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Simple Summary: A prolonged diagnosis of lung cancer can hinder effective treatment processes for
cancer patients. Artificial intelligence-based models significantly impact the healthcare system; deep-
learning algorithms in the diagnostic process can save time and money and provide high-accuracy
results that accelerate and improve the treatment journey.

Abstract: Lung cancer is the leading cause of cancer-related deaths worldwide. Two of the crucial
factors contributing to these fatalities are delayed diagnosis and suboptimal prognosis. The rapid
advancement of deep learning (DL) approaches provides a significant opportunity for medical
imaging techniques to play a pivotal role in the early detection of lung tumors and subsequent
monitoring during treatment. This study presents a DL-based model for efficient lung cancer
detection using whole-slide images. Our methodology combines convolutional neural networks
(CNNs) and separable CNNs with residual blocks, thereby improving classification performance.
Our model improves accuracy (96% to 98%) and robustness in distinguishing between cancerous
and non-cancerous lung cell images in less than 10 s. Moreover, the model’s overall performance
surpassed that of active pathologists, with an accuracy of 100% vs. 79%. There was a significant linear
correlation between pathologists’ accuracy and years of experience (r Pearson = 0.71, 95% CI 0.14 to
0.93, p = 0.022). We conclude that this model enhances the accuracy of cancer detection and can be
used to train junior pathologists.

Keywords: lung cancer; deep learning; machine learning; histopathology; convolutional neural
networks; medical diagnosis

1. Introduction

Lung cancer remains a significant global health burden, with its incidence and mor-
tality rates steadily rising. According to recent studies, lung cancer is almost three times
more likely to kill men than prostate cancer and three times more likely to kill women than
breast cancer [1]. The World Cancer Research Organization reported 2,206,771 incidences
and 1,796,144 deaths in 2020 [2]. Accurate and timely diagnosis is crucial in determining
appropriate treatment strategies and improving patient outcomes. However, the com-
plexity and subjectivity associated with traditional diagnostic methods have led to the

Cancers 2024, 16, 1506. https://doi.org/10.3390/cancers16081506 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers16081506
https://doi.org/10.3390/cancers16081506
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-1912-0195
https://orcid.org/0009-0007-7210-0528
https://orcid.org/0000-0003-0606-7778
https://orcid.org/0000-0002-8917-671X
https://orcid.org/0000-0002-4538-877X
https://doi.org/10.3390/cancers16081506
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers16081506?type=check_update&version=1


Cancers 2024, 16, 1506 2 of 11

exploration of advanced technologies, such as machine learning, to enhance diagnostic
accuracy, efficiency, and objectivity.

Nowadays, artificial intelligence (AI) with its subtypes, machine learning (ML) and
deep learning (DL) models, particularly those using deep learning approaches, have
emerged as powerful tools in histopathology for the detection and diagnosis of lung
cancer cells [3]; these tools can provide demand assistance in a patient’s treatment journey,
starting from the diagnosis process to the selection of the treatment protocol. In addition to
understanding the technical aspects, it is essential to explore the pathologists’ perspectives
and experiences of AI and ML in medical diagnosis to ensure their full collaboration with
the AI applications and understand the required attributes in the model to perform the
tasks functionally [4].

Previously released models show a possible risk of overfitting the training data, re-
sulting in brittle, degraded performance in specific settings. Moreover, it is common for
ML-based models to have a tradeoff between accuracy and intelligibility. The highly ac-
curate models are usually not intelligible, while more intelligible models usually provide
lower accuracy [5]. Therefore, our study aims to use deep learning algorithms, includ-
ing convolutional neural networks (CNNs), to develop an efficient ML model for lung
cancer cell detection. We aimed to prevent overfitting, reduce complexity, and improve
interpretability without sacrificing the model’s accuracy.

