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Simple Summary: Standard clinical brain tumor magnetic resonance imaging (MRI) exams require
contrast injection and multiple structural MRI sequences, acquired individually in 30 min. This study
developed a single 6 min sequence and automatic processing strategy for multi-contrast whole-brain
imaging to achieve the lesion detection of gliomas without the use of a contrast agent, which has
the potential to significantly improve clinical imaging workflows and provide substantial benefits
to patients for which gadolinium is contraindicated. Automatically segmented tumor lesions from
fourteen patients with contrast-enhancing gliomas were comparable to manually defined lesions
from conventional T2-FLAIR (Fluid-Attenuated Inversion Recovery) and T1-post-contrast imaging
with contrast administration. The T2-hyperintensity lesion could be further separated into two
components, likely demarcating a more infiltrative tumor region within the edema. Multi-parametric
mapping based on multi-compartment modeling allowed for quantitative lesion characterization.

Abstract: This study aimed to develop a rapid, 1 mm3 isotropic resolution, whole-brain MRI tech-
nique for automatic lesion segmentation and multi-parametric mapping without using contrast
by continuously applying balanced steady-state free precession with inversion pulses throughout
incomplete inversion recovery in a single 6 min scan. Modified k-means clustering was performed for
automatic brain tissue and lesion segmentation using distinct signal evolutions that contained mixed
T1/T2/magnetization transfer properties. Multi-compartment modeling was used to derive quantita-
tive multi-parametric maps for tissue characterization. Fourteen patients with contrast-enhancing
gliomas were scanned with this sequence prior to the injection of a contrast agent, and their seg-
mented lesions were compared to conventionally defined manual segmentations of T2-hyperintense
and contrast-enhancing lesions. Simultaneous T1, T2, and macromolecular proton fraction maps
were generated and compared to conventional 2D T1 and T2 mapping and myelination water fraction
mapping acquired with MAGiC. The lesion volumes defined with the new method were comparable
to the manual segmentations (r = 0.70, p < 0.01; t-test p > 0.05). The T1, T2, and macromolecular
proton fraction mapping values of the whole brain were comparable to the reference values and could
distinguish different brain tissues and lesion types (p < 0.05), including infiltrating tumor regions
within the T2-lesion. Highly efficient, whole-brain, multi-contrast imaging facilitated automatic
lesion segmentation and quantitative multi-parametric mapping without contrast, highlighting its
potential value in the clinic when gadolinium is contraindicated.
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1. Introduction

Gliomas, the most common intra-axial primary brain tumors in adults with 24,530 new
cases expected to be diagnosed in the United States in 2023, are heterogeneous and highly
infiltrative, with poorly defined margins [1–3]. The median survival time ranges from 7
to 10 years and, for patients with lower-grade, isocitrate dehydrogenase (IDH)-mutant
tumors, to 15–18 months for more aggressive IDH-wildtype glioblastomas. Since gliomas
are highly infiltrative with poorly defined margins, surgical resection of all tumor cells is
nearly impossible, with local recurrence being the most common mode of tumor progres-
sion [4]. Structural magnetic resonance imaging (MRI), including pre- and post-contrast
T1-weighted, T2-weighted, and T2-FLAIR (Fluid-Attenuated Inversion Recovery) imag-
ing, is critical for surgical and radiation planning, monitoring response to therapy, and
determining progression [5]. Although 30–50% of patients undergo gross total resection
of the contrast-enhancing lesion (CEL) depicted on post-contrast T1-weighted images,
the infiltrative tumor persists in the surrounding T2-hyperintense non-enhancing lesion
(T2L) and represents a diagnostic challenge to clinician and automatic segmentation tools.
Although T2L is thought to encompass the majority of tumor, it also reflects areas of edema
and gliosis. This situation is even more complex after treatment due to changes in the
blood–brain barrier that increase the extent of edema and lead to the formation of gliosis,
all of which may be confused with tumor progression. This is a major problem in defining
treatment effects and rendering traditional markers of tumor burden like the CEL unreliable
markers of response, especially in the case of anti-angiogenic therapies, which normalize
the vasculature and repair blood–brain barrier breakdown [6].

Despite these limitations with respect to the definition of tumor burden based on
structural imaging alone, the Response Assessment in Neuro-Oncology (RANO) criteria for
patients with glioma enrolled in clinical trials still depend upon early changes in tumor size
based on structural MRI to evaluate the response [7,8]. According to the most recent set of
criteria introduced in 2023 [9], progression is defined as a 25% increase in the cross-sectional
diameter of the CEL on post-contrast T1-weighted MR images for contrast-enhancing tu-
mors and of the T2L for lower-grade non-enhancing gliomas. Although the limitations
of using the cross-sectional diameter as a metric for response assessment are widely ac-
knowledged and there is an increasing trend towards volumetrics, there remains challenges
with currently available software, including variability in the results and added costs, com-
plexity, and logistical challenges. Exacerbating this problem is that nearly all automated
techniques rely on imaging information from four structural MRI sequences (T1-weighted
pre/post-gad, T2-weighted/T2-FLAIR sequences) and deep learning methodologies for
inference [10,11], which are mostly applied in the newly diagnosed, pre-operative set-
ting [10–14], with little consistency in the tumor sub-compartments under consideration.
Only a few studies to date have attempted to investigate the potential of a fully automatic
segmentation method to longitudinally track changes in tumor volume [15–17]. There
is a need to obtain more objective and robust measurements of tumor burden that are
automatically generated by the sequence and more easily compared over time for better
understanding therapeutic efficacy and impacting timely treatment decisions.

