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Simple Summary: Neuroblastoma is the most common cancer in infants and the most common solid
tumor outside the brain in children, and responds poorly to current therapies. The sphingolipid-
modifying drug opaganib, which has anticancer and anti-inflammatory activity in many preclinical
models, was tested for inhibition of neuroblastoma cell proliferation in cell culture and in tumors
growing in mice. Opaganib inhibited cell proliferation regardless of the MYCN gene status of the
neuroblastoma cells. Treatment of tumor-bearing mice with opaganib in combination with the estab-
lished drugs irinotecan and temozolomide reduced tumor growth and increased survival compared
with irinotecan plus temozolomide alone. Because opaganib has already demonstrated safety in
patients with cancer, this new drug may provide improved therapy for neuroblastoma patients.

Abstract: Neuroblastoma (NB), the most common cancer in infants and the most common solid
tumor outside the brain in children, grows aggressively and responds poorly to current therapies.
We have identified a new drug (opaganib, also known as ABC294640) that modulates sphingolipid
metabolism by inhibiting the synthesis of sphingosine 1-phosphate (S1P) by sphingosine kinase-2 and
elevating dihydroceramides by inhibition of dihydroceramide desaturase. The present studies sought
to determine the potential therapeutic activity of opaganib in cell culture and xenograft models of NB.
Cytotoxicity assays demonstrated that NB cells, including cells with amplified MYCN, are effectively
killed by opaganib concentrations well below those that accumulate in tumors in vivo. Opaganib was
shown to cause dose-dependent decreases in S1P and hexosylceramide levels in Neuro-2a cells, while
concurrently elevating levels of dihydroceramides. As with other tumor cells, opaganib reduced
c-Myc and Mcl-1 protein levels in Neuro-2a cells, and also reduced the expression of the N-Myc
protein. The in vivo growth of xenografts of human SK-N-(BE)2 cells with amplified MYCN was
suppressed by oral administration of opaganib at doses that are well tolerated in mice. Combining
opaganib with temozolomide plus irinotecan, considered the backbone for therapy of relapsed or
refractory NB, resulted in increased antitumor activity in vivo compared with temozolomide plus
irinotecan or opaganib alone. Mice did not lose additional weight when opaganib was combined
with temozolomide plus irinotecan, indicating that the combination is well tolerated. Opaganib has
additive antitumor activity toward Neuro-2a tumors when combined with the checkpoint inhibitor
anti-CTLA-4 antibody; however, the combination of opaganib with anti-PD-1 or anti-PD-L1 antibodies
did not provide increased antitumor activity over that seen with opaganib alone. Overall, the data
demonstrate that opaganib modulates sphingolipid metabolism and intracellular signaling in NB
cells and inhibits NB tumor growth alone and in combination with other anticancer drugs. Amplified
MYCN does not confer resistance to opaganib, and, in fact, the drug attenuates the expression of both
c-Myc and N-Myc. The safety of opaganib has been established in clinical trials with adults with
advanced cancer or severe COVID-19, and so opaganib has excellent potential for treating patients
with NB, particularly in combination with temozolomide and irinotecan or anti-CTLA-4 antibody.
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1. Introduction

Neuroblastoma (NB) is the most common cancer in children less than 1 year of age
and the most common extracranial solid tumor in children, accounting for ~10% of all
childhood cancers [1]. Approximately half of NB patients are diagnosed with low- or
medium-risk, and these patients have excellent 5-year survival rates. Unfortunately, for
the remaining patients diagnosed with high-risk NB, this survival rate is only ~50% [2,3].
High-risk NB usually occurs in children older than 18 months, frequently metastasizes to
the bone, and is often associated with MYCN gene amplification (40–50% of cases) [4,5].
Amplification of MYCN strongly predicts a poorer prognosis for both tumor progression
and overall survival [6–8], and, consequently, the protein product N-Myc is a prime target
for new drugs for NB treatment [9–11]. Additionally, genes associated with activation of
RAS-MAPK signaling are mutated in 65% of relapsed tumors [12], and overexpression of
the anti-apoptotic proteins Bcl-2 and Mcl-1 is implicated in the poor response of NB to
therapy [13,14]. Chemotherapy for high-risk NB patients begins with induction therapy
using a battery of cytotoxic drugs, typically including platinum drugs, alkylators, and
topoisomerase inhibitors [2,15,16]. Unfortunately, these agents are generally poorly effec-
tive and inflict considerable short- and long-term toxicity to the patient, including increased
secondary cancers [17]. Therefore, a great deal of current effort is focused on identifying
appropriate new targets for NB therapy through consideration of critical and/or aberrant
pathways in this disease [18–23]. Difloromethylornithine (DFMO, elfornithine) has been
studied as a possible modulator of N-Myc via alteration of polyamine levels [24], and
has recently been approved by the FDA for maintenance therapy of high-risk NB [25,26].
Attempts to treat high-risk NB with antibodies against the checkpoint proteins PD-1, PD-L1,
and CTLA-4 have not established therapeutic benefit [27]. Clearly, new and more effective
therapies are desperately needed for NB patients, and significant effort is being focused on
identifying new targets for NB drugs.