2. Methodology
2.1. Data Collection and Preprocessing

The dataset used for this study consisted of whole-slide images (WSIs) collected from
lung tissue biopsies of patients in the Pulmonary Department at the Greater Poland Center
of Pulmonology and Thoracic Surgery. All the slides were collected from adenocarcinoma
patients, and were of a mixed type (micropapillary, solid, and acinar) but with different
percentages of each. We obtained 170 WSIs stained with Hematoxylin and Eosin dye (H&E).
Each slide was used to randomly extract an average of six images by zooming in and out in
different slide regions and rotating the slide. This process resulted in a total of 934 images:
557 cancerous images and 377 healthy images. The images were further split into training
and test datasets. We followed the known approach of a 70% training dataset versus 30%
testing dataset [6] as below:

• The training dataset (71% of total images, n = 662 images) comprised 401 cancerous
and 261 healthy images.

• This was split further to training and validation datasets with 90% (n = 596 images) and
10% (n = 66 images). The training dataset was used to train the model’s parameters.
In contrast, the validation dataset was used to fine-tune the model and optimize
hyperparameters. We followed National Cancer Institute criteria to differentiate
between normal and cancer cells [7].

• The test dataset (29% of total images, n = 272) included 156 cancerous and 116 healthy
images. It was employed to assess the model’s final performance and generalization
capability.

These slides were generated using the Ventana Software 3.2v (Ventana Medical Sys-
tems, Inc., Oro Valley, AZ, USA), which produces full-color images with Red, Green, and
Blue (RGB) channels, while the algorithm code was written using Python v3.12.2 Tensorflow.
To ensure consistency and computational efficiency, the images were resized to a uniform
height and width of 256 pixels while maintaining the three RGB channels. This resizing
process enables the model to learn effectively from the images and provides computational
efficiency by reducing the overall data size.

2.2. Model Selection

We selected a CNN to operate our algorithm. CNNs fall under the category of deep
learning algorithms [8]. Deep learning is a subset of machine learning involving multiple
layers of neural networks. The CNN structure forms the backbone of the proposed method-
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ology. CNNs are specifically designed for image analysis tasks, leveraging the inherent
spatial structure of images. The primary algorithm used within CNNs is the convolution
operation, which involves convolving learnable filters or kernels with the input image to
extract relevant features [8].

In the context of lung cancer detection, the convolutional layers of the CNN architec-
ture play a vital role. Each convolutional layer consists of multiple filters that scan the input
biopsy images and capture features such as edges, textures, and patterns. These features
are learned through the iterative optimization process during model training. By stacking
multiple convolutional layers, the network can capture increasingly complex and abstract
features, facilitating the discrimination between cancerous and non-cancerous regions in
the images.

2.3. Separable Convolutional Neural Networks

The architecture incorporates Separable Convolutional Neural Networks (SepCNNs),
which enhance feature extraction while reducing computational complexity. SepCNNs
decompose the standard convolution operation into two distinct functions: depthwise
convolutions and pointwise convolutions. Depthwise convolutions apply a single filter
per input channel, independently processing the spatial information within each chan-
nel. This operation captures spatial features and enables the network to understand the
local structure of the biopsy images. On the other hand, pointwise convolutions employ
1 × 1 convolutions to mix the information from different channels. This operation cap-
tures channel-wise features and allows the network to model interactions between various
components. SepCNNs significantly reduce the number of parameters and computations
required compared to traditional convolutional layers by separating spatial and channel-
wise operations. This reduction in complexity enhances computational efficiency and helps
prevent overfitting by reducing the risk of model capacity surpassing the available data.

2.4. Residual Blocks

Residual blocks play a crucial role in facilitating the training of deeper neural net-
works, addressing the challenges of vanishing gradients, and promoting the extraction
of intricate features. It consists of multiple layers, typically including batch normaliza-
tion, separable convolution, and skip connections. The batch normalization normalizes
the activations of the previous layer, ensuring stable and consistent input distributions
throughout the network. This normalization helps improve the gradient flow during
backpropagation, enabling more efficient training and reducing the likelihood of getting
stuck in suboptimal solutions. The separable convolutional layers and the residual block
maintain the improvement process of feature extraction. They employ depthwise and
pointwise convolutions as described earlier, capturing spatial and channel-wise features
separately. This separation allows for a better representation of complex patterns in the
biopsy images. Skip connections or identity mappings form the distinctive characteristic of
residual blocks. These connections will enable the gradient to flow directly from earlier to
subsequent layers. By introducing these shortcuts, residual blocks enable the network to
learn residual mappings, focusing on the difference between the input and output of the
block. This mechanism alleviates the vanishing gradient problem, allowing the network to
propagate gradients effectively during training. As a result, deeper networks can be trained
more efficiently and effectively, promoting the extraction of hierarchical features crucial
for accurate cancer detection. The residual blocks are often repeated multiple times in the
architecture to allow the network to capture increasingly complex features. Each repetition
provides further refinement and abstraction of the learned representations, enhancing the
model’s discriminative power.

