods: To evaluate RNF135’s expression
profile, prognostic significance, and functional pathways, extensive transcriptome analyses
from TCGA and CGGA cohorts were conducted. The immunological landscape and cellular
origin of RNF135 were outlined using single-cell RNA-seq analyses and bulk RNA-seq im-
mune deconvolution (MCP-counter, xCell and ssGSEA). Cell–cell communication networks
between tumor cells and RNF135-positive and -negative tumor-associated macrophage
subsets were mapped using CellChat. Results: RNF135 predicted a poor overall survival
and was markedly upregulated in GBM tissues. Functional enrichment analyses showed
that increased cytokine signaling, interferon response, and innate immune activation were
characteristics of RNF135-high samples. Immune infiltration profiling showed a strong
correlation between the abundance of T cells and macrophages and RNF135 expression. Ac-
cording to the single-cell analyses, RNF135 was primarily expressed in TAMs, specifically in
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proliferation, phagocytic, and transitional subtypes. RNF135-positive TAMs demonstrated
significantly improved intercellular communication with aggressive tumor subtypes in
comparison to RNF135-negative TAMs. This was facilitated by upregulated signaling
pathways such as MHC-II, CD39, ApoE, and most notably, the CCL signaling axis. The
CCL3/CCL3L3–CCR1 ligand–receptor pair was identified as a major mechanistic driver
of TAM–TAM crosstalk. High RNF135 expression was also linked to greater sensitivity to
Selumetinib, a selective MEK1/2 inhibitor that targets the MAPK/ERK pathway, according
to drug sensitivity analysis. Conclusions: RNF135 defines a TAM phenotype in GBM
that is both immunologically active and immunosuppressive. This phenotype promotes
inflammatory signaling and communication between cells in the tumor microenvironment.
Targeting the CCL–CCR1 axis or combining RNF135-guided immunomodulation with
certain inhibitors could be a promising therapeutic strategies for GBM.

Keywords: glioblastoma; RNF135; tumor-associated macrophages; single-cell RNA-seq;
CCL3–CCR1

1. Introduction
Glioblastoma (GBM) is the most aggressive and lethal primary malignant tumor of

the adult central nervous system [1]. GBM grows quickly, spreads widely, and is resistant
to treatment. The current standard of care for GBM is maximal safe surgical resection
followed by radiotherapy and temozolomide chemotherapy [2]. Even with these different
types of treatment, the average life expectancy is still only 14 to 16 months, and recurrence
is almost certain [3,4]. The limited clinical efficacy is attributed not only to the genetic
and phenotypic heterogeneity of tumor cells but also to the immunosuppressive tumor
microenvironment (TME) in which they reside [5].

The immune system plays a critical role in tumor surveillance and elimination; how-
ever, the immunologically privileged status of the brain presents unique challenges to
effective immunotherapy [6]. The blood–brain barrier (BBB) limits peripheral immune cell
infiltration into the tumor microenvironment, while GBM cells further establish an immuno-
suppressive niche by downregulating antigen presentation, expressing immune check-
point ligands, and recruiting regulatory T cells (Tregs) and tumor-associated macrophages
(TAMs), thus promoting immune evasion and tumor progression [5,7]. TAMs represent
the most abundant and functionally diverse immune cell population within the GBM
microenvironment [8]. Single-cell RNA sequencing studies have revealed that TAMs com-
prise distinct functional subtypes—such as proliferation, antigen-presenting, regulatory,
and hypoxic phenotypes—that contribute to immunoregulation, antigen processing, and
suppression of antitumor responses [9,10]. These cells are increasingly recognized as key
drivers of tumor progression. However, the molecular mechanisms underlying TAM
heterogeneity and subtype specification remain unclear [11]. Elucidating these regula-
tory pathways is critical for reprogramming TAMs toward a tumor-inhibitory state and
improving the efficacy of immunotherapeutic interventions.