Sphingolipid metabolism is a key pathway in cancer biology in which ceramides, di-
hydroceramides (dhCer), sphingosine, and sphingosine 1-phosphate (S1P) regulate tumor
cell death, proliferation, and drug resistance, as well as host angiogenesis, inflammation,
and immunity (reviewed in [28–31]). In particular, sphingosine kinases (SK1 and SK2)
are key regulators of the ceramide/S1P rheostat that controls tumor cell proliferation and
death, as well as tumor sensitivity to radiation and chemotherapy (reviewed in [32–34]).
Sphingosine kinases are frequently overexpressed in many cancers, and are essential for
tumor cell survival and proliferation [29]. In parallel, dhCer desaturase (DES1) controls
the ratio of saturated and unsaturated ceramides, and this regulates apoptotic and au-
tophagic signaling in cancer cells [35,36]. Because of these roles of sphingolipids in cancer
biology, chemical modulators of sphingolipid metabolism are potential candidates for new
anticancer drugs.

Opaganib is an orally active, isozyme-selective inhibitor of SK2, and is competitive
with respect to sphingosine [37,38]. Opaganib depletes S1P and elevates ceramide in tumor
cells, suppresses signaling through pERK, pAKT, and NFκB, and promotes autophagy
and/or apoptosis [29,37,38]. Opaganib also downregulates c-Myc in a variety of cell lines
and reduces androgen receptor expression in prostate cancer cells. Because it acts as a
sphingosine mimetic, opaganib also inhibits DES1, thereby increasing levels of dhCer
and promoting autophagy in cells. Opaganib has antitumor activity in a broad range of
mouse models [29,37,39] and anti-inflammatory activity in several rodent models [40–44].
In addition to single-agent cytotoxicity, opaganib has been combined with a variety of
anticancer drugs in vitro and in vivo. In the present studies, the effects of opaganib on
intracellular signaling and proliferation of NB cells were analyzed. Additionally, the
ability of opaganib to suppress tumor growth in vivo was assessed as a single-agent and in
combination with cytotoxic drugs used to treat NB or checkpoint antibodies.
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2. Materials and Methods
2.1. Materials

Tumor cell lines (Neuro-2a, SK-N-SH, SK-N-AS, SK-N-MC, IMR32, SK-H-(BE)2, and
Lewis lung carcinoma (LLC)) were purchased from the American Type Culture Collection
and maintained in RPMI 1640 medium supplemented with 10% fetal bovine serum from
Invitrogen (Carlsbad, CA, USA) and 100 units/mL penicillin-streptomycin. Geltrex was
purchased from ThermoFisher Scientific (Waltham, MA, USA). Opaganib (GMP-grade)
was synthesized according to French et al. [37] and dissolved in a vehicle consisting of
46.7% polyethylene glycol 400, 46.7% saline, and 6.6% EtOH. Temozolomide and irinotecan
were purchased from Sigma-Aldrich (St. Louis, MO, USA). Antibodies for immunoblotting
were purchased from Cell Signaling Technology (Danvers, MA, USA): Mcl-1 (catalog
number 5453), c-Myc (catalog number 5605), N-Myc (catalog number 84406), GAPDH
(catalog number 5174), Erk (catalog number 4695), and pErk (catalog number 4370). Anti-
mouse PD-1 antibody, anti-mouse PD-L1 antibody, and anti-mouse CTLA-4 antibody were
purchased from BioXCell (West Lebanon, NH, USA) and suspended in sterile phosphate-
buffered saline (PBS) for intraperitoneal administration. SCID mice were purchased from
the National Cancer Institute (Bethesda, MD, USA), while A/J and C57BL/6 mice were
purchased from Jackson Labs (Bar Harbor, ME, USA).

2.2. In Vitro Cytotoxicity and Signaling Assays

For cytotoxicity assays, cells were seeded in 96-well plates and 24 h later treated with
0 to 50 µM opaganib for 72 h. Cell viability was determined by a standard sulforhodamine
B assay, as described previously [29]. In lipidomic analyses, ceramide species, sphingoid
bases, and their phosphates were quantified by the Lipidomics Shared Resource at the
Medical University of South Carolina following their validation using high-performance
liquid chromatography–tandem mass spectrometry procedures. Results are expressed as
the level of the sphingolipid normalized to protein levels measured using the Bradford
assay. For protein expression studies, cell lysates were prepared using a buffer contain-
ing 25 mM Tris-HCl, 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, and 0.1% SDS.
After centrifugation, cell lysates were normalized for protein content using the BCA as-
say (Pierce), resolved by SDS-PAGE, and transferred to PVDF membranes. Membranes
were blocked with 10% bovine serum albumin and probed with the indicated primary
antibodies at dilutions specified by the manufacturers. All immunoblots were visualized
by enhanced chemiluminescence and quantified using ImageJ software (version IJ 1.54g)
with normalization to GAPDH.

2.3. In Vivo Tumor Growth Assays

Animal studies have been carried out in accordance with the Guide for the Care
and Use of Laboratory Animals by the U.S. National Institutes of Health. In the first ex-
periments, NOD/SCID mice (6–8 weeks old) were injected with 3 × 106 SK-N-(BE)2 NB
cells per mouse into the right hind flank subcutaneously on Day 0 of the experiment, and
tumors were allowed to grow to ~100 mm3. Mice were then randomized into treatment
groups (N = 8/group) and treated with either vehicle or 50 mg/kg opaganib given by
oral gavage 5 days/week. For each mouse, body weight and tumor size were measured
thrice per week, and tumor volumes were calculated by using the following formula:
volume = 1/2 × length × width2. The toxicity of the treatments was assessed by careful
observation of the mice for signs of distress, including respiratory difficulties, gastrointesti-
nal distress, evidence of spastic paralysis, convulsions, or blindness. No mice displayed
any of these abnormalities, so individual mice were euthanized by CO2 asphyxiation and
cervical dislocation when the tumor volume reached ≥3000 mm3.

