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Simple Summary: Clear cell renal cell carcinoma (ccRCC) accounts for at least 80% of renal tumours
worldwide. The grading of clear cell carcinoma is crucial for its management; therefore, it is important
to distinguish the ccRCC grade pre-operatively. The aim of this research is to differentiate high- from
low-grade ccRCC non-invasively using machine learning (ML) and radiomics features extracted
from pre-operative computed tomography (CT) scans, taking into consideration the tumour sub-
region that offers the greatest accuracy when grading. Furthermore, radiomics and machine learning
were compared with biopsy-determined grading in a sub-group with resection histopathology as a
reference standard.

Abstract: Background: Renal cancers are among the top ten causes of cancer-specific mortality,
of which the ccRCC subtype is responsible for most cases. The grading of ccRCC is important
in determining tumour aggressiveness and clinical management. Objectives: The objectives of
this research were to predict the WHO/ISUP grade of ccRCC pre-operatively and characterise
the heterogeneity of tumour sub-regions using radiomics and ML models, including comparison
with pre-operative biopsy-determined grading in a sub-group. Methods: Data were obtained from
multiple institutions across two countries, including 391 patients with pathologically proven ccRCC.
For analysis, the data were separated into four cohorts. Cohorts 1 and 2 included data from the
respective institutions from the two countries, cohort 3 was the combined data from both cohort 1
and 2, and cohort 4 was a subset of cohort 1, for which both the biopsy and subsequent histology
from resection (partial or total nephrectomy) were available. 3D image segmentation was carried out
to derive a voxel of interest (VOI) mask. Radiomics features were then extracted from the contrast-
enhanced images, and the data were normalised. The Pearson correlation coefficient and the XGBoost
model were used to reduce the dimensionality of the features. Thereafter, 11 ML algorithms were
implemented for the purpose of predicting the ccRCC grade and characterising the heterogeneity of
sub-regions in the tumours. Results: For cohort 1, the 50% tumour core and 25% tumour periphery
exhibited the best performance, with an average AUC of 77.9% and 78.6%, respectively. The 50%
tumour core presented the highest performance in cohorts 2 and 3, with average AUC values of
87.6% and 76.9%, respectively. With the 25% periphery, cohort 4 showed AUC values of 95.0% and
80.0% for grade prediction when using internal and external validation, respectively, while biopsy
histology had an AUC of 31.0% for the classification with the final grade of resection histology as a
reference standard. The CatBoost classifier was the best for each of the four cohorts with an average
AUC of 80.0%, 86.5%, 77.0% and 90.3% for cohorts 1, 2, 3 and 4 respectively. Conclusions: Radiomics
signatures combined with ML have the potential to predict the WHO/ISUP grade of ccRCC with
superior performance, when compared to pre-operative biopsy. Moreover, tumour sub-regions
contain useful information that should be analysed independently when determining the tumour
grade. Therefore, it is possible to distinguish the grade of ccRCC pre-operatively to improve patient
care and management.
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1. Introduction

The grading of RCC has been acknowledged as a prognostic marker for close to a
century [1]. The tumour grade provides some insight into how cancer may act. It identifies
whether cancer cells are regular or aberrant under a microscope. The more aberrant the
cells seem and the higher the grade, the quicker the tumour is likely to spread and expand.
Many different grading schemes have been proposed, initially focused on a collection of
cytological characteristics and more recently on nuclear morphology. Nuclear size (area,
major axis, and perimeter), nuclear shape (shape factor and nuclear compactness), and
nucleolar prominence characteristics are the main emphasis in the Fuhrman grading of
renal cell carcinomas. Even though Fuhrman grading has been widely used in clinical
investigations, its predictive value and reliability are up for discussion. Fuhrman et al. [2]
showed, in 1982, that tumours of grades 1, 2, 3, and 4 presented considerably differing
metastatic rates. When grade 2 and 3 tumours were pooled into a single cohort, they
likewise demonstrated a strong correlation between tumour grade and survival [2]. The
International Society of Urologic Pathologists (ISUP) suggested a revised grading system
for RCC, commonly known as the WHO/ISUP grading system, in 2012 to address the
shortcomings of the Fuhrman grading scheme [3]. This system is primarily based on the
assessment of nucleoli and has been approved for papillary and ccRCC tumours [3]. As
a result of the recommendation by the World Health Organization (WHO), the system is
currently applied internationally [4].