Quantitative tools that probe the underlying cellular properties, chemical composition,
and biophysical mechanisms of the disease to more accurately delineate tumor margins
from the areas of infiltrative tumor within the edema based on a T2 signal have been shown
to be beneficial for evaluating longitudinal changes in tumor burden, early response to
therapy, and prognosis [18–26]. In these studies, high-grade lesions with larger percentages
of longer T2 values obtained from quantitative parametric mapping signifying more edema
and less infiltrative tumor cells improved the outcomes in terms of both progression-free
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and overall survival. Although tissue characterization through the parametric mapping
of relaxation parameters is used in a broad range of applications, T1 and T2 maps are
typically estimated separately, ignoring the tissue relaxation effect from the other compo-
nent, resulting in inaccurate quantification. Simultaneous, multi-parametric mapping (such
as T1/T2/proton density) with balanced steady-state free precession (bSSFP) acquisition
during inversion recovery (IR) [27] and MR Fingerprinting (MRF) methods that acquire
non-steady-state signals (2D imaging) after an inversion pulse [10] provide comprehensive
mapping with inherently improved accuracy. The IR-bSSFP technique uses closed-form
equations for deriving tissue parameters while MRF derives tissue parameters by matching
the acquired signal to simulated signal evolution based on Bloch equations. However,
since both methods require a full recovery of magnetization after each inversion pulse and
acquisition train, 3D acquisitions in the brain typically have relatively long T1 relaxation
times, which is time consuming. MRF mitigates this drawback by highly accelerating data
acquisition. By continuously acquiring data with bSSFP readouts during incomplete IR,
combined with an efficient undersampling scheme and advanced reconstruction, signif-
icant improvements in scan efficiency are achievable. Although bSSFP can suffer from
considerable signal loss in certain tissues due to magnetization transfer (MT) effects, which
undergo dipolar interactions and chemical exchange both with macromolecular protons
and those in the free water pool, these unwanted effects can provide an additional contrast
mechanism that is valuable for assessing the underlying tissue composition, reflecting
macromolecular protons which are usually “invisible” with conventional MRI sequences.

This study aimed to address these barriers within the conventional structural MRI
of gliomas by developing a novel quantitative single-scan sequence with an automatic
segmentation strategy that exploits voxel-wise signal evolution, resulting in multiple
contrast images, quantitative parametric maps (T1-, T2-, and macromolecular fraction) with
potentially greater sensitivities to the infiltrating tumor, and segmented masks of lesion
and brain tissue compartments (white matter, grey matter, cerebrospinal fluid, contrast-
enhancing lesion, non-enhancing T2-lesion components, and necrosis) without the need
for contrast agent injection. The performance of this methodology was assessed in treated
patients with enhancing gliomas in terms of its ability to achieve the following: (i) segment
lesions similar to manually drawn regions from clinically acquired sequences; (ii) produce
parametric maps with comparable values to the conventional measurements; and (iii)
further separate regions of shorter T2-components which are likely reflective of more
infiltrating tumor from the edema within the non-enhancing lesion.

2. Materials and Methods

In this section, we will first introduce a new MRI sequence design, an approach
for the optimization of scan parameters, and a description of the advanced sampling
and reconstruction strategy for this specific sequence design. The second part of this
section then describes image processing for brain tissue and lesion segmentation, deriving
multi-parametric mapping, and the validation of the technique in patients with contrast-
enhancing glioblastomas.

2.1. IIR-bSSFP Acquisition

Incomplete inversion recovery balanced steady-state free precession (IIR-bSSFP) data
acquisition was implemented in a 3D gradient-echo sequence that was modified by repeat-
ing nonselective inversion pulses followed by a fixed number (N) of segmented bSSFP
acquisitions, where Tinv = N·TR is the time interval between an IR cycle (defined by two
inversion pulses), and TR denotes the time of repetition (the schematic diagram shown
in Figure 1a,b). A series of 3D images reconstructed at a series of inversion times (TIs)
provided multi-contrast imaging. The simulated signal evolution curves of five represen-
tative brain tissues, including white matter (WM), grey matter (GM), cerebrospinal fluid
(CSF), glioma, and edema are displayed in Figure 1c, given T1 and T2 values based on their
reported values in previous studies at 3T [28–30]. The instantaneous signal evolution with
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IIR-bSSFP was derived based on Bloch equations [31] with a single-compartment model
and tissue properties, by providing a combination of T1, T2, and MT contrast weightings.
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Figure 1. (a) IIR-bSSFP acquisition. A nonselective inversion pulse is applied followed by a fixed
number of segmented bSSFP acquisitions (IR interval—Tinv). (b) With continuous data acquisition, a
series of 3D images is reconstructed at different TIs. (c) Simulated signal evolutions of different brain
tissues with assumed T1/T2 values and scan parameters (Tinv = 3 s, flip angle FA = 30◦, TR = 4 ms).
(d) Averaged signal amplitudes and Euclidean distances of all brain tissues, simulated with a series of
FA and Tinv. (e) Given Tinv, the optimal FA is identified to maximize the signal amplitude to optimize
the signal-to-noise level (red dashed curves) and maximize the distance to optimize tissue contrast
(blue dashed curves), shown in the top plot. The black curve plots the average FAs that provide
maximized signal amplitudes and distances for a given Tinv. The corresponding signal amplitude
and distance given Tinv and the optimized FA are shown (2nd and 3rd plots).