Because the immune status of the host can affect tumor growth and response to
therapy, the second tumor model utilized immunocompetent mice injected with syngeneic
LLC cells. Specifically, C57BL/6 mice were injected with 105 LLC cells suspended in PBS
into the right hind flank subcutaneously on Day 0 of the experiment. When tumors reached
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~150 mm3, mice were randomized into the following treatment groups (N = 7–8/group):
control (vehicle only); opaganib alone (oral gavage at 50 mg/kg 5 days/week until sacrifice);
irinotecan (IRIN, 5 mg/kg) plus temozolomide (TMZ, 25 mg/kg) given by intraperitoneal
injection 5 days/week; or a combination of opaganib + IRIN + TMZ (50, 5, and 25 mg/kg,
respectively). Mouse body weight, tumor growth, and potential toxicity were monitored,
and mice were euthanized as indicated above.

In the third independent tumor model, the effects of opaganib alone and in combina-
tion with chemotherapy or immunotherapy were assessed using xenografts of Neuro-2a
cells growing in immunocompetent syngeneic A/J mice. Specifically, male A/J mice were
injected with 106 Neuro-2a cells suspended in 100 µL PBS/Geltrex on the right hind flank.
When tumors reached 150–450 mm3, mice were randomized into the following treatment
groups (N = 9–10 mice/group): control (vehicle only); opaganib alone (oral gavage at
50 mg/kg 5 days/week until sacrifice); irinotecan (IRIN, 5 mg/kg) plus temozolomide
(TMZ, 25 mg/kg) given by intraperitoneal injection 5 days/week; or a combination of
opaganib + IRIN + TMZ (50, 5, and 25 mg/kg, respectively). In separate experiments, A/J
mice bearing Neuro-2a tumors as above were randomized into the following treatment
groups: control (vehicle only); opaganib alone (oral gavage at 50 mg/kg 5 days/week);
anti-mouse PD-1, PD-L1, or CLTA-4 antibodies (200 µg injected intraperitoneally twice
weekly for 3 weeks); or a combination of opaganib plus the antibody. Mouse body weight,
tumor growth, and potential toxicity were monitored, and mice were euthanized as indi-
cated above.

2.4. Statistics

Mouse survival rates were compared using the Kaplan–Meier approach with the Gehan–
Breslow–Wilcoxon test using GraphPad Prism software (Version 5.0). Other data were an-
alyzed by one-way ANOVA using the Tukey post hoc test. Differences are considered
statistically significant at p < 0.05. Error bars in the figures represent the mean ± standard
deviation of the treatment groups calculated with GraphPad Prism 5.

3. Results
3.1. In Vitro Effects of Opaganib on NB Cells

Cytotoxicity data for opaganib toward a panel of NB cell lines, including human
MYCN single-copy cells (SK-N-SH, SK-N-AS, and SK-N-MC); human MYCN amplified
cells (IMR32 and SK-H-(BE)2); and mouse MYCN single-copy cells (Neuro-2a), are indicated
in Table 1. The data demonstrate that NB cells are killed by opaganib concentrations well
below those that accumulate in tumors in vivo (~80 µg/g tissue, which is ~200 µM) [37].
Importantly, amplification of MYCN does not result in resistance to opaganib.

Table 1. Cytotoxicity of opaganib toward NB cells. Cells were incubated with varying concentra-
tions of opaganib for 72 h, and the surviving fraction was determined. Values indicate the IC50

mean ± SEM (n = 2–8, except for IMR32, where n = 1).

Cell Line MYCN
Status Replicates IC50 for Opaganib

(µM)

Neuro-2a Single 8 7.5 ± 1.5
SK-N-SH Single 2 35.0 ± 2.0
SK-N-AS Single 2 19.8 ± 5.3
SK-N-MC Single 2 16.0 ± 6.0

IMR32 Amplified 1 7.6
SK-H-(BE)2 Amplified 4 18.5 ± 3.2

We have previously demonstrated in several cell types that opaganib reduces S1P
levels and substantially elevates dihydroceramide levels, reflecting dual inhibition of
SK2 and DES1 [37]. Additional lipidomic analyses were conducted on Neuro-2a cells
treated with varying concentrations of opaganib for 24 h. As indicated in Table 2, acute
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treatment of Neuro-2a cells with opaganib reduced S1P and elevated total ceramide and
dihydroceramide levels at 3 µM opaganib, which is near the cytotoxicity IC50 for these cells.
Interestingly, higher opaganib concentrations also markedly decreased deoxyceramides and
hexosylceramides in these cells, suggesting additional sphingolipid targets for opaganib.

Table 2. Alteration of sphingolipid profiles in Neuro-2a cells treated with opaganib. Cells were
incubated with the indicated concentrations of opaganib for 24 h, and sphingolipid profiles were
quantified by LC-MS. The top row indicates the absolute mass of the indicated lipid(s) and the later
rows are expressed relative to the mass in the vehicle-treated control cells. Values represent the mean
of triplicate samples.