2.5. Model Architecture

The architecture begins with rescaling the input images and dividing the pixel values
by 255 to normalize them within the range of 0–1 (Figure 1 and Supplementary Data:
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Supplementary Figure S1). Normalization facilitates more effective learning by bringing
the input data into a consistent scale and range. The subsequent convolutional layers
employ learnable filters to extract features from the input images. These convolutional
layers detect various patterns, edges, and textures, enabling the model to understand
the visual characteristics of the biopsy images. Then comes the core component of the
architecture, which is the residual block. Following the residual blocks, a Global Average
Pooling layer is applied to reduce the spatial dimensions of the feature maps. This pooling
operation aggregates the spatial information and extracts the most relevant features while
significantly reducing the number of parameters. This process improves computational
efficiency and helps prevent overfitting by reducing the complexity of the model. To further
prevent overfitting and promote generalization, a dropout layer was included. This layer
randomly sets a fraction of the input units to zero during training, reducing the model’s
reliance on specific features and enhancing its ability to generalize to unseen data. The
final layer of the architecture is a one-neuron layer with a sigmoid activation function. This
layer predicts the likelihood of the biopsy image containing cancerous cells, providing a
binary classification decision.
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Figure 1. A summary of the model legend: (i) Input preprocessing [inputLayer]: rescales input images
and normalize pixel values to the range of 0–1. Effective learning benefits from consistent scaling.
(ii) Convolutional layers [Conv2D and SeparableConv2D]: learnable filters extract features (patterns,
edges, and textures) from input images and enable the understanding of visual characteristics in
biopsy images. (iii) Residual blocks [sequence of 5 layers/operations: 1x MaxPooling2D, 1x Conv2D,
1X Add (operation), and 2X SeparableConv2D]: core component of the architecture that enhances
feature representation. (iv) Global Average Pooling [GlobalAveragePooling2D]: reduces spatial
dimensions of feature maps, extracts relevant features while minimizing parameters, improves
computational efficiency, and prevents overfitting. (v) Dropout layer: randomly sets input units to
zero during training, enhancing generalization by reducing reliance on specific features. (vi) Final
layer [Dense]: one-neuron layer with sigmoid activation predicts the likelihood of cancerous cells in
biopsy images (binary classification).

2.6. Model Optimization and Training

To optimize the model, we used Adam optimizer. Adam is an adaptive learning rate
optimization algorithm that combines the advantages of both AdaGrad and RMSProp
optimizers [9]. It dynamically adjusts the learning rate based on the gradients of the
parameters, allowing for more efficient and effective updates during training. The learning
rate started at 0.01, a relatively higher value enabling more extensive initial parameter
updates. However, a learning rate decay scheduler was implemented to ensure fine-tuning
and convergence. This scheduler reduced the learning rate by 0.25 every 10 epochs. The
step decay approach ensured that the learning rate decreased gradually, allowing the
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model to make more precise updates and converge to an optimal solution. The training
process involved iterating over the training dataset for 100 epochs. An epoch represents a
complete pass through the entire training dataset. During each epoch, the model adjusted its
parameters based on the training and validation data, gradually improving its performance.

2.7. Statistical Analysis

PQStat Software (2021, v.1.8.2) was used for statistical analysis. Pearson correlation
was used to correlate the years of experience with pathologist performance, and data were
reported as r Pearson with a 95% confidence interval (CI). A p-value < 0.05 was considered
statistically significant.