2.2. Optimization of Scan Parameters

The scan parameters were optimized to achieve a good image quality and maximum
contrast between adjacent tissue types by varying the inversion interval (Tinv) and flip
angle (FA) while holding constant routine imaging settings such as field of view, spatial
resolution, and matrix size. Figure 1d shows the average signal amplitudes of all the tissue
types, plotted as a 3D surface in purple, for a given a range of flip angles (10–60◦) and
Tinv (1–5 s). The average Euclidean distance between the signal evolution curves of the
different tissues (blue surface) is also illustrated in Figure 1d, while Figure 1e demonstrates
the tradeoff between maximizing signal amplitude (corresponding to the signal-to-noise
level) versus distance (corresponding to tissue contrast). The average flip angles (black
curve in Figure 1e) obtained based on maximizing signal amplitude (red curve) and signal
difference (blue curve), respectively, resulted in an optimal choice of around FA = 30◦

for a range of Tinv between 2.5 and 4 s. Based on these joint simulation results, a Tinv of
approximately 3 s was selected for this study, which was determined by the number of
bSSFP readouts N times the actual TR, where maximal N readouts which can fit in Tinv
are chosen.
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2.3. Acceleration and Image Reconstruction

To achieve multi-contrast images from IIR-bSSFP acquisition, 3D k-space lines were
segmented and distributed to the IR cycles. To improve data acquisition efficiency, a
previously developed fast imaging technique, CIRcular Cartesian UnderSampling (CIR-
CUS) [32] was applied, which has been demonstrated in multiple applications [33–37].
CIRCUS integrates the desirable features of randomization, variable density, and flexible
interleaving trajectories on a 3D Cartesian grid, to segment bSSFP acquisitions during
the IR cycles. The CIRCUS sampling strategy was combined with k-t SPARSE-SENSE
reconstruction [38,39] using a multi-coil compressed sensing reconstruction that exploited
joint sparsity along the temporal dimension with a total variation constraint to achieve
highly accelerated “dynamic” (multi-contrast) 3D imaging. A total of 20 frames (TIs) were
chosen in the reconstruction (given Tinv of ~3 s), resulting in a reasonable and sufficient
length of temporal footprint of 150 ms for each TI. Image reconstruction was implemented
in MATLAB (The MathWorks, Natick, MA, USA) on high-performance servers (Four AMD
Opteron 6380, 2.5 GHz, 256 GB Memory).

2.4. Brain Tissue and Lesion Segmentation

The most important preprocessing steps for conventional brain MRI segmentation
include MRI bias field correction, image registration, and the removal of nonbrain tissue
(so-called brain extraction or skull stripping). Although the images acquired with IIR-bSSFP
also suffered non-uniformity in signal intensity, the shape and timing of the zero crossing
during the inversion recovery of the signal evolution curves were independent of the
absolute signal intensity. This allowed for the normalization of the signal evolution curve
at each voxel by dividing by its norm, which removed spatial variations which were not
due to underlying tissue properties. Multi-contrast imaging based on IIR-bSSFP acquisition
provided efficient and reliable brain extraction and tissue segmentation. As this multi-
contrast imaging was acquired as a single-scan, no registration was required among the
multiple-contrast images. The resulting differential evolution curves for specific tissues also
provided an alternative strategy (compared to traditional lesion segmentation methods)
that did not rely on contrast between neighboring voxels at the tissue type boundary, which
is often ill-defined.

A modified k-means clustering algorithm was developed for segmenting brain tissue
based on the unique IIR-bSSFP acquisition by grouping the normalized signal evolution
curve of each voxel to a cluster with the maximum inner product with respect to its center.
Given the features of inversion recovery, the clusters were sorted by the time they reached
a minimum signal of the signal evolution curve (reflecting the zero crossing during IR,
apparently determined by the T1 values). From this modified k-means clustering method,
an automatic brain extraction, tissue segmentation, and lesion detection workflow was
developed, as shown in Figure 2.

Figure 2a displays the IIR-bSSFP images throughout the inversion recovery (20 TIs).
Signal intensity normalization, as described above, compensates for signal variations across
the image. With a signal intensity threshold of >2% to remove the background noise, three
segments can be achieved using k-means clustering, mainly representing WM (along with
skull), GM, and CSF. If a lesion exists, it will be clustered to the WM or GM during this
step. The combination of the GM and CSF segments provides a rough brain contour for
achieving automatic brain extraction (skull removal).

After skull removal, a sequential modified k-means clustering strategy was performed
to both leverage the unique signal evolutions of IIR-bSSFP and reduce the partial volume
effects that occur at tissue and lesion boundaries. This included the following: (1) clustering
three segments (Figure 2b, mainly representing WM, GM, and CSF); (2) splitting each of
them into two segments (Figure 2c, total of six segments, representing WM, four layers of
GM, and CSF); and (3) further separating each of the four layers of GM into two segments
(Figure 2d, representing mainly normal-appearing GM and potentially abnormal tissue,
totaling ten segments). The final segmented brain regions (Figure 2e(#1–3), WM, GM, and
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CSF) and three lesions (Figure 2e(#4–6), two T2 lesions and the CEL) were automatically
generated by merging the GM layers from Figure 2d(#2/4/6/8), combining the lesion
segments in Figure 2d(#3/5/7), and deriving the CSF from Figure 2d(#9–10).
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Figure 2. Automatic brain tissue segmentation and lesion detection based on the modified k-means
clustering method achieved in this study. (a) Images acquired throughout inversion recovery (20 TIs);
after signal intensity normalization and automatic skull removal, the following individual steps
are applied with the modified k-means clustering approach: (b) three segments achieved, mainly
presenting brain WM, GM, and CSF; (c) six segments achieved by further clustering each of the three
segments in (b) into two segments; (d) total of ten segments achieved by further clustering each of the
four segments #2–5 in (c) into two segments; (e) final segmentation of the brain tissues and lesions;
and (f) the signal evolution curves of individual segments plotted for (b–e), respectively. WM: white
matter; GM: grey matter; and CSF: cerebrospinal fluid.