Opaganib
(µM) Sphingosine S1P Total

Ceramides
Total

Dihydroceramides
Total

Deoxyceramides
Total

Hexosylceramides

0 186
pmol/mg

5.1
pmol/mg

1211
pmol/mg

41
pmol/mg

59
pmol/mg

1492
pmol/mg

0 100 100 100 100 100 100

1 81 80 103 116 87 89

3 94 81 112 148 97 90

10 90 87 98 165 92 93

50 22 7 87 333 47 12

The effects of opaganib on intracellular signaling proteins in Neuro-2a cells were
examined by immunoblotting (Figure 1). As with other tumor cells, treatment of Neuro-2a
cells with opaganib decreased the expression of both c-Myc and Mcl-1 (48% and 70%,
respectively) and completely eliminated pERK. Importantly, opaganib also reduced N-Myc
protein expression in Neuro-2a cells (50%). Overall, treatment of NB cells with opaganib
decreases proliferative signaling (c-Myc, N-Myc, and pERK) in concert with removing
anti-apoptotic signaling (Mcl-1).
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Figure 1. Effects of genetic and pharmacologic inhibition of SK2 on signaling proteins. Neuro-2a cells
were incubated with 0 or 30 µM opaganib for 24 h, and the indicated proteins were examined by
immunoblotting and quantified by ImageJ (version IJ 1.54g) analyses with normalization to GAPDH.
Uncropped WB figures can be reviewed in Figure S1.

3.2. In Vivo Effects of Opaganib on NB Tumors

Several in vivo tumor studies were conducted to evaluate the potential for treating NB
patients with opaganib, including experiments using opaganib alone, in combination with
irinotecan (IRIN) plus temozolomide (TMZ), or in combination with checkpoint antibodies.
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3.2.1. Single-Agent Opaganib

An initial study using xenografts of SK-N-(BE)2 NB cells in immunodeficient NOD/SCID
mice demonstrated effective suppression of tumor growth by treatment with opaganib at
50 mg/kg/day, 5 days/week (Figure 2). Tumors in mice treated with vehicle progressed
rapidly, necessitating euthanizing the animals in approximately 3 weeks. In contrast, mice
treated with oral opaganib had substantially reduced rates of tumor growth, indicating
antitumor activity against human NB cells with amplified MYCN. Further experiments
were conducted in immunocompetent syngeneic mouse model systems because of their
importance to the host immune response and the impact of opaganib treatment on immune
responsiveness [45].

Cancers 2024, 16, x FOR PEER REVIEW 6 of 17 
 

 

with irinotecan (IRIN) plus temozolomide (TMZ), or in combination with checkpoint an-

tibodies. 

3.2.1. Single-Agent Opaganib 

An initial study using xenografts of SK-N-(BE)2 NB cells in immunodeficient 

NOD/SCID mice demonstrated effective suppression of tumor growth by treatment with 

opaganib at 50 mg/kg/day, 5 days/week (Figure 2). Tumors in mice treated with vehicle 

progressed rapidly, necessitating euthanizing the animals in approximately 3 weeks. In 

contrast, mice treated with oral opaganib had substantially reduced rates of tumor 

growth, indicating antitumor activity against human NB cells with amplified MYCN. Fur-

ther experiments were conducted in immunocompetent syngeneic mouse model systems 

because of their importance to the host immune response and the impact of opaganib 

treatment on immune responsiveness [45].  

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

Time (Days)

T
u

m
o

r 
V

o
lu

m
e
 (

m
m

3
)

 

Figure 2. Antitumor activity of opaganib. SK-N-(BE)2 cells were implanted into NOD/SCID mice 

and allowed to grow to ~100 mm3. Animals were then treated orally with 0 (▲) or 50 (■) mg/kg 

opaganib 5 days/week, and body weight and tumor size were monitored. Values indicated the mean 

± SEM for each treatment group (N = 8/group). 

3.2.2. Combination with Temozolomide and Irinotecan 

We evaluated the antitumor activity of opaganib in combination with irinotecan 

(IRIN) plus temozolomide (TMZ) because IRIN + TMZ is the backbone for the treatment 

of recurrent or refractory NB. Opaganib (50 mg/kg) was administered by oral gavage 5 

days/week, and IRIN and TMZ (5 and 25 mg/kg, respectively) were given by intraperito-

neal injection, also in a 5 day on/2 day off schedule. Body weights and animal behavior 

and appearance were carefully monitored to detect possible overt toxicity from the drug 

combinations. Tumor volumes and body weights were measured daily for at least two full 

cycles of drug treatments. When tumor volumes reached >3000 mm3, animals were eu-

thanized per IACUC requirements. 

In the first study, male C57BL/6 mice were injected on the right hind flank with 106 

Lewis lung carcinoma (LLC) cells suspended in 100 µL of PBS/Geltrex. When tumors 

reached 150–200 mm3, mice were randomized into treatment groups of 7–8 mice/group 

and received the following: vehicle; opaganib alone; IRIN + TMZ; or opaganib + IRIN + 

TMZ. As shown in Figure 3, the LLC tumors in vehicle-treated mice grew very rapidly, 

and opaganib alone reduced tumor growth compared to the vehicle group (p < 0.01 at Day 

9). Treatment with IRIN + TMZ induced only a minor, non-significant reduction in tumor 

growth. Importantly, the three-drug combination of opaganib + IRIN +TMZ showed a sta-

tistically significant reduction in tumor growth by Day 9 compared to either the vehicle 

group (p < 0.001) or the IRIN + TMZ group (p < 0.05), indicating that the three drugs in 

combination are more efficacious than the standard IRIN + TMZ treatment. Body weights 

Figure 2. Antitumor activity of opaganib. SK-N-(BE)2 cells were implanted into NOD/SCID mice
and allowed to grow to ~100 mm3. Animals were then treated orally with 0 (▲) or 50 (■) mg/kg
opaganib 5 days/week, and body weight and tumor size were monitored. Values indicated the
mean ± SEM for each treatment group (N = 8/group).