RNF135 (Ring Finger Protein 135), also known as RIPLET, is an E3 ubiquitin ligase
originally identified for its role in antiviral responses and interferon signaling [12]. Mecha-
nistically, RNF135 promotes the antiviral signaling activity of the viral RNA receptor RIG-I
through dual ubiquitin-dependent and -independent mechanisms. It catalyzes K63-linked
ubiquitination of RIG-I to stabilize 2CARD tetramers and cross-bridges RIG-I filaments
on long dsRNA, thereby amplifying the RIG-I–MAVS–TBK1/IRF3 cascade and type I/III
interferon production. Beyond innate immunity, aberrant expression or silencing of RNF135
has been reported in several solid tumors. In hepatocellular carcinoma (HCC), promoter
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hypermethylation results in RNF135 deficiency, which disrupts K48-linked ubiquitination
of fatty acid synthase (FASN), enhances fatty acid synthesis, and drives the accumulation
of free fatty acids that activate STAT3 signaling and induce terminal CD8 T-cell exhaus-
tion, conferring resistance to anti–PD-1 therapy. Pharmacologic inhibition of FASN can
overcome this immune resistance. These findings highlight RNF135 as a regulator at the
crossroads of innate immune sensing and tumor immunometabolism [13–16]. However, its
expression pattern, functional role, and regulatory impact on TAM dynamics within the
GBM microenvironment have yet to be systematically investigated.

The goal of this study was to describe the expression profile and prognostic significance
of RNF135 in GBM, explain its role in creating TAM heterogeneity and immune suppression,
and investigate its role in signaling networks between cells. Our results may provide new
information about how GBM avoids the immune system and point to a possible target for
immunotherapy that focuses on TAM.

2. Methods
2.1. Data Acquisition and Preprocessing

Transcriptomic and clinical data of GBM patients were obtained from The Cancer
Genome Atlas (TCGA, https://portal.gdc.cancer.gov/, accessed on 4 October 2024) and the
Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.cn/, accessed on 4 October
2024) [17,18]. Raw count and TPM expression matrices were downloaded and normalized
using the “DESeq2” package in R version 1.48.2 [19]. Samples with incomplete survival
information were excluded. RNF135 expression differences between GBM and normal
tissues (Figure 1B) were evaluated using the GEPIA web server (http://gepia.cancer-pku.
cn/, accessed on 16 October 2024). To investigate the cell-type-specific expression pattern
of RNF135, single-cell RNA sequencing data from newly diagnosed GBM samples were
obtained from the Brain Immune Atlas (https://www.brainimmuneatlas.org/, accessed on
4 October 2024). These data were processed using the “Seurat” package, version 5.3.0 [20],
and major cell populations—including tumor cells, TAMs, T cells, and oligodendrocytes—
were identified using canonical marker genes. Regionally annotated bulk RNA-seq data
were obtained from the Ivy Glioblastoma Atlas Project (http://glioblastoma.alleninstitute.
org/, accessed on 2 October 2024) and used to assess the spatial distribution of RNF135
expression across distinct anatomical regions of GBM tissue. In accordance with the
2021 WHO classification of central nervous system tumors, only adult IDH-wildtype
glioblastoma cases were included, and all IDH-mutant gliomas were excluded. Summary
counts of patients and cells across all datasets are provided in Supplementary Table S1.

2.2. Differential Expression and Survival Analysis of RNF135

To investigate the prognostic and transcriptional impact of RNF135 in glioblastoma,
patients from the TCGA cohort were divided into RNF135-high and RNF135-low expres-
sion groups based on the median expression level. Kaplan–Meier survival analysis and
univariate Cox regression were performed using the “survival” and “survminer” packages
to evaluate overall survival differences between the two groups. For differential expression
analysis, normalized RNA-seq expression data were analyzed using the “(version 3.64.3)”
package [21]. Differentially expressed genes (DEGs) between the RNF135-high and RNF135-
low groups were identified using empirical Bayes moderated t-statistics. Genes with an
adjusted p-value < 0.05 and |log2 fold change| > 1 were considered significant. To visualize
the transcriptional differences, a volcano plot was generated using the “ggplot2” (version
4.0.0) and “ggrepel” (version 0.9.6) packages, significantly upregulated and downregulated
genes were color-coded, and top differentially expressed genes were labeled.

https://portal.gdc.cancer.gov/
http://www.cgga.org.cn/
http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
https://www.brainimmuneatlas.org/
http://glioblastoma.alleninstitute.org/
http://glioblastoma.alleninstitute.org/
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Figure 1. RNF135 is upregulated in glioblastoma and predicts poor prognosis. (A) Workflow
for identifying immune-related prognostic genes across TCGA and CGGA datasets. RNF135 was
identified as a shared prognostic biomarker. (B) RNF135 expression was significantly elevated in GBM
tumors compared to normal brain tissues (TCGA). (C,D) Kaplan–Meier survival analysis of TCGA
(C) and CGGA (D) cohorts showing that high RNF135 expression is associated with significantly
worse overall survival. (E) Volcano plot of differentially expressed genes between RNF135-high and
-low groups in GBM, immune and inflammatory related genes were upregulated in the RNF135-high
group. (F) KEGG pathway enrichment analysis of RNF135-high GBMs shows significant enrichment
in immune-related signaling pathways. (G) GO enrichment analysis of DEGs reveals upregulation of
innate immune responses, phagocytosis, lysosome, and related processes. (H) GSEA demonstrates
enrichment of immune related hallmark pathways (e.g., interferon gamma, IL6/JAK/STAT3, TNF-α
signaling) in the RNF135-high group. * indicates statistical significance (p < 0.05).