2.5. Two-Compartment Modeling and Multi-Parametric Mapping

Hydrogen proton distribution in the brain can be categorized into several com-
partments based on the protein-bound status of the protons, including the following:
(1) those deep within the macromolecules with restricted motion (very short T2 << 1 ms,
undetectable with conventional MRI methods); (2) water molecules bound to macro-
molecules (short T2 = 0~40 ms); (3) intracellular and extracellular water pools (intermediate
T2 = 40~200 ms); and (4) free water pools (CSF, long T2 > 1 s) [40–43]. Macromolecular
protons are usually undetectable with conventional MRI methods due to their short T2
(~10 us) but can be assessed via the MT effect, a well-known phenomenon during which an
exchange of magnetization happens between bound water molecules with macromolecular
protons and those in a free water pool [44–46]. As macromolecular proton fraction (MF)
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mapping derived from two-compartment modeling using MRI has been previously shown
to correlate with myelin content in animal studies [47], a two-compartment model was
constructed, which included macromolecular proton, non-restricted proton pools, and the
exchange of magnetization between them (Figure 3). Signal evolutions were simulated
based on the two-compartment model given the sequence design (IIR-bSSFP), the imaging
parameters, and assumptions on tissue properties. Similar to the dictionary-searching
method applied in MR Fingerprinting [48], the parameters MF, T1, and T2 were derived by
matching the acquired signal evolution curves to the simulated ones (Figure 3).
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Figure 3. Two-compartment model built including macromolecular protons, non-restricted protons,
and the exchange of magnetization between them. Signal evolutions are simulated based on the
two-compartment model, given the sequence design (IIR-bSSFP), the imaging parameters, and
assumptions on the tissue properties. The parameters MF, T1, and T2 are derived by matching the
acquired signal evolution curves to the simulated ones.

2.6. Patient Scans

Fourteen patients (five females, 56.4 ± 10.4 years of age) with contrast-enhancing glioblas-
tomas, scanned post surgery and chemoradiation with external beam radiation therapy and
temozolomide, followed by additional targeted therapy if the tumor progressed, were re-
cruited for this prospective, IRB-approved study. MRI examinations were performed on
3T MRI scanner (Discovery MR750; GE Medical Systems, Milwaukee, WI, USA) using a
32-channel phased-array head coil (Nova Medical, Wilmington, MA, USA). Whole-brain MRI
using IIR-bSSFP acquisition with a 1mm isotropic resolution was acquired axially with a scan
time of 6 min, a FOV (field of view) = 25.6 × 19.2 cm, an image matrix = 256 × 192 × 160, an
FA = 30◦, TR/TE (echo time) = 4.2/1.7 ms, BW (bandwidth) = 125 kHz, and Tinv = 3 s. The
3D images were reconstructed in a series of 20 TIs.

In addition to the multi-contrast IIR-bSSFP sequence, conventional 3D T2-FLAIR
images with a 1 mm3 resolution using 3-fold parallel imaging acceleration (~8 min scan
time) and pre- and post-contrast 3D T1-weighted IR-SPGR (spoiled gradient-recalled echo)
images with a 1 mm3 resolution using 2-fold parallel imaging acceleration (~5 min each)
were acquired and used to perform ground-truth lesion segmentation. The post-contrast 3D
T1w IR-SPGR images were acquired ~3 min after the administration of 0.1 mmol/kg body
weight of gadolinium contrast agent according to the standardized consensus protocol for
brain tumor imaging [5].

In 6 of the 14 patients, conventional 2D T1 and T2 mapping were acquired on 6~8 slices
centered at the lesion location, and 3D whole-brain myelin water fraction (MWF) mapping
was acquired with MAGiC (SyntheticMR, Linköping, Sweden) [49]. The imaging settings
for 2D T1 mapping were the following: spin-echo inversion recovery (SE-IR) sequence,
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TR/TE = 2550/10 ms, 4 TIs = 50/400/1100/2550 ms, an acceleration factor of R = 3, 6 slices
of 3 mm thickness, and ~9 min scan time. Meanwhile, 2D T2 mapping was acquired
with a Carl-Purcell–Meiboom-Gill (CPMG) sequence, TR = 1000 ms, 8 TEs = 25~200 ms
(25 ms increment), R = 3, 8 slices of 3 mm thickness, and ~5 min scan time. MAGiC
acquisition utilized a FOV = 25.6 × 20.5 cm, an isotropic resolution of 1.2 mm, an imaging
matrix = 218 × 174 × 124, and a ~6 min scan time.