3.2.2. Combination with Temozolomide and Irinotecan

We evaluated the antitumor activity of opaganib in combination with irinotecan (IRIN)
plus temozolomide (TMZ) because IRIN + TMZ is the backbone for the treatment of recur-
rent or refractory NB. Opaganib (50 mg/kg) was administered by oral gavage 5 days/week,
and IRIN and TMZ (5 and 25 mg/kg, respectively) were given by intraperitoneal injection,
also in a 5 day on/2 day off schedule. Body weights and animal behavior and appearance
were carefully monitored to detect possible overt toxicity from the drug combinations.
Tumor volumes and body weights were measured daily for at least two full cycles of
drug treatments. When tumor volumes reached >3000 mm3, animals were euthanized per
IACUC requirements.

In the first study, male C57BL/6 mice were injected on the right hind flank with
106 Lewis lung carcinoma (LLC) cells suspended in 100 µL of PBS/Geltrex. When tumors
reached 150–200 mm3, mice were randomized into treatment groups of 7–8 mice/group and
received the following: vehicle; opaganib alone; IRIN + TMZ; or opaganib + IRIN + TMZ.
As shown in Figure 3, the LLC tumors in vehicle-treated mice grew very rapidly, and
opaganib alone reduced tumor growth compared to the vehicle group (p < 0.01 at Day 9).
Treatment with IRIN + TMZ induced only a minor, non-significant reduction in tumor
growth. Importantly, the three-drug combination of opaganib + IRIN +TMZ showed a
statistically significant reduction in tumor growth by Day 9 compared to either the vehicle
group (p < 0.001) or the IRIN + TMZ group (p < 0.05), indicating that the three drugs in
combination are more efficacious than the standard IRIN + TMZ treatment. Body weights
were measured daily to evaluate the overall health of the mice and the potential toxicity of
the multiple drug combination. As also shown in Figure 3, all treatment groups maintained
similar body weights throughout two full cycles of 7-day drug treatments. Additionally,
mice in all the treatment groups remained well-groomed and active throughout the study,
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indicating no excessive toxicity from combining the three drugs. Finally, survival time
until tumors reached >3000 mm3 was tracked for all individual mice in the study. As
shown in Figure 3 table, survival times inversely corresponded with the rate of tumor
growth, with vehicle-treated mice having a median survival of 13 days. Opaganib treatment
alone modestly improved survival, while opaganib + IRIN + TMZ treatment resulted in
substantially greater median survival than vehicle- or IRIN + TMZ-treated mice (p < 0.01
for each comparison). Overall, this study demonstrated a significant increase in efficacy
of opaganib + IRIN + TMZ relative to vehicle- and IRIN + TMZ-treated mice. Also of
importance, the study indicates that there is no overt toxicity for the combination of
opaganib + IRIN + TMZ over 2 weeks of treatment.
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Figure 3. Effects of opaganib in combination with irinotecan and temozolomide on LLC tumor
growth. Immunocompetent C57BL/6 mice bearing LLC tumors (n = 7 or 8/group) were treated
with the following: vehicle; opaganib; IRIN + TMZ; or a combination of opaganib + IRIN + TMZ.
(Left Panel): The average tumor volume of each group is shown for each day, and statistical com-
parisons on Day 9 are indicated (** p < 0.01 from the vehicle group, *** p < 0.001 from the vehicle
group, # p < 0.05 from the IRIN + TMZ group). (Right Panel): The average body weights of mice in
each treatment group are shown up to Day 14, completion of 2 full cycles of drug treatments. Table:
Individual mice were sacrificed when the tumor volume reached > 3000 mm3. The median survival
in days is shown for each treatment group.

In the second study, Neuro-2a cells were used because they are a common model for
NB tumors grown in immunocompetent syngeneic mice [46]. In these studies, male A/J
mice were injected on the right hind flank with 106 Neuro-2a cells suspended in 100 µL of
PBS/Geltrex, and tumors were monitored until they reached 150–250 mm3. Mice were then
randomized into treatment groups (N = 9–10 mice/group) and received: vehicle; opaganib
alone; IRIN + TMZ; and opaganib + IRIN + TMZ at the same doses and schedule used in
the LLC model. Tumor volumes and animal health were monitored as indicated above, and
individual mice were euthanized when their tumor volume exceeded 3000 mm3 per IACUC
requirements. As shown in Figure 4, the body weights of the vehicle-treated, tumor-bearing
mice decreased approximately 5% in the first 10 days of the study, suggesting that this
strain is more susceptible to cachexia than are C57BL/6 mice. Body weight loss increased
slightly in all the drug-treated groups; however, this was not sufficient to necessitate the
euthanasia of any of the animals.
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Figure 4. Effects of opaganib in combination with irinotecan and temozolomide on Neuro-2a tumor
growth. Immunocompetent A/J mice bearing Neuro-2a tumors (n = 9 or 10/group) were treated with
the following: vehicle; opaganib; IRIN + TMZ; or opaganib + IRIN + TMZ. (Left Panel): The average
tumor volume of each group is shown for each day, and statistical comparisons on Day 9 are indicated
(*, ** and *** p < 0.05, 0.01 and 0.001, respectively, from the vehicle group; ## and ### p < 0.01 and 0.001,
respectively, from the IRIN +TMZ group). (Right Panel): The average body weights of mice in the
study up to Day 10 are shown. Table: Tumor size on Day 10 was used to classify individual tumors
as having low, medium, or high growth rates.