Grading ultimately facilitates the optimal management and treatment of tumours
according to their prognostic behaviour concerning their respective grades. For instance, in
elderly or very sick patients who have small renal tumours (<4 cm) and high mortality rates,
cryoablation, active surveillance, or radiofrequency ablation may be considered to manage
their conditions. It is crucial to note that a confident radiological diagnosis of low-grade
tumours in active surveillance can significantly impact clinical decisions, hence eliminating
the risk of over-treatment. As ccRCC is the most prevalent subtype (8 in 10 RCCs) with
the highest potential for metastasis, it requires careful characterisation [5]. High-grade
cancers have a poorer prognosis, are more aggressive, have a high risk of post-operative
recurrence, and may metastasise. Therefore, it is very important to differentiate between
different grades of ccRCC, as high-grade ccRCC requires immediate and exact management.
Precision medicine together with personalised treatment has advanced with the advent of
cutting-edge technology; hence, clinicians are interested in determining the grade of ccRCC
before surgery or treatment, enabling them to better advise patients regarding therapy and
even predict cancer-free survival if surgery has been conducted.

The diagnosis of ccRCC grades is commonly carried out based on pre- and post-
operative methods. One such pre-operative method is biopsy. However, the accuracy
of a biopsy can be influenced by several factors, including the size and location of the
tumour, the experience of the pathologist performing the biopsy, and the quality of the
biopsy sample [6]. Due to sampling errors, a biopsy may not always provide an accurate
representation of the overall tumour grade [7]. Inter-observer variability can also lead to
inconsistencies in the grading process. This can be especially problematic for tumours that
are borderline between two grades [8]. In some cases, a biopsy may not provide a definitive
diagnosis as it only considers the cross-sectional area of the tumour and, compounded with
the fact that ccRCC presents high spatial and temporal heterogeneity [9], it may not be
representative of the entire tumour [10]. A biopsy also has a small chance of haemorrhage
(3.5%) and a rare risk of track seeding (1:10,000) [11]. Due to the limitations highlighted
for biopsies [12], radical or partial nephrectomy treatment specimens are usually used
as definitive post-operative diagnostic tools for tumour grading. With partial or radical
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nephrectomy being the definitive therapeutic approach, a small but significant number
of patients are subjected to unnecessary surgery, even though their management may not
require surgical resection. Nephrectomy also increases the possibility of contracting chronic
renal diseases that may result in cardiovascular ailments. Therefore, the precise grading of
ccRCC through non-invasive methods is imperative in order to improve the effectiveness
and targeted management of tumours.

The assumption in most research and clinical practice is that solid renal masses are
homogenous in nature or, if heterogeneous, that they have the same distribution throughout
the tumour volume [13]. Recent studies [14] have highlighted that, in some histopathologic
classifications, different tumour sub-regions may have different rates of aggressiveness;
hence, heterogeneity plays a significant role in tumour progression. Ignoring such intra-
tumoural differences may lead to inaccurate diagnosis, treatment, and prognosis. The
biological makeup of tumours is complex and, therefore, leads to spatial differences within
their structures. These variations may be due to the expression of genes or the microscopic
structure [15]. Such differences can be caused by several factors, including hypoxia (i.e., the
loss of oxygen in the cells) and necrosis (i.e., the death of cells). This is mostly synonymous
with the tumour core. Likewise, high cell growth and tumour-infiltrating cells are factors
associated with the periphery [16].

Medical imaging analysis has been shown to be capable of detecting and quantifying
the level of heterogeneity in tumours [17–19]. This ability enables tumours to be categorised
into different sub-regions depending on their level of heterogeneity. In relation to tumour
grading, intra-tumoural heterogeneity may prove useful in determining the sub-region
of the tumour containing the most prominent features that enable successful grading of
the tumour. Radiomics, which is the extraction of high-throughput features from medical
images, is a modern technique that has been used in medicine to extract features that
would not be otherwise visible to the naked eye alone [20]. It was first proposed by
Lambin et al. [21] in 2012 to extract features, taking into consideration the differences in
solid masses. Radiomics eliminates the subjectivity in the extraction of tumour features
from medical images, functioning as an objective virtual biopsy. A significant number
of studies have applied radiomics approaches for the classification of tumour subtypes,
grading, and even the staging of tumours [22,23].