2.7. Data Analysis

In order to evaluate the accuracy of our segmentation method on IIR-bSSFP acquisition,
the automated segmented regions of interest (ROIs) corresponding to T2L and CEL were
compared to manually defined ROIs on conventional clinical images. Intra-exam image
registration was first applied among the different scans using Slicer’s BrainsFit [50]. CEL
and T2L ROIs were manually defined using clinically acquired structural MRI by A.J.
(10 years of experience) using in-house software and further revised by either one of this
study’s neuroradiologists, J.E.V.-M. (8 years of experience) or J.M.L. (22 years of experience),
as necessary. Lesion volume was calculated and compared for each manually drawn and
automatically segmented ROI. The parametric mapping values of each segmentation were
calculated from IIR-bSSFP acquisition and compared to the reference methods (2D T1/T2
and MAGiC mapping).

3. Results

Figure 4 demonstrates the resulting three key parts of our method from two represen-
tative cases, including the whole-brain multi-contrast imaging achieved with IIR-bSSFP
acquisition (representative images at three orthogonal reformats and three inversion times
are shown in Figure 4a,d), the automatic segmentation of brain tissue and tumor lesions
(shown in Figure 4b,e), and T1, T2, and MF quantitative maps (shown in Figure 4c,f). The
pipeline was successfully applied on all 14 patients.
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Figure 4. Images, segmentation, and maps of two patients. (a,d) Whole-brain multi-contrast imaging
achieved with IIR-bSSFP acquisition, shown at three orthogonal reformats and three inversion times
(3, 6, and 15 out of 20); (b,e) automatic segmentation and detection of brain tissues and lesions (right);
and (c,f) T1, T2, and MF quantitative mapping derived from IIR-bSSFP using dictionary searching
with the two-compartment model.
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Figure 5a,d show the results of the automatic tissue segmentation from two patient
scans. Two T2L and one CEL segments were identified along with three typical brain tissue
segments, WM, GM, and CSF, as well as necrosis (NEC) for the case shown in Figure 5a.
Figure 5b,c,e,f display the results of the automatic brain lesion segmentation (overlaid
on the structural images shown in Figure 5b,e) compared to the manual segmentation
procedure from the conventional post-contrast T1w and T2 FLAIR images (such as the
reference shown in Figure 5c,f).
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Figure 5. Automatic brain tissue and lesion segmentation from two patients. (a,d) Using the new
method based on IIR-bSSFP acquisition; (b,e) the automatic lesion segments superimposed on brain
anatomic images; and (c,f) manual segmentation of lesions using conventional imaging methods. WM:
white matter; GM: grey matter; CSF: cerebrospinal fluid; CEL: contrast-enhancing lesion; T2L-1/-2:
two regions of T2-hyperintense non-enhancing lesion; and NEC: necrosis.

As demonstrated in Figure 6, the volume measurements of CEL (14.1 ± 12.9 mL)
and T2L (72.3 ± 46.9 mL) automatically obtained from the IIR-bSSFP sequence without
a contrast injection were comparable to those manually defined on the reference post-
contrast T1w (CEL 11.2 ± 9.1 mL) and T2 FLAIR (T2L 87.7 ± 60.9 mL) images, respectively
(correlation coefficients r = 0.70, p < 0.01; paired t-test of differences in volumes p = 0.46
and 0.48 for CEL and T2L, respectively).

Figure 7 shows the representative parametric maps acquired with 2D methods
(Figure 7(a1–a2)), 3D MAGiC (Figure 7(a3)), and our method (Figure 7(b1–b3)). The para-
metric values in each tissue segment were averaged four image slices) and compared
between the reference methods and the new method (six patient scans). The linear regres-
sion plots of the measurements (excluding CSF) are shown in Figure 7(c1–c3). The T1 and
T2 measurements were found to be significantly correlated between our method and the
reference 2D imaging (r = 0.45, p = 0.01; r = 0.75, p < 0.01, respectively), although they were
statistically different (t-test, p < 0.01). MF was found to be both highly correlated with the
MWF acquired with MAGiC (r = 0.85, p < 0.01) and not significantly statistically different
(t-test, p = 0.44). Table 1 shows the measurements for each segment and method (four image
slices from six patient cases were included for our analysis).
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Figure 6. CEL and T2L volume measurements with the conventional methods and our developed
method of IIR-bSSFP are plotted in (a), and the linear regression and Bland–Altman plots are shown
in (b–e) (n = 14). Strong correlations (p < 0.05) of CEL and T2L volume measurements between
the conventional and new methods were found; no significant difference (p > 0.05) in CEL and T2L
volume measurements was found between the different methods (unit: mL).

Cancers 2024, 16, x FOR PEER REVIEW 11 of 18 
 

 

conventional and new methods were found; no significant difference (p > 0.05) in CEL and T2L vol-
ume measurements was found between the different methods (unit: ml). 

Figure 7 shows the representative parametric maps acquired with 2D methods (Fig-
ure 7(a1–a2)), 3D MAGiC (Figure 7(a3)), and our method (Figure 7(b1–b3)). The paramet-
ric values in each tissue segment were averaged four image slices) and compared between 
the reference methods and the new method (six patient scans). The linear regression plots 
of the measurements (excluding CSF) are shown in Figure 7(c1–c3). The T1 and T2 meas-
urements were found to be significantly correlated between our method and the reference 
2D imaging (r = 0.45, p = 0.01; r = 0.75, p < 0.01, respectively), although they were statisti-
cally different (t-test, p < 0.01). MF was found to be both highly correlated with the MWF 
acquired with MAGiC (r = 0.85, p < 0.01) and not significantly statistically different (t-test, 
p = 0.44). Table 1 shows the measurements for each segment and method (four image slices 
from six patient cases were included for our analysis). 