As indicated in Figure 4, the Neuro-2a tumors in vehicle-treated mice grew rapidly,
necessitating the euthanasia of some mice beginning on Day 10. Treatment with opa-
ganib alone modestly decreased the average tumor volume; however, the combination
of IRIN + TMZ significantly reduced tumor growth relative to vehicle-treated mice. In-
terestingly, the addition of opaganib to IRIN + TMZ treatment further suppressed tumor
growth compared to both the vehicle and the IRIN + TMZ groups, reaching high signifi-
cance (p < 0.001) during the progression of the study. The growth of the Neuro-2a tumors
was heterogeneous among individual mice in the treatment groups (the table in Figure 4).
For the vehicle-treated group, 50% of the tumors grew very rapidly, reaching > 3000 mm3

by Day 10; whereas 30% remained below 1000 mm3 and 20% ranged from 1000–3000 mm3.
The cause of this heterogeneity is not clear; however, opaganib alone and IRIN + TMZ
shifted the pattern of growth toward slower progression, and the opaganib + IRIN + TMZ
combination markedly suppressed the growth of all tumors. The median survival of the
vehicle control group was 10 days; however, the median survivals for the IRIN + TMZ
and opaganib + IRIN + TMZ treatment groups differed significantly from the vehicle
control group (p = 0.016 and p = 0.012, respectively). In all, the three-drug combination of
opaganib + IRIN + TMZ again was more efficacious than IRIN + TMZ treatment without
increased toxicity.

3.2.3. Combination with Checkpoint Antibodies

We have previously demonstrated that opaganib promotes immunogenic cell death
(ICD) in tumor cells, including Neuro-2a cells [45], which can enhance therapeutic responses
to checkpoint antibodies. Therefore, we conducted studies on the antitumor activity of
opaganib when combined with antibodies against either murine PD-1, PD-L1, or CLTA-4
toward Neuro-2a tumors growing in syngeneic A/J mice. In these experiments, opaganib
was administered by oral gavage (50 mg/kg/day, 5 days/week), and anti-mouse PD-1, PD-
L1, or CLTA-4 antibodies were injected intraperitoneally (200 µg) twice weekly for 3 weeks.
In Experiment 1, treatment was initiated when tumors were small (~100 mm3); however,
treatment in Experiment 2 was delayed until tumors were larger (~450 mm3) to more
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closely mimic clinical therapy. In both experiments, there was no significant toxicity from
opaganib alone or in combination with the checkpoint antibodies. Single agent treatment
with opaganib or the checkpoint antibodies generally reduced the average tumor size, but
differences from controls were not statistically significant because of the heterogeneity
in growth rates of the Neuro-2a tumors. Individual mice were euthanized when tumors
reached >3000 mm3, and the median survival times for mice treated with vehicle, opaganib
alone, checkpoint antibody alone, or opaganib plus checkpoint antibody are shown in
Table 3. In both experiments, the survival advantage provided by the opaganib + anti-
CTLA-4 antibodies was substantially greater than that of either drug alone, indicating
that opaganib and anti-CTLA-4 antibodies have additive antitumor activity. In contrast,
the combination of opaganib with anti-PD-1 or anti-PD-L1 antibodies did not increase
antitumor activity over that seen with opaganib alone.

Table 3. Effect of opaganib in combination with checkpoint antibodies on the survival of mice bearing
Neuro2a tumors. Individual mice were sacrificed when the tumor volume exceeded 3000 mm3. The
median survival in days is shown.

Experiment 1
Starting Tumor Volume = 106 ± 30 mm3

Experiment 2
Starting Tumor Volume = 460 ± 33 mm3

Treatment Median Survival
(Days)

Change from Control
(Days)

Median Survival
(Days)

Change from Control
(Days)