Artificial intelligence (AI) is a wide area whose aim is to build machines which sim-
ulate human cognitive abilities. It has enabled a shift from human systems to machine
systems trained by computers using features obtained from the input data. In recent years,
with the advent of AI, there has been tremendous progress in the field of medical imaging.
Machine learning, which is a branch of AI, has been used to extract high-dimensional
features from medical images and has shown significant ability to perform image segmen-
tation, recognition, reconstruction, and classification. It has also made it easy to quantify
and standardise medical image features, thereby acting as an intermediary between clinics
and pathology. AI has been proven to be effective in reducing misdiagnoses and improv-
ing diagnostic accuracy in renal diseases. ML is expected by numerous researchers to
bring drastic changes in the field of individualised diagnosis and patient treatment and
is currently used to predict the nuclear grade, classification, and prognosis of RCC using
radiomic data [24]. AI has also enabled the analysis of tumour sub-regions in a variety of
clinical tasks, using several imaging modalities such as CT and MRI [25]. However, these
analyses have been limited to only a few types of tumours, particularly brain tumours [26],
head and neck tumours [27], and breast cancers [28]. To date, no study has attempted to
analyse the effect of sub-region intra-tumoural heterogeneity on the diagnosis, treatment,
and prognosis of renal masses and specifically ccRCCs. This rationale formed the basis of
the present study, focusing on the effect of intra-tumoural heterogeneity on the grading of
ccRCC. To the best of our knowledge, this is the first paper to comprehensively focus on
tumour sub-regions in renal tumours for the prediction of tumour grades.
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In this research, the hypothesis that radiomics combined with ML can significantly
differentiate between high- and low-grade ccRCC for individual patients is tested. This study
sought solutions to two major problems that previous research has not been able to address:

- Characterising the effect of subregional intra-tumoural heterogeneity on grading
in ccRCC;

- Comparing the diagnostic accuracy of radiomics and ML through image-guided
biopsy in determining the grade of renal masses, using resection (partial or complete)
histopathology as a reference standard.

Key Contributions

- Clinical Application: This research offers a practical application of radiomics and
machine learning techniques in the field of oncology, specifically in the diagnosis and
grading ccRCC which could potentially aid clinicians in early detection, accurate and
precise treatment planning due to its higher diagnostic accuracy in comparison to
traditional methods.

- Subregion Heterogeneity Analysis: The inclusion of intra-tumoural subregion het-
erogeneity analysis highlights the depth of the research beyond simple tumour de-
lineation and delves into the spatial distribution and variations within the tumour.
This provides deeper insights into tumour biology and behaviour, leading to more
personalised treatment approaches.

- Potential for Non-invasive Assessment: Radiomics–machine learning algorithms, has
the potential to extract valuable information from medical images non-invasively
reducing the need for invasive procedures for tumour characterisation and grading,
improving patient comfort and reducing healthcare costs.

2. Materials and Methods
2.1. Ethical Approval

This study was approved by the institutional board, and access to patient data was
granted under Caldicott Approval Number IGTCAL11334, dated 21 October 2022. In-
formed consent for the research was not required, as CT scan image acquisition is a routine
examination procedure for patients suspected of having ccRCC.

2.2. Study Cohorts

This retrospective multi-centre study used data from three centres either in partner-
ship with or satellite hospitals of the National Health Service (NHS) in a well-defined
geographical area of Scotland, United Kingdom. The institutions included Ninewells Hos-
pital Dundee, Stracathro General Hospital, and Perth Royal Infirmary Hospital. Data from
the University of Minnesota Hospital and Clinic (UMHC) were also used [29,30]. Scan data
were anonymised.