2.3. Functional Enrichment and GSEA

DEGs identified by the “limma” package were subjected to downstream analysis.
Genes with adjusted p-values < 0.05 and |log2FC| > 1 were used for Gene Ontology
(GO) [22] and Kyoto Encyclopedia of Genes and Genomes (KEGG) [23] enrichment analyses
using the “clusterProfiler (version 4.16.0)” and “org.Hs.eg.db (version 3.21.0)” packages.
Gene Set Enrichment Analysis (GSEA) [24] was performed on the ranked gene list to
evaluate the enrichment of immune-related Hallmark pathways, using the “fgsea (version
1.34.2)” and “enrichplot (version 1.28.4)” packages.
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2.4. Immune Infiltration and Correlation Analysis

To assess immune infiltration related to RNF135 expression, we applied the MCP-
counter (version 1.2.0) [25] and xCell (version 1.1.0) [26] algorithms on normalized RNA-
seq data using the corresponding R packages. Based on the median RNF135 expression,
samples were stratified into high- and low-expression groups, and heatmaps were gen-
erated using the “pheatmap (version 1.0.13)” package to visualize cell type abundance
patterns across groups. To further evaluate immune cell activity, we performed single-
sample Gene Set Enrichment Analysis (ssGSEA) using the “GSVA (version 2.2.0)” pack-
age (Supplementary Table S2) [24]. Custom immune-related gene sets were curated and
grouped by cell type. Enrichment scores for each immune cell type were calculated across
samples using the “ssgsea” method with Gaussian kernel distribution. Pearson correlation
coefficients were computed between RNF135 expression and ssGSEA enrichment scores,
and corresponding p-values were obtained via cor.test(). Significant associations (adjusted
p < 0.05) were visualized using lollipop plots. Correlation matrices derived from MCP-
counter, xCell, and ssGSEA results were visualized using the “corrplot (version 0.95)” and
“ggcorrplot (version 0.1.4.1)” packages.

2.5. Single-Cell RNA-Seq Analysis and Cell-Type Annotation

Single-cell RNA-seq data were analyzed using the “Seurat” package (v4.0). A Seu-
rat object was created with min.cells = 3 and min.features = 200. The dataset was log-
normalized using the LogNormalize method (scale.factor = 10,000), and 2000 highly vari-
able genes were identified with the “vst” method. After data scaling, dimensionality
reduction was performed by principal component analysis (PCA) on the HVGs. Based
on the elbow plot, the first 7 principal components were used for downstream analysis.
Graph-based clustering was performed at a resolution of 0.4, and UMAP was applied
for two-dimensional visualization. To annotate clusters, a multi-pronged strategy was
employed. First, canonical marker genes were used to assign broad cell identities, and
differentially expressed genes were identified for each cluster using the Wilcoxon rank-sum
test (FindAllMarkers) with thresholds of log2 fold change > 0.25 and expression detected
in >25% of cells. The top markers were visualized with heatmaps to facilitate cluster-level
interpretation. Second, module scoring was performed using AddModuleScore based on
literature-defined gene sets representing canonical GBM cell states (NPC-like, OPC-like,
AC-like, MES-like) [27], and average scores were compared across clusters to aid in anno-
tation. Third, functional enrichment analysis was conducted for each cluster using GO
and KEGG pathways via the “clusterProfiler (version 4.16.0)” and “org.Hs.eg.db (version
3.21.0)” packages, helping to assign cell identities based on biological functions. Also, key
signature genes uniquely enriched in individual clusters were also considered to refine
subtype labels.