3. Results
3.1. Accuracy and Validation

We evaluated the model using accuracy and Area Under the Curve (AUC) metrics on
the training, validation, and test datasets (Figure 2). Accuracy represents the percentage of
correctly classified samples out of the total number of samples. Achieving high accuracy
across all datasets indicates the model’s ability to learn and generalize well. Meanwhile,
AUC is a commonly used metric in machine learning and statistics, particularly in binary
classification problems. AUC is a measure of the performance of a classification model,
and expresses the ability of the model to distinguish between positive and negative classes
across various threshold values for the predicted probabilities. The reported results are
shown in Table 1.

Table 1. Accuracy and AUC for the training, validation, and testing datasets.

Dataset Accuracy AUC

Training dataset 98% 99%
Validation dataset 96% 97%

Testing dataset 97% 98%

Moreover, the code was validated on external datasets (n = 105 images) from an open-
source repository: the Department of Pathology and Laboratory Medicine at Dartmouth–
Hitchcock Medical Center (DHMC) [10]. Remarkably, our model achieved an impressive
100% accuracy, confirming the original results from Dartmouth–Hitchcock (Supplementary
Data: Table S1 and Supplementary Figure S2).
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Figure 2. (a) Training and validation accuracy: The blue line represents the training accuracy over
multiple epochs, indicating how well the model performed on the training data. The dotted circles
correspond to the validation accuracy, reflecting the model’s generalization ability on a separate
validation dataset. The x-axis represents the number of training epochs, while the y-axis shows the
accuracy, ranging from 0 to 1. (b) Training and validation losses: In the second subplot, the blue
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better convergence. The blue dotted circle curve represents the validation loss, quantifying the
discrepancy between predicted and actual values during validation. Similar to the first subplot, the
x-axis corresponds to the number of training epochs, and the y-axis represents the loss.

3.2. Model Application

Accuracy and AUC results demonstrate effectiveness of the model in accurately
detecting lung cancer from biopsy images. Furthermore, the decision-making process was
based explicitly on the cancerous cells found within the images. This observation was
confirmed by analyzing the last convolutional layer’s output, highlighting the model’s
capability to distinguish cancerous cells from normal cells with high sensitivity, showing
the area where the model recognizes the cancer cells (Figure 3). It is worth emphasizing
that the model can detect and interpret the input image within less than 10 s, giving highly
accurate and precise results.

3.3. Comparison of the Model Results with the Pathologist’s Decision

Ten active pathologists from the Pulmonary Department at the Teaching Hospital of
Poznan University of Medical Sciences participated in the study (average years of experi-
ence 11.9 ± standard deviation 10.13). They were each provided with exactly fifteen images
and were asked to classify each slide as healthy, cancerous, or uncertain (Supplementary
Data: Supplementary File S1). While the model could accurately classify all the slides, the
pathologists’ accuracy ranged from 0 to 100%, with an average accuracy of 79%. Moreover,
the model’s overall performance surpassed that of active pathologists, with an accuracy
of 100%.

It is worth mentioning that all pathologists correctly identified the slides with healthy
cells. However, their accuracy declined when they were uncertain about some slides,
particularly slide number 7, which all pathologists were uncertain about. We observed
a significant linear correlation between pathologists’ accuracy and years of experience (r
Pearson = 0.71, 95% CI 0.14 to 0.93, p = 0.022) and the linear regression equation of accuracy
(y = 72.61 + 0.62x, as x denoted for years of experience), as shown in Table 2.
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Table 2. Comparisons between model and pathologist decisions on 15 exact images (H, healthy; C,
cancer; UC, uncertain).

Image
nr.

Model Pathologist Decision (n = 10) Pathologist Slide
Accuracy (%)Decision Array Accuracy(%) P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

1

H

<0.001 100

H

100

2 <0.001 100 100

3 <0.001 100 100

4 0.05 100 100

5 0.004 100 100

6 <0.001 100 H C 90
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Table 2. Cont.

Image
nr.