 
Figure 7. Parametric maps acquired on a representative patient with different imaging methods. 
(a1) 2D T1, (a2) 2D T2, (a3) 3D WMF with MAGiC, (b1–b3) 3D T1, T2, and MF maps with the new 
method, and (c1–c3) linear regression plots of the parametric values between different methods. 
Measurements of each tissue segment (excluding CSF) across four image slices averaged among six 
patient scans. T1 and T2 values found to be correlated between the new method and the reference 
2D imaging (r = 0.45, p = 0.01; r = 0.75; p < 0.005), but with a significant difference between them (t-
test, p < 0.05). A strong correlation (r = 0.85, p < 0.005) and no significant difference (t-test, p = 0.44) 
found between MF and MWF acquired with MAGiC. 

Table 1. Parametric mapping measurements for each segment and imaging method (mean ± stand-
ard deviation; data from six patients, each with four acquired image slices; same data plotted in 
Figure 7). WM: white matter; GM: grey matter; T2L-1/-2: two regions of T2-hyperintense non-en-
hancing lesions; CEL: contrast-enhancing lesion; and NEC: necrosis. 

Mapping WM GM T2L-1 T2L-2 CEL NEC 
2D T1 (ms) 1186.4 ± 110.5 1589.5 ± 331.7 1451.5 ± 317 1657.9 ± 409.3 1947.8 ± 465.6 2022.3 ± 459.3 
2D T2 (ms) 90.4 ± 2.7 117.5 ± 12.8 114.7 ± 14.2 138.2 ± 21.3 153.4 ± 47.6 152.0 ± 41.1 
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IIR-bSSFP T1 (ms) 797.5 ± 88.3 670.4 ± 60.2 610.9 ± 58.1 598.4 ± 77.8 958.8 ± 204.9 1876.7 ± 608.8 
IIR-bSSFP T2 (ms) 22.0 ± 5.7 85.2 ± 8.8 62.9 ± 26.5 115.4 ± 11.2 121.5 ± 10.1 157.5 ± 42.0 
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Figure 7. Parametric maps acquired on a representative patient with different imaging methods.
(a1) 2D T1, (a2) 2D T2, (a3) 3D WMF with MAGiC, (b1–b3) 3D T1, T2, and MF maps with the new
method, and (c1–c3) linear regression plots of the parametric values between different methods.
Measurements of each tissue segment (excluding CSF) across four image slices averaged among six
patient scans. T1 and T2 values found to be correlated between the new method and the reference 2D
imaging (r = 0.45, p = 0.01; r = 0.75; p < 0.005), but with a significant difference between them (t-test,
p < 0.05). A strong correlation (r = 0.85, p < 0.005) and no significant difference (t-test, p = 0.44) found
between MF and MWF acquired with MAGiC.
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Table 1. Parametric mapping measurements for each segment and imaging method (mean ± standard
deviation; data from six patients, each with four acquired image slices; same data plotted in Figure 7).
WM: white matter; GM: grey matter; T2L-1/-2: two regions of T2-hyperintense non-enhancing lesions;
CEL: contrast-enhancing lesion; and NEC: necrosis.

Mapping WM GM T2L-1 T2L-2 CEL NEC

2D T1 (ms) 1186.4 ± 110.5 1589.5 ± 331.7 1451.5 ± 317 1657.9 ± 409.3 1947.8 ± 465.6 2022.3 ± 459.3
2D T2 (ms) 90.4 ± 2.7 117.5 ± 12.8 114.7 ± 14.2 138.2 ± 21.3 153.4 ± 47.6 152.0 ± 41.1

3D MWF (%) 30.4 ± 3.4 9.5 ± 3.3 12.5 ± 9.3 2.3 ± 1.8 0.55 ± 0.4 0.15 ± 0.0
IIR-bSSFP T1 (ms) 797.5 ± 88.3 670.4 ± 60.2 610.9 ± 58.1 598.4 ± 77.8 958.8 ± 204.9 1876.7 ± 608.8
IIR-bSSFP T2 (ms) 22.0 ± 5.7 85.2 ± 8.8 62.9 ± 26.5 115.4 ± 11.2 121.5 ± 10.1 157.5 ± 42.0
IIR-bSSFP MF (%) 14.9 ± 2.5 8.7 ± 1.9 11.9 ± 3.8 5.5 ± 2.6 3.6 ± 2.0 1.6 ± 0.5