Based on this integrated strategy, we annotated major cell types including malignant
cells, macrophages, T cells, and oligodendrocytes. Malignant cells were further stratified
into six GBM transcriptional states—NPC-like, OPC-like, AC-like, MES1, MES2, and
Proliferative Tumor—according to their module scores and functional status. Macrophages
were subdivided into eight functionally distinct TAM subtypes, including Proliferation-
TAM, IFN-TAM, Regulatory-TAM, Phago/AP-TAM, Hypoxia-TAM, Chemo-TAM, Ribo-
TAM, and Transitory-TAM, guided by marker expression and enrichment-based functional
annotations [28].

2.6. Cell–Cell Communication Analysis

Intercellular communication networks were inferred using the “CellChat” R pack-
age based on single-cell transcriptomic data [29]. Separate CellChat objects were con-
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structed for RNF135-high and RNF135-low TAM populations. The standard pipeline was
applied (subsetData—identifyOverExpressedGenes—identifyOverExpressedInteractions—
computeCommunProb—computeCommunProbPathway—aggregateNet). Communica-
tion probability was computed using default parameters in computeCommunProb (pop-
ulation.size = TRUE, min.cells = 10), and pathways/interactions with adjusted p < 0.05
were retained for downstream analysis. The overall signaling network was estimated via
aggregateNet. To enable group-wise comparison, CellChat objects were merged using the
mergeCellChat function with dataset-specific annotations. Differential signaling activity
was assessed by quantifying global communication metrics (total number and strength of
interactions) and evaluating pathway-specific contributions using the rankNet function.
Signaling role analysis was conducted to classify each cell population as sender, receiver,
mediator, or influencer based on network centrality measures (netAnalysis_signalingRole
and netAnalysis_signalingRole_heatmap). Shared and differential signaling pathways were
visualized using circle plots, heatmaps, radar plots, and stacked bar charts. Focused anal-
yses were performed on the CCL signaling pathway to investigate macrophage-intrinsic
communication. Ligand–receptor interactions within the CCL pathway were identified
using the subsetCommunication function in CellChat, and overall pathway structure
was visualized through aggregated network plots (netVisual_aggregate) and interaction
heatmaps (netVisual_heatmap). The contribution of individual ligand–receptor pairs to
the CCL signaling axis was quantified using the netAnalysis_contribution function. To
characterize cell-type-specific signaling roles, centrality-based sender–receiver–mediator–
influencer analyses were conducted with netAnalysis_signalingRole_network and netAnal-
ysis_signalingRole_heatmap. The expression patterns of selected ligands and receptors
involved in the CCL pathway were evaluated using UMAP projections, dot plots, and
violin plots, based on Seurat-defined cell identities.

2.7. Drug Sensitivity Prediction

Drug sensitivity prediction was performed using the “OncoPredict” R package [30].
Transcriptomic profiles of GBM samples were used as the test input, while gene expression
and drug response (IC50) data from the Cancer Therapeutics Response Portal (CTRP)
served as the training reference. Log-transformed IC50 values in the training set were
converted back to their original scale prior to modeling. Batch effects were corrected using
the empirical Bayes (ComBat) method, and low-variance genes were filtered to improve
prediction accuracy. The calcPhenotype() function was applied to estimate the IC50 values
of a panel of small-molecule compounds in each GBM sample. Based on median RNF135
expression, samples were stratified into RNF135-high and RNF135-low groups. For each
compound, predicted IC50 values were compared between groups using the Wilcoxon
rank-sum test.

2.8. Statistical Analysis

All statistical analyses were conducted using R software (version 4.3.1). Comparisons
between two groups were performed using the Wilcoxon rank-sum test for non-parametric
data or Student’s t-test for normally distributed variables, as appropriate. Survival analyses
were carried out using Kaplan–Meier estimation and univariate Cox proportional hazards
regression, with significance assessed by the log-rank test. Pearson correlation analysis
was applied to evaluate associations between RNF135 expression and immune infiltration
scores derived from MCP-counter, xCell, and ssGSEA algorithms. P-values were two-
sided, and values less than 0.05 were considered statistically significant unless otherwise
specified. Multiple testing correction was applied using the Benjamini–Hochberg method
where applicable.
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3. Results
3.1. RNF135 Is Upregulated in GBM and Predicts Poor Prognosis

We first screened immune-related prognostic genes across TCGA and CGGA datasets
using univariate Cox regression (p < 0.05) and identified RNF135 as a shared prognostic
marker across three transcriptomic cohorts (Figure 1A). RNF135 expression was signif-
icantly elevated in GBM tissues compared to normal brain tissues (Figure 1B). Kaplan–
Meier survival analysis in both TCGA and CGGA cohorts showed that patients with high
RNF135 expression exhibited significantly worse overall survival (TCGA: p = 0.0094; CGGA:
p = 0.0088) (Figure 1C,D).