Vehicle 24 - 9 -

Opaganib alone 34 10 18.5 9.5

Anti-CTLA-4 34 10 21.5 12.5

Opaganib + anti-CTLA-4 43.5 19.5 30 21

Anti-PD-1 31 7 17 8

Opaganib + Anti-PD-1 35 11 31 22

Anti-PD-L1 31 7 17 8

Opaganib + anti-PD-L1 34 10 14.5 5.5

4. Discussion

Opaganib (previously called ABC294640) is the first clinical-stage drug targeting SK2
and DES1 for the treatment of cancer and pathologic inflammation. Opaganib depletes S1P
and elevates ceramide in tumor cells, suppresses signaling through pERK and pAKT, and
promotes autophagy and/or apoptosis in tumor cells [29,37,38,47]. We and others have
shown that opaganib has broad antitumor activity in mouse models [37,39,48], which is
associated with accumulation of opaganib in the tumors, depletion of tumor S1P levels,
and induction of apoptosis [37]. Phase 1 clinical testing of opaganib given to patients with
advanced solid tumors demonstrates that the drug is well-tolerated when administered
orally on a twice-daily basis, continuously in 28-day cycles [49]. In this first-in-human
trial, 64% of patients who completed two cycles of opaganib treatment had stable disease
or better, suggesting that it has antitumor activity in most patients. As in animal models,
opaganib decreased the patients’ plasma S1P over the first 12 hr, with a return to baseline at
24 h after a single dose. Plasma concentrations of opaganib peaked at 1–2 h, and declined
with a mean half-time of 5–15 h. Doses of opaganib that have therapeutic efficacy in mouse
xenograft models provide a Cmax of ~3.5 µg/mL [37], a drug level that was achieved by
33%, 75%, and 100% of patients treated with 250, 500, and 750 mg of opaganib, respectively.
In a second clinical trial of opaganib, 58% of patients with refractory multiple myeloma
achieved stable disease or better, and patients had decreased plasma levels of TNFα, EGF,
and VEGF [50]. Opaganib has also been assessed in hospitalized patients with severe
COVID-19 and is completing Phase 2 clinical testing in patients with cholangiocarcinoma
(ClinicalTrials.gov Identifier: NCT03377179) or prostate cancer (ClinicalTrials.gov Identifier:
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NCT04207255). Overall, opaganib has been given to almost 500 patients with an excellent
safety profile and preliminary indications of anticancer and anti-COVID activity.

The potential for targeting sphingolipid metabolism as an NB treatment option has
been considered by others [51]. Early studies demonstrated that ceramide inhibits NB cell
growth and differentiation [52] and promotes NB apoptosis [53,54]. DES1 was shown to
promote cell cycle progression in NB cells [55,56], and inhibition of this enzyme may be
the basis for the cytotoxicity of fenretinide [55]. Fenretinide inhibits NB cell proliferation
by inducing apoptosis [57–59] or lethal autophagy [60], and causes increases in dihydroce-
ramides due to direct inhibition of DES1 [61], which is similar to opaganib. Activation of
AKT suppresses ceramide-induced apoptosis in NB cells [62]. Importantly, NB cell lines
and tissues express high levels of SK2 relative to SK1, and the resultant S1P promotes
VEGF secretion from the cells [63]. Interesting data from Li et al. [64] demonstrate that
FTY720 (known to be phosphorylated by SK2 [65]) downregulates SK2 expression and
has antiproliferative and antitumor activity in NB cells. The involvement of sphingolipids
in drug resistance in NB was also considered [66,67]. In addition to their direct effects
on tumor cells, SKs regulate pathologic inflammation from cytokines such as TNFα and
IL-6 [68–70]. In particular, production of S1P in response to inflammatory cytokines is
dependent on SK activity [42,68,71–84], typically through NFκB [83]. NB tumors exist
in a proinflammatory environment [85–87], and secrete high levels of chemokines and
PGE2 that can promote tumor growth and progression [88]. IL-6 and VEGF promote NB
growth and aggression [89,90], and opaganib is known to suppress the generation of these
cytokines through inhibition of NFκB [91–93]. Therefore, altering sphingolipid metabolism,
particularly targeting SK2 and DES1, appears to be a viable new approach to NB therapy.

Using a panel of mouse and human cell lines, we herein confirm that NB cells can
be effectively killed by opaganib in vitro at concentrations that are clinically achievable.
Importantly, cells possessing amplified MYCN are not less sensitive to opaganib-induced
cytotoxicity than are single-copy MYCN cells. This contrasts with previous demonstrations
that N-Myc and c-Myc decrease the sensitivity of tumor cells to many drugs [9,94–96].
Sphingolipid profiling confirmed inhibition of SK2 and DES1 in NB cells by opaganib and
also indicated that production of hexosylceramides is also suppressed by the drug. Unfor-
tunately, the LC-MS methods used in these analyses do not resolve glucosylceramide and
galactosylceramide, so determining which specific hexosylceramide transferase is inhibited
by opaganib is not yet possible. Glucosylceramides and galactosylceramides, although
nearly identical structurally, have different tissue and cellular distributions, biological
functions, and metabolisms than more complex sphingolipids (reviewed in [97,98]). Of
note, both hexosyltransferases have been associated with increased tumor aggressiveness
and metastasis. Sphingolipid profiling also indicated that opaganib reduces the levels of
deoxyceramides, which are synthesized from alanine rather than serine and which have
been linked to lipotoxicity and the progression to type 2 diabetes [99]. Because opaganib
acts as a sphingosine mimetic, it is not surprising that it interacts with multiple enzymes
in the sphingolipid pathway, specifically SK2, DES, glucosylceramide synthase, and/or
galactosylceramide synthase.