Whole-brain multi-parametric mapping was achieved on all 14 patients using IIR-
bSSFP. Figure 8b–d plot the three parametric values T1, T2, and MF of the whole brain for
each segment (Figure 8a demonstrates the seven segments from a representative case) on all
fourteen patient scans. Significant differences among the measurements are marked with
bars on Figure 8b–d (flat bars denoting significant differences between that measurement
and all other ones). As expected, the CEL had significantly increased T1 and T2 values
compared to WM, GM, and T2 lesions (t-test, p < 0.05). Notice that two T2 lesions were
detected with the new acquisition and automatic segmentation methods (Figure 2). The
T2L-2, the more central portion of the T2L, had significantly decreased MF values compared
to WM, GM, and T2L-1 (t-test, p < 0.05), similar to what had been observed in the CEL,
likely suggesting the demarcation of an infiltrating tumor component. Table 2 shows the
parametric mapping measurements in each segment (whole-brain images from 14 patient
scans). Figure 8e,f show the 3D visualization with the T1/T2/MF measurements as the axes,
where the center/radius of each ellipsoid corresponds to the mean/standard deviation of
parametric map measurements. The arrows in Figure 8e,f demonstrate the ability to sepa-
rate distinct lesion components from surrounding brain tissue without the use of a contrast
agent, given their disguisable distributions on multi-parametric quantitative mapping.
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Mapping CSF WM GM T2L-1 T2L-2 CEL NEC 
IIR-bSSFP T1 (ms) 2990.4 ± 277.4 848.0 ± 135.5 912.4 ± 218.4 749.5 ± 217.2 883.8 ± 238.8 1300.7 ± 303.4 2696.6 ± 749.7 
IIR-bSSFP T2 (ms) 218.1 ± 14.9 28.5 ± 5.3 83.1 ± 20.9 62.2 ± 22.4 94.1 ± 29.1 115.8 ± 19.1 190.7 ± 31.9 
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Figure 8. (a) Demonstration of brain tissue and lesion segmentation, (b) T1, (c) T2, and (d) MF
measurements obtained with IIR-bSSFP. The differentiations with significant differences among
the measurements are marked with bars (flat bars denoting significant differences between that
measurement and all other ones). (e,f) 3D visualization of the T1-T2-MF mapping measurements of
seven brain tissues and lesions at two orientations. The center and radius of the ellipsoid correspond
to the mean and standard deviation of the measurements (whole-brain scan, n = 14).
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Table 2. The parametric mapping measurements for each segment using IIR-bSSFP (mean ± standard
deviation; data from 14 patient cases with whole-brain coverage; same data plotted in Figure 8). CSF:
cerebrospinal fluid; WM: white matter; GM: grey matter; T2L-1/-2: two regions of T2-hyperintense
non-enhancing lesion; CEL: contrast-enhancing lesion; and NEC: necrosis.

Mapping CSF WM GM T2L-1 T2L-2 CEL NEC

IIR-bSSFP T1 (ms) 2990.4 ± 277.4 848.0 ± 135.5 912.4 ± 218.4 749.5 ± 217.2 883.8 ± 238.8 1300.7 ± 303.4 2696.6 ± 749.7
IIR-bSSFP T2 (ms) 218.1 ± 14.9 28.5 ± 5.3 83.1 ± 20.9 62.2 ± 22.4 94.1 ± 29.1 115.8 ± 19.1 190.7 ± 31.9
IIR-bSSFP MF (%) 1.0 ± 0.4 10.0 ± 2.8 5.3 ± 1.3 7.8 ± 3.4 3.4 ± 1.3 2.6 ± 1.0 2.2 ± 1.2

4. Discussion

Despite parallel imaging capabilities and multichannel coils, the structural portion
of clinical brain tumor imaging protocols typically takes up to 30 min and prohibits the
acquisition of more biologically relevant physiological and metabolic imaging sequences.
Furthermore, the provision of a single-scan strategy avoids the need for image registration
and allows for reliable voxel-wise analyses within a lesion. Anatomic images with specific
contrast can also be synthetized from the derived parametric maps, enabling an array
of potential image contrasts to be retrospectively generated. Our unique strategy for
automatically segmenting CEL and T2L regions without gadolinium-based contrast agents
has the potential to improve clinical workflows by providing a rapid single-scan acquisition
that allows more time for additional therapy-specific advanced imaging within a clinical
MRI exam, avoiding potential gadolinium-based contrast deposition, and potentially more
accurately delineating tumor cells within the T2 lesion. Although structural MRI has
qualitatively relied on underlying tissue’s chemical composition, cellular tissue properties,
and biophysical mechanisms, quantitative parametric mapping with MRI that includes the
tissue’s chemical composition more accurately characterizes the underlying chemical and
cellular properties of the imaged tissue, which, along with the automatically segmented
shorter T2 component (T2L-2), potentially delineates infiltrating tumor margins beyond
the CEL within T2-hyperintense edema. This potentially can help guide surgical resection,
define radiation target volumes, and evaluate longitudinal changes in tumor burden and
response to treatment.

This study uniquely employed IIR-bSSFP acquisition with CIRCUS undersampling for
a high scan efficiency, along with the dictionary-matching strategy from MR Fingerprinting,
to derive quantitative tissue parameters by matching the signal evolution acquired during
IR to simulated instant evolution curves with the same scan parameters. Whereas MR
Fingerprinting acquisitions involve deliberately varying MRI timing parameters such as
flip angle and TR in a pseudorandom manner to generate separate signal evolutions (like
fingerprints) for different tissues, our method employed a fixed flip angle and TR, combined
with inversion recovery (T1 contrast) and bSSFP acquisition (T2-like contrast, involved
with the MT effect), resulting in unique signal evolutions for different tissue types. While
the Bloch equation can be used for simulating the signal evolution for a given flip angle, TR,
TE, and the set of relaxation times for one single compartment, a model based on multiple
compartments [29,51,52], including the magnetization exchange between the compartments
within a voxel, more accurately simulates information about the tissue’s structure (such
as MF). The model presented here was based on Bloch–McConnell equations [52,53] to
generate signal evolution curves that included both macromolecular proton and free-water
pools, as applied in Liu F et al. [52]. Although tissue characterization through the parametric
mapping of relaxation parameters has a broad range of applications, conventional T1 and
T2 maps are estimated separately by ignoring the tissue relaxation effect from the other
component, resulting in inaccurate results. Simultaneous, multi-parametric mapping
(such as T1/T2/proton density) in a single scan provides a more comprehensive approach
to mapping, with an inherently improved accuracy, as has been achieved with bSSFP
acquisitions during inversion recovery [54] and MR Fingerprinting methods which acquire
non-steady-state signals after an inversion pulse [48]. The IR-bSSFP technique uses closed-
form equations for calculating tissue parameters, while MR Fingerprinting derives tissue
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parameters by matching the acquired signal to a simulated signal evolution based on the
Bloch equation. Since both methods require the full recovery of the magnetization after
each inversion pulse and acquisition train, long scan times are a challenge, especially for 3D
scans of tissues with long T1 relaxation times. Whereas MR Fingerprinting mitigates this
drawback by highly accelerating data acquisition, fast T1 mapping can be achieved based
on incomplete IR with continuous bSSFP acquisition, although it requires prior knowledge
of the T2 values of the tissue, which limits its application [55].