Model Pathologist Decision (n = 10) Pathologist Slide
Accuracy (%)Decision Array Accuracy(%) P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

7

C

1 100 UC 0

8 1 100 UC C UC C UC 20

9 1 100
C

100

10 1 100 100

11 1 100 C

UC

90

12 1 100 UC C 70

13 1 100 C UC C UC C UC C 40

14 1 100 C 100

15 1 100 UC C 80

Pathologist year of experience 11 11 14 12 12 14 12 11 13 10

Individual pathologist accuracy (%) 73.33 73.33 93.33 80.00 80.00 93.33 80.00 73.33 86.67 66.67

4. Discussion
4.1. Main Findings

The convolutional layers in the model improved cancer cell detection, and incorpo-
rating SepCNNs reduced computational complexity and overfitting risks, while residual
blocks and batch normalization facilitated the training of deeper spots by addressing chal-
lenges like vanishing gradients and ensuring stable input distributions. These designed
and integrated elements collectively improve the model’s accuracy and efficiency in dis-
tinguishing between tumor and healthy cells, with an accuracy between 96% and 98%.
Our model was designed to handle complex nonlinear relationships, fault tolerance, and
parallel distributed processing, and pay attention to the true positives. Thus, it can capture
and detect fine-tuned details in the training slides and then generalize the outcomes in a
new dataset.

The model was successfully deployed in clinical practice with histopathological slides,
and its results were compared with those of active pathologists. The implementation
of such an AI tool in clinical settings is highly pertinent in the context of lung cancer,
particularly in Poland.

4.2. Comparison with Existing ML Models in Lung Cancer Detection

Many successful models were created to distinguish between healthy and tumor lung
cells using the CNN approach; for instance, Gürsoy et al. [11] developed an AI-based model
employing a CNN for comparative diagnostic evaluation against human pathologists. The
dataset comprised 158 nodules extracted from lung cancer patients, with a distribution
of 77 malignant and 81 benign cases, assessed independently by two radiologists and
pathologists. The diagnostic outcomes exhibited a striking concordance, revealing an
accuracy of nearly 91% between the AI model and human assessments.

Wu et al. [12] undertook a project to delineate the advantages conferred by integrating
a DL-based model to enhance diagnostic precision and efficiency within pathology. Employ-
ing the CNN system, their focus centered on identifying non-small cell lung cancer tumors,
aiming to augment the diagnostic capabilities of pathologists. The study encompassed a
dataset of 173 WSIs meticulously evaluated by human pathologists, partitioning 70% for
training data and 30% for testing and validation. The reported findings revealed 93% accu-
racy and 96% specificity. The application of AI-assisted diagnostic tests further affirmed the
potential enhancement in repeatability and efficiency for untrained pathologists utilizing
the AI model. Also, Xie et al. [13] introduced an innovative interdisciplinary approach in
the context of lung cancer diagnosis in China. The study entailed the utilization of six ML
algorithms, including K-nearest neighbor, Naïve Bayes, AdaBoost, Support Vector Machine,
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Random Forest, and a neural network, employing a 10-fold cross-validation technique for
the early detection of lung cancer. A dataset comprising WSIs from 110 lung cancer patients
and 43 healthy participants was analyzed. The outcomes revealed a notable accuracy of
98.9% and a sensitivity of 98.1%. However, the model still could not integrate the plasma
metabolic biomarkers with computed tomography screening or other lung tumor features,
which could improve the model’s performance.

Moreover, Dritsas et al. [14] applied the ML-based model “Rotation Forest” to detect
the early stage of lung cancer. The WSI dataset was collected from 309 participants, and
the model’s evaluation was grounded in precision signifying the measure of quality, recall
representing the measure of quantity, and F-Measure, which embodies the harmonic mean
of precision and recall, facilitating a comprehensive evaluation through a singular metric.
The reported outcomes indicated an AUC of 99.3% and F-measure, precision, recall, and
accuracy metrics at 97.1%. However, this ML model was based on a publicly available
dataset, and it did not come from a hospital unit or institute, which affects the features
input and characters in addition to the interpretability and outcome of the model.