To explore its transcriptional impact, we compared RNF135-high and RNF135-low
GBM samples and identified a distinct gene signature, with numerous immune- and
inflammation-related genes significantly upregulated in the RNF135-high group, including
DNMT1, MMP9, GSDMA, ITGB7, PLA2G7, and CCL2 (Figure 1E). KEGG enrichment
revealed activation of immune and inflammatory pathways, such as cytokine–cytokine
receptor interaction, chemokine signaling pathway, B-cell receptor signaling pathway and
Th17-cell differentiation (Figure 1F). GO and GSEA analyses indicated that RNF135-high
GBMs were enriched in innate immune activation, lysosome- and phagocytosis-related
processes, and multiple inflammatory pathways including interferon response, IL6–JAK–
STAT3, and TNF-α signaling (Figure 1G,H).

3.2. RNF135 Correlates with Immune Cell Infiltration and Is Predominantly Expressed in TAMs

Immune infiltration estimation using MCP-counter, xCell and ssGSEA algorithms
showed strong positive correlations between RNF135 expression and the abundance of
macrophages, CD8+ T cells, and other immune subsets (Figure 2A–C). To further illus-
trate the associations between RNF135 expression and specific immune and stromal cell
populations, correlation analyses based on MCP-counter and xCell scores are provided in
Supplementary Figure S5. Unsupervised UMAP embedding of single-cell transcriptomic
data identified four major cell populations within the glioblastoma microenvironment:
macrophages, tumor cells, T cells, and oligodendrocytes (Figure 2D). Marker gene ex-
pression patterns were visualized to illustrate the transcriptional identity of each cluster
(Figure 2E). Macrophages exhibited high levels of AIF1, FCER1G, and TYROBP; oligoden-
drocytes were marked by TF, MOG and CLDN11; T cells expressed CD3D, CD3E, and CD2
and tumor cells expressed EGFR, SOX4, and BCAN. Additional marker genes supporting
cell identity assignment are shown in Supplementary Figures S2 and S3. Feature plotting
of RNF135 expression across the UMAP revealed a strong and specific enrichment within
the macrophage cluster (Figure 2F).

3.3. RNF135 Is Predominantly Expressed in Proliferation and Phagocytic TAM Subsets

To further investigate the functional context of RNF135 at the single-cell level, we first
performed unsupervised clustering of malignant cells and identified eight transcriptional
clusters (Figure S1A). GO and KEGG enrichment analyses were then conducted for each
cluster (Figure S1B,C), revealing distinct biological programs such as cell cycle activation,
hypoxia response, extracellular matrix remodeling, and interferon signaling. Based on
these enrichment patterns and module scores calculated from established gene signatures
(Figure 3B), tumor cells were classified into six canonical states: AC-like, MES1, MES2, NPC-
like, OPC-like, and Proliferative tumors (Figure 3A,B). These subtypes showed clear spatial
separation in UMAP visualization (Figure 3C). We then analyzed the heterogeneity of TAMs
and identified eight distinct transcriptional states, including Proliferation-, Phago/AP-, IFN-
, Transitory-, Regulatory-, Hypoxia-, Chemo-, and Ribo-TAMs (Figure 3D,E). Among these,
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RNF135 expression was most abundant in Proliferation-TAMs, followed by Phago/AP-,
IFN-, and Transitory-TAM subsets (Figure 3F).