Analyses of signaling protein expression confirmed that opaganib suppresses levels
of Mcl-1, pERK, and c-Myc as in other cell types. This is the first report that opaganib
also inhibits N-Myc in NB cells. The Myc proto-oncogene family (MYC, MYCN, and
MYCL) encodes three closely related transcription regulatory proteins that have been
widely studied as critical mediators of a variety of cell functions, including dysregulated
cell proliferation, metabolism, and survival in cancer (reviewed in [100]). The importance
of MYCN in the progression and pathology of NB has been well established [101]; however,
high expression of c-Myc has also been shown to be associated with poor clinical outcomes
in NB [102]. Interestingly, ablation of c-Myc by RNA interference inhibited the proliferation
of MYCN single-copy cells, but not when N-Myc was overexpressed, indicating at least
some functional compensation of c-Myc function in NB proliferation by N-Myc [103]. This
is consistent with the high degree of sequence and structural similarities between c-Myc
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and N-Myc, which allow both proteins to interact with several partners, including MAX,
which is required for DNA–protein interaction [100]. However, ablation of N-Myc in
MYCN-amplified cells suppressed proliferation and induced apoptosis, indicating that
c-Myc is not sufficient for the survival of MYCN-driven NB cells [104]. As one mechanism
for promoting tumor cell survival, N-Myc promotes the expression of telomerase [105],
and we have previously shown that opaganib downregulates telomerase expression [106].
Overall, it seems optimal to attenuate the expression of both c-Myc and N-Myc in NB
patients with tumors of mixed or unknown status of MYCN amplification. Previous data
showing that opaganib downregulates c-Myc levels [48] and the current data demonstrating
N-Myc downregulation support the postulate that this drug may be particularly effective
for NB therapy. Beyond tumor cell proliferation and survival, N-Myc has been implicated
in metastasis [101,107], which is present in approximately half of newly diagnosed NB
patients [108]. It would therefore be useful to also examine the anti-metastatic potential
of opaganib in a NB tumor model that allows tumor migration, such as that described by
Seong et al., in which the dual SK1/SK2 inhibitor SKI-II suppressed NB cell migration
in vivo [109].

In vivo models confirmed that single-agent opaganib suppresses the growth of NB
tumors from single-copy MYCN cells (Neuro-2a) and amplified MYCN cells (SK-N-(BE)2).
We focused on studies with syngeneic tumor cells so that immunocompetent mice could be
used as hosts. Cancer chemotherapy typically involves the administration of multiple drugs
that are selected for non-overlapping mechanisms of action, resistance, and toxicity. There-
fore, we evaluated the antitumor activity of opaganib in combination with irinotecan (IRIN)
plus temozolomide (TMZ) because IRIN + TMZ is the backbone for treatment of recurrent
or refractory NB alone or in combination with additional potential therapies [110,111].
C57BL/6 mice bearing LLC tumors were selected for the initial exploratory study because
of their established tumor growth rates and responsiveness to opaganib [45]. This study
demonstrated a significantly increased efficacy of opaganib + IRIN + TMZ relative to
vehicle- and IRIN +TMZ-treated mice. This was then confirmed in studies of Neuro-2a
cells growing in syngeneic A/J mice. In this model, IRIN + TMZ has substantial antitumor
activity, and this was significantly further improved when opaganib was added to the
combination. Importantly, both models demonstrated that there is no significant toxicity
for the combination of opaganib + IRIN +TMZ. Taken together, the tumor models support
the clinical evaluation of opaganib in combination with IRIN + TMZ in NB patients.

Immunotherapy using antibodies that target the checkpoint proteins CTLA-4, PD-1,
and PD-L1 is improving the treatment of some cancers; however, combination therapies
that will provide broader and more sustained clinical responses are desired. Finally, we
conducted studies of the antitumor efficacy of opaganib in combination with antibodies
against the checkpoint regulators CTLA-4, PD-1, and PD-L1. Despite limited success in
NB therapy, targeting checkpoint proteins continues to be explored in clinical trials of this
disease [27]. We have previously demonstrated that opaganib promotes immunogenic cell
death (ICD) in tumor cells, including Neuro-2a cells [45], which can enhance therapeutic
responses to checkpoint antibodies. Additionally, both c-Myc [112] and N-Myc [113] have
been shown to modulate anti-tumor immune suppression, and so a combination of Myc
inhibitors with cancer immunotherapy may improve NB patient survival. Therefore, we
conducted studies on the antitumor activity of opaganib when combined with antibod-
ies against either murine PD-1, PD-L1, or CLTA-4 toward Neuro-2a tumors growing in
syngeneic A/J mice. The survival advantage provided by the opaganib + anti-CTLA-4
antibodies was substantially greater than either drug alone, indicating that opaganib and
anti-CTLA-4 antibodies have additive antitumor activity. In contrast, the combination
of opaganib with anti-PD-1 or anti-PD-L1 antibodies did not increase antitumor activity
over that seen with opaganib alone. Therefore, we believe there is potential benefit in the
combination of opaganib with anti-CTLA-4 antibodies for the treatment of NB patients.

We recognize that additional work will be useful in defining several aspects of the
data presented in this initial report. For example, additional in vivo models using NB cells
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with either single-copy or amplified MYCN would be useful for confirming the activity of
opaganib against both types of tumors. There are, however, a few murine NB cell lines
that would be needed for studies in immunocompetent mice. Additionally, the effects of
opaganib on tumor infiltration by immune cells and the expression of checkpoint proteins
in both the tumors and immune cells would be helpful in further determining the potential
for a combination of opaganib and checkpoint antibodies in NB therapy.

In summary, opaganib treatment effectively inhibits SK2, DES1, and hexosylceramide
synthase and depletes N-Myc as well as c-Myc proteins from NB cells. To our knowledge,
this is the only drug shown to have this range of activity, and this results in anticancer
activity manifested in vivo as suppression of NB tumor growth by opaganib alone or in
combination with the standard drugs irinotecan and temozolomide. Additionally, opaganib
promotes immunogenic cell death in NB cells, which results in enhanced antitumor activity
when it is combined with anti-CTLA-4 antibody therapy. Overall, the data support our
hypothesis that NB may be a particularly good disease for clinical trials of opaganib,
particularly in combination with other cytotoxic or immunomodulatory drugs.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cancers16091779/s1, Figure S1: Uncropped Western Blot figures.
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