Although the results presented demonstrate the high potential of this novel method
for patients with gliomas, there are several limitations to this study. The first is the limited
sample size given the preliminary nature of this feasibility study. The second is a lack of
a real “gold standard” lesion volume for comparison, resulting in an apparent modest
performance of our method (with correlation coefficient r = 0.70 to the reference method)
due to inherent differences in the derived contrast-enhancing lesion volumes between
our technique and the standard administration of gadolinium. As blood–brain barrier
(BBB) breakdown results in the leakage of the contrast agent in the extravascular space
of the surrounding tissue, resulting in T1 shortening and signal enhancement (CEL) on
T1-weighted MR images, the leakage space is between the vasculature and the brain tissue
where substances can enter, crossing the BBB breakdown. Although the detected CEL based
on the enhancement reflects the leakage space, it could vary according to the contrast dose,
the timing of the imaging with respect to the injection, and tissue permeability. As our
method is not sensitive to these effects of the pooling of gadolinium into the extracellular–
extravascular space over time, the CEL would be underestimated in these regions, especially
for patients in which the time between injection and post-contrast scans is longer. Perfusion
itself, however, also plays a critical role in explaining the observed variability, especially at
the CEL margins [56], as high-grade gliomas are known for their heterogeneity in terms
of both cerebral blood volume and permeability. As this technique is potentially more
sensitive to the relaxation characteristics of the vasculature itself (including blood volume
and permeability) than the clinical post-contrast T1-weighted scan, this would result in an
overestimation of the lesion volumes in regions of elevated blood volumes or permeability.
Future studies directly comparing our lesion segmentation with regions of high cerebral
blood volumes and permeability are warranted to fully appreciate and understand these
effects, as well as an investigation into which segmentations better correspond to the
outcome, especially when monitoring response to therapy. In the presence of tumor
cells (or treatment), brain tissue composition changes in terms of cellular heterogeneity,
angiogenesis, necrosis, etc., which all alter the distribution of protons in the tissue and can
change its T1, T2, and MF accordingly. Chemoradiation could complicate matters even
further and potentially also influence BBB leakage without affecting T1, T2, and MF if the
tissue microstructure is yet to be affected. As a result, there might not always be a close
relationship between relaxation maps and BBB breakdown, potentially also contributing to
some of the observed variability.

Although the T1 and T2 values measured with IIR-bSSFP and the two-compartment
model varied compared to those obtained from conventional 2D T1 and T2 mapping
measurements (Tables 1 and 2; Figure 7), there is, in general, a lack of a ground-truth set
of values, with variable T1 and T2 values reported throughout the literature depending
upon the acquisition parameters, the coil, and the field strength employed, especially for
those performing simultaneous multi-parametric mapping [57–59]. As a result, the 3D T1
and T2 maps generated with our two-compartment model had relatively low correlation
coefficients (r = 0.45 and r = 0.75, respectively) when compared with those obtained with
2D methods based on single-compartment exponential fitting, despite reaching statistical
significance (p < 0.05). Designed as a proof-of-principle study, a larger cohort is still needed
for further validation of this novel approach, as well as studies assessing the benefits of
simultaneous T1/T2/MF mapping compared to other physiologic and metabolic imaging
metrics. Although bSSFP acquisitions can often suffer from banding artifacts, these were
mitigated in this study by employing a relatively low flip angle (30◦), short TR (~4 ms),
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and local shimming. Myelin water fraction mapping acquired with MAGiC was used a
reference for evaluating our MF mapping because it was feasible to include within the time
constraints of patient scans and still provided a relevant benchmark, even though it itself is
not a gold standard. Finally, as the goal of this study was to focus on lesion delineation,
future investigations are still warranted to determine the individual compartments of
non-restricted protons (as shown in Figure 3) and the validity of the four GM layers that
resulted from our clustering strategy (Figure 2) in terms of distribution, thickness, and
tissue parametric mapping.

5. Conclusions

In conclusion, this 6 min, 1 mm isotropic, whole-brain scan and processing strategy
was able to generate multi-contrast structural images and automatically segment the
contrast-enhancing and T2-hyperintensity lesions of contrast-enhancing gliomas without
the injection of a gadolinium-based contrast agent. In this preliminary study, the resulting
lesion volume measurements were similar to those obtained with manual segmentation
during conventional clinical structural imaging with contrast administration. Quantitative
multi-parametric mapping further demonstrated the distinguishable lesion compartments
within the T2-lesion. This approach has the potential to improve clinical workflow by
(1) generating a measurement of the contrast-enhancing lesion burden in patients for whom
gadolinium is not recommended (i.e., renal dysfunction), (2) substantially shortening the
overall exam’s length, allowing more time for therapy-specific advanced imaging, and
(3) providing a noninvasive, automatic tool for the longitudinal monitoring of response
to therapy.
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