Figure 2. RNF135 correlates with immune infiltration and is predominantly expressed in TAMs.
(A) Heatmap showing correlations between RNF135 expression and various immune cell populations
estimated by MCP-counter. (B) xCell analysis confirms higher abundance of immune cells, including
macrophages and T cells, in RNF135-high GBMs. (C) Correlation plot from ssGSEA showing strong
associations between RNF135 expression and multiple immune cell types. (D) UMAP visualization
of major cell clusters identified in GBM single-cell RNA-seq data: macrophages, tumor cells, T cells,
and oligodendrocytes. (E) Dot plot showing marker gene expression across cell types. (F) Feature
plot shows RNF135 expression is enriched specifically in the macrophage cluster.
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Figure 3. RNF135 is enriched in proliferation and phagocytic TAM subsets and enhances TAM–
tumor communication. (A) Heatmap of marker gene expression in eight malignant tumor clusters.
(B) Heatmap of gene signature scores used to define canonical tumor subtypes. (C) UMAP visual-
ization of tumor subtypes, including NPC-like, MES1, MES2, AC-like, OPC-like, and proliferative
tumors. (D,E) Heatmap (D) and UMAP (E) of transcriptionally defined TAM subsets, including
Proliferation-, Phago/AP-, IFN-, Transitory-, Regulatory-, Hypoxia-, Chemo-, and Ribo-TAMs. (F) Bar
plot showing RNF135 expression proportion across TAM subtypes, with highest levels in Proliferation-
TAMs. (G,H) CellChat network diagrams comparing intercellular communication patterns between
RNF135-positive (G) and RNF135-negative (H) TAMs. (I) Bar plots summarizing the total number of
interactions and communication strength, which are higher in RNF135-positive TAMs. (J,K) Radar
plots showing signaling pathways shared across TAM–tumor networks, with RNF135-positive TAMs
engaging more actively in immunomodulatory pathways (J: total weight; K: count). (L) Heatmap of
differentially active signaling pathways across TAM subtypes, highlighting preferential signaling
from RNF135-positive TAMs to aggressive tumor states.

To gain deeper insights into the functional states of RNF135-positive vs. RNF135-
negative TAM subsets, we performed GO enrichment analyses for each subgroup. RNF135-
positive TAMs displayed subtype-specific enrichment patterns: Proliferation-TAMs were
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associated with mitotic cell cycle and chromosomal organization; Phago/AP-TAMs with
metabolic processes and autophagy; IFN-TAMs with ribosome biogenesis and RNA
metabolism; Regulatory-TAMs with immune regulation and leukocyte activation; and
Chemo-TAMs with RNA splicing and intracellular transport (Figure S4A–F). In contrast,
RNF135-negative TAMs showed enrichment in stress response, cytokine signaling, and
immune regulatory pathways across corresponding subtypes (Figure S4G–L).

3.4. RNF135-Positive TAMs Exhibit Stronger Communication with Aggressive Tumor Cell States

To evaluate how RNF135 expression affects macrophage-mediated intercellular com-
munication, we performed CellChat analysis comparing RNF135-positive and RNF135-
negative TAMs. RNF135-positive TAMs exhibited a significantly higher total number
of inferred interactions (4859 vs. 3741) and stronger overall communication strength
(137.4 vs. 107.1) (Figure 3I). Visualization of the communication networks revealed that
RNF135-positive TAMs engaged more frequently and intensely with other cell types—
particularly with aggressive tumor cell states such as NPC-like, Proliferative, and MES1
cells—compared to their RNF135-negative counterparts (Figure 3G,H).

Shared signaling pathway analysis further showed that RNF135-positive TAMs trans-
mitted stronger and broader signals across multiple tumor-supportive pathways, including
MHC-II, CD39, ApoE, Complement, MIF, and FN1, as reflected in both total communication
weight and pathway engagement frequency (Figure 3J,K). Differential pathway activity
analysis revealed that signals originating from RNF135-positive TAMs were preferentially
received by tumor cells with aggressive phenotypes—especially NPC-like, Proliferative,
and MES1 subtypes—while signals from RNF135-negative TAMs exhibited more limited
impact (Figure 3L).

3.5. RNF135-Positive TAMs Exhibit Enhanced CCL Signaling and Broader
Communication Profiles

Pathway-level information flow analysis showed that RNF135-positive TAMs had
higher signaling activity than RNF135-negative TAMs in multiple pathways, including
MHC-II, ApoE, SPP1, LAIR1, CD39, and CCL (Figure 4A). Signaling contribution heatmaps
indicated that RNF135-positive TAMs were involved in stronger and more diverse inter-
actions with tumor cells and other TAM subsets. The CCL pathway showed consistently
higher activity in the RNF135-positive group (Figure 4B). To identify which TAM sub-
types were involved in CCL signaling, we calculated communication probabilities among
TAM subsets. RNF135-positive TAMs showed higher CCL signaling strength, especially
involving Transitory TAM and Proliferation-TAMs (Figure 4C).