4.3. Clinical Implications

Lung cancer is prevalent and poses a significant healthcare challenge, requiring effi-
cient diagnostic tools to cope with the escalating workload on pathologists [15]. The surge
in lung cancer cases, coupled with the evolving intricacies of histopathological evaluations
following guideline modifications, contributes to an augmented burden on pathologists.
Unfortunately, there is a simultaneous diminution in the pathology workforce in Poland.
Adjusted for the increasing number of new cancer cases annually, the workload per patholo-
gist in Poland has increased, signifying a growing disparity that may lead to delayed cancer
diagnoses and diagnostic inaccuracies. Based on the latest published articles, Poland has
less than 800 active pathologists, indicating one pathologist per 51,000 citizens, one of the
lowest in the European countries, as the average is one pathologist per 40,000 citizens [16].
The statistics mentioned that around 30,000 deaths per year are due to lung cancer. One of
the factors that could have a vital role here is the prolonged diagnosis due to a shortage of
active pathologists, the time-consuming process, and ineffective treatment. To the best of
our knowledge, the implementation of AI applications in medical diagnosis inside Polish
hospitals is still inadequate, and designing a dedicated model considering the pathologists
requirements gathered earlier will definitely be helpful in the decision-making process. It
can improve the accuracy and efficiency of medical diagnosis and support pathologists
in their daily tasks [4]. To the best of our knowledge, this is the first study in Poland to
incorporate a DL model design with pathologists, considering their needs and involving
them in the development phase.

Eventually, the model could be used by universities to train and educate medical
students for a better understanding of the detection process and highlight the advantages
of using AI applications in the medical field.

4.4. Model Limitations

Even though our model provided a high precision rate exceeding 96% and detec-
tion power within 10 s, pinpointing the areas where tumor cells were detected, several
limitations need to be addressed. First, acquiring large datasets for training, testing, and
validating the ML-based model is challenging; the more significant the dataset, the higher
the accuracy and sensitivity of the model. Our study collected 170 patient slides, resulting
in 934 images for our model. Our model will develop a more nuanced understanding of
tumor properties with larger datasets, which will be reflected in the final output and inter-
pretation. Finally, the lack of a standardized lung tumor pathology image database hinders
the diagnostic efficacy of ML models, underscoring the need for continuous improvements
in ML technology to ensure robustness and consistent recognition across diverse databases
from various regions.
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4.5. Ethical Considerations and Potential Social Impacts

When deploying AI algorithms for cancer diagnosis, several ethical considerations
and potential social impacts should be carefully addressed. First, clinicians must consider
patient autonomy, as they may have different attitudes toward risk and preferences re-
garding false-positive and false-negative results [17]. Still, it is essential to mention that
the transformation into an AI model is a complex process requiring in-depth validation
and constant supervision and maintenance to ensure its efficacy in clinical settings [18].
Second, Kiseleva et al. [19] recommended that AI’s transparency in healthcare be viewed
as a multilayered system of measures. The three layers of transparency to be considered
when using AI applications in healthcare are external (from physicians toward patients),
internal (from AI providers toward physicians), and insider (from AI providers toward
themselves) [19]. Third, several data privacy and security issues were reported, which
require proper legalization, such as the General Data Protection Regulation in the European
Union [20]. It is worth mentioning that some manufacturers of such AI tools can also
provide their solution to run mainly on local servers without the need to connect to the
internet, hence providing the healthcare facility more control over their data. Fourth, some
concerns have been raised previously on AI replacing physicians and its influence on the
patient–physician relationship [21]

5. Conclusions

We developed a model based on optimized residual blocks to enhance feature represen-
tation without compromising detection accuracy (96% to 98%) within a swift detection time
(below 10 s). The model outperformed results reported by active pathologists, suggesting
that an AI algorithm assisted by pathologists can enhance diagnostic skills and reduce the
lead time in the diagnosis process. Universities and healthcare facilities may utilize the code
to train medical students and junior physicians due to the fact that accuracy of pathologists
has improved over their years of experience. Future AI algorithms could be developed to
detect different stages of cancer, and further research on the current algorithm’s scalability
and deployment could be conducted.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers16081506/s1, Supplementary File S1: Pathologists evalua-
tion of the Whole Slide Images; Figure S1: Inputs and outputs for CNN model architecture; Figure S2:
comparing the results of the designed algorithm on the collected slides for this side and images from
an open-source repository: the Department of Pathology and Laboratory Medicine at Dartmouth–
Hitchcock Medical Center (DHMC) [10]; Table S1: Comparing the results of the model by images
from the Department of Pathology and Laboratory Medicine at Dartmouth–Hitchcock Medical Center
(DHMC) [10].
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