3.6. CCL3/CCL3L3–CCR1 Axis Is a Dominant Contributor to CCL Signaling in
RNF135-Positive TAMs

To further investigate the key drivers of CCL signaling, we analyzed the roles of
different cell types within the signaling network. In the RNF135-positive group, Transitory
TAMs served as dominant signal senders and influencers, while Proliferation-TAMs acted
as the main receivers and mediators. In contrast, in the RNF135-negative group, Transitory
TAMs functioned as both senders and receivers, but had limited influence on Proliferation-
TAMs (Figure 5A). Ligand–receptor pair decomposition revealed that CCL3–CCR1 and
CCL3L3–CCR1 were the major contributors to the overall CCL pathway activity (Figure 5B).
We then examined the expression patterns of these genes across cell subtypes. CCL3,
CCL3L3, and CCR1 were predominantly expressed in Transitory- and Proliferation-TAMs
(Figure 5C). Violin plots confirmed these findings, showing the highest expression levels
in the same TAM subsets (Figure 5D). UMAP feature plots further demonstrated spatial
co-localization of CCL3, CCL3L3, and CCR1 within the TAM compartment (Figure 5E).
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Figure 4. RNF135-positive TAMs exhibit enhanced CCL signaling and inter-TAM communication.
(A) Information flow comparison showing increased signaling activity in RNF135-positive TAMs
across pathways, especially CCL. (B) Heatmap comparing CCL-related signaling pathway strength
across TAM subtypes between RNF135-positive and -negative groups. (C) Heatmaps showing pair-
wise CCL signaling probabilities among TAM subtypes in RNF135-positive vs. negative conditions.
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Figure 5. CCL3/CCL3L3–CCR1 axis mediates enhanced signaling in RNF135-positive TAMs. (A) CCL
signaling role analysis identifies RNF135-positive Transitory-TAMs as major senders and Proliferation-
TAMs as dominant receivers. (B) Contribution analysis of ligand–receptor pairs highlights CCL3–
CCR1 and CCL3L3–CCR1 as the top contributors to CCL signaling. (C) Dot plot of CCL3, CCL3L3, and
CCR1 expression across TAM and other immune cell subtypes. (D) Violin plots showing expression
distribution of CCL3, CCL3L3, CCR1, and CCR6 across TAM subsets. (E) UMAP feature plots
displaying spatial co-localization of CCL3, CCL3L3, and CCR1 in TAM clusters. (F) PCA of Ivy
GAP spatial transcriptomic data showing high RNF135 expression in the microvascular proliferation
(CT-mvp) region. (G) Boxplots comparing predicted drug sensitivity between RNF135-high and -low
GBMs, with Selumetinib showing higher sensitivity in the RNF135-high group.

3.7. RNF135 Expression Is Enriched in Microvascular Proliferation Regions and Associated with
Differential Drug Sensitivity

To explore the spatial distribution of RNF135 expression in glioblastoma tissue, we
analyzed spatial transcriptomic data from the Ivy Glioblastoma Atlas Project. Principal
component analysis revealed distinct regional clustering of samples, and RNF135 expres-
sion was highly enriched in the CT-mvp region, which corresponds to microvascular
proliferation (Figure 5F).

Finally, to evaluate the therapeutic relevance of RNF135 expression, we performed
drug sensitivity prediction using transcriptomic profiles. Analysis of a panel of targeted
agents revealed significant differences in predicted response between the RNF135 high- and
low-expression groups. Among the tested compounds, Selumetinib—a MEK inhibitor—
exhibited the greatest difference in predicted response, with significantly higher sensitivity
observed in the RNF135 high-expression group (Figure 5G).
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4. Discussion
In this study, we identified RNF135 as a key immunoregulatory molecule in GBM,

beyond its established tumor-intrinsic oncogenic functions. RNF135 was significantly up-
regulated in TAMs, particularly within proliferation, phagocytic, and transitional subtypes.
These RNF135-enriched TAMs exhibited enhanced intercellular communication, especially
via the CCL3/CCL3L3–CCR1 axis, and were associated with poor patient prognosis. Our
findings reveal a novel dimension of RNF135 activity—namely, its role in shaping an im-
munologically active yet immunosuppressive microenvironment—thereby advancing our
understanding of immune evasion mechanisms in GBM.

Previous studies have primarily focused on the oncogenic role of RNF135 in glioma
cells. Gu et al. reported that RNF135 promotes tumor proliferation by facilitating the
ubiquitin-mediated degradation of p21, accelerating cell cycle progression [31]. Similarly,
Zhang et al. showed that RNF135, as a downstream target of miR-485-3p, activates the
MAPK/ERK signaling pathway to drive glioma cell growth and migration [32]. Consistent
with these mechanistic insights, our transcriptome-based drug sensitivity analysis revealed
that RNF135-high GBMs were more susceptible to Selumetinib, a selective MEK1/2 in-
hibitor that targets the MAPK/ERK cascade [33]. This suggests that RNF135 may serve as
a biomarker for MAPK pathway–dependent gliomas and support the potential utility of
MEK inhibition in RNF135-overexpressing tumors.

Our study further reveals that RNF135-positive TAMs predominantly engage in CCL
signaling, especially through the CCL3/CCL3L3–CCR1 axis, which emerged as a domi-
nant contributor to TAM–TAM and TAM–tumor cell communication. RNF135 expression
was highest in proliferation and transitory TAM subsets, which correspondingly showed
elevated expression of CCL3, CCL3L3, and CCR1. This suggests that RNF135 may transcrip-
tionally or post-transcriptionally promote CCL ligand production, facilitating autocrine and
paracrine loops that reinforce TAM-mediated immunosuppression. Importantly, CCR1 sig-
naling has been implicated in the recruitment and retention of myeloid cells within tumors,
promotion of M2-like polarization, and evasion of T cell-mediated cytotoxicity [34–36].
Thus, the RNF135–CCL3/CCR1 axis may represent a critical hub by which glioblastoma
orchestrates an immunosuppressive and tumor-supportive microenvironment.

Beyond its classical function as an E3 ubiquitin ligase, RNF135 (also known as RIPLET)
has been shown to amplify antiviral innate immune responses by promoting RIG-I cluster-
ing and signaling. Cadena et al. revealed that RNF135 catalyzes K63-linked polyubiquitina-
tion and physically cross-bridges filamentous RIG-I complexes, enhancing downstream
signaling in an RNA-length–dependent manner [16]. Although RIG-I was not directly
evaluated in our study, the strong communication network and subtype-specific clustering
of RNF135-high TAMs raise the possibility that similar oligomerization-based mechanisms
may facilitate the assembly of immunosuppressive signaling hubs. Alternatively, RNF135
may promote NF-κB– or IRF-mediated transcription of chemokines such as CCL3, thereby
reinforcing TAM–TAM and TAM–tumor interactions.

Mechanistically, this immunoregulatory role appears to be context dependent. For in-
stance, in hepatocellular carcinoma, epigenetic silencing of RNF135 induces lipid metabolic
reprogramming and STAT3 activation, leading to T cell exhaustion and resistance to im-
mune checkpoint blockade [15]. While RNF135 is silenced in HCC but upregulated in GBM,
both scenarios converge on immune dysfunction through distinct pathways—metabolic vs.
chemokine-mediated suppression—underscoring the context-dependent immunoregula-
tory roles of RNF135 across tumor types.

Taken together, RNF135 may act as a dual-function effector in GBM, driving tumor pro-
liferation via MAPK signaling and reinforcing macrophage-mediated immunosuppression
through CCL3/CCR1 communication. These findings position RNF135 as both a mechanis-
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tic biomarker and a potential therapeutic target. Given the availability of CCR1 antagonists
and MEK inhibitors in clinical development, combinatorial targeting of RNF135-driven
pathways may offer novel immunotherapeutic strategies for RNF135-high GBM.

This study has several limitations. First, our analyses were based on publicly avail-
able bulk and single-cell transcriptomic datasets, without in vitro or in vivo functional
validation. While the consistency of our findings across independent cohorts strengthens
confidence in the results, experimental studies are required to confirm the causal role of
RNF135 in modulating TAM phenotypes, intercellular signaling, and therapeutic suscep-
tibility. Second, we did not include proteomic data to validate RNF135 expression at the
protein level within specific cell populations. Future studies incorporating immunohis-
tochemistry, mass spectrometry, or single-cell proteomic approaches will be necessary
to confirm the cellular localization and functional relevance of RNF135. Third, the pre-
dicted sensitivity to selumetinib was derived from transcriptome-based computational
modeling rather than direct experimental testing, and therefore should be interpreted
with caution until validated in preclinical models. Nonetheless, to the best of our knowl-
edge, this is the first study to report the immunological role of RNF135 in GBM, and we
hope that our findings will provide a valuable framework for subsequent mechanistic and
translational investigations.

5. Conclusions
In summary, our findings uncover a previously unrecognized immunosuppressive

role of RNF135 in GBM TAMs and suggest that RNF135 may serve as a functional effector
and predictive biomarker for both immune evasion and targeted therapy susceptibility.
These insights provide a conceptual framework for future studies aiming to integrate innate
immune signaling components into precision immunotherapy strategies for GBM.
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