We accessed the Tayside Urological Cancers (TUCAN) database for pathologically
confirmed cases of ccRCC between January 2004 and December 2022. A total of 396 patients
with CT scan images were retrieved from the Picture Archiving and Communication System
(PACS) in DICOM format. This data formed our first cohort (cohort 1). Retrospective-
based analysis for pathologically confirmed ccRCC image data following partial or radical
nephrectomy from UMHC stored in a public database [31] (accessed on 21 May 2022) was
performed, referred to as cohort 2 in this study. The database was queried for data between
2010 and 2018. Data for a total of 204 patients with ccRCC CT scan images was collected.

2.2.1. Inclusion Criteria

- Availability of protocol-based pre-operative contrast-enhanced CT scan in the arterial
phase. The selection of the arterial phase is justified due to its widespread adoption
across medical centres. Moreover, this phase, characterised by its enhancement pattern
and hypervascularity, has demonstrated promising capabilities in distinguishing
between low- and high-grade ccRCC [32].
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- Confirmed histopathology from partial or radical nephrectomy with grades reported
by a uro-pathologist according to the WHO/ISUP grading system.

- CT scans with data to achieve a working acquisition for 3D image reconstruction.

2.2.2. Exclusion Criteria

- Patients with only biopsy histopathology.
- Metastatic clear cell renal cell carcinoma (mccRCC).
- Patients with bilateral or ipsilateral multiple tumours, primarily due to the ambiguity

of the database in distinguishing between the exact tumour grades.

For more information on the UHMC data set, the reader is referred to [29,30].

2.3. CT Acquisition Technique

The patients in cohort 1 were examined using up to five different CT helical/spiral
scanners, including GE Medical Systems, Philips, Siemens, Canon Medical Systems, and
Toshiba 512-row detectors. The detectors were also of different models, including Aquilion,
Biograph128, Aquilion Lightning, Revolution EVO, Discovery MI, Ingenuity CT, Light-
Speed VCT, Brilliance 64, Aquilion PRIME, Aquilion Prime SP, and Brilliance 16P. The slice
thicknesses were 1.50, 0.63, 2.00, 1.25, and 1.00 mm. Likewise, the number of pixels in the
image was 512 × 512. The arterial phase of the CT scan obtained 20–45 s after contrast
injection was acquired using the following method: intravenous Omnipaque 300 contrast
agent (80–100 mL/s), 3 mL/s contrast injection for the renal scan, and 100–120 kVp with
an X-ray tube current of 100–560 mA depending on the size of the patient. For the UMHC
data set, refer to [29,30].

2.4. Hardware and Software Consideration

A Windows 10 machine was used with the following hardware: Device name: ASUS
FX503VM, Processor: Intel(R) Core(TM) i7–7700HQ CPU @ 2.80 GHz, Nvidia GeForce
GTX 1060 3 GB GPU, CUDA Cores: 1152, Base Clock: 1506 MHz, Boost Clock: 1708 MHz,
Texture Units: 72, Memory Clock: 8 GHz, Memory Bandwidth: 192 GB/s, ROPs: 48.L2,
Cache Size: 1536 KB, Installed RAM: 32.0 GB (2 × 16 GB) DD–2400 MHz, and System type:
64-bit operating system, x64-based processor.

2.5. Data Curation

The procedure used for data collection with respect to each patient comprised multiple
stages: accessing the Tayside Urological Cancers database, identification of patients using a
unique identifier (community health index number (CHI) number), review of the medical
records of the cohort, CT data acquisition, annotation of the data and, finally, quality
assurance. Anonymised data for cohort 1 were in DICOM format. For each patient,
duplicated DICOM slices were removed, as slice inconsistencies has detrimental effects on
how an image can be processed.

Image quality is an important factor in machine learning modelling [33]. Therefore, as
usual practice [32,34,35], qualitative measures were used to remove images of low quality.
An expert diagnostic imaging technologist (A.J.A.) visually inspected each of the images
and they were further verified by the co-authors. Images with severe blurring, granularity
(quantum mottle), and ring and metal artefacts [36] were removed. Figure 1 presents a
flowchart showing the exclusion and inclusion criteria of patients and their sample size
distribution. Tumour grades 1 and 2 were labelled low-grade, whereas grades 3 and 4
were classified as high-grade. This is due to the clinical management for grades 1 and 2
being more or less similar, which is also the case for grades 3 and 4. A tumour classified as
low-grade is more likely to grow more slowly and spread less frequently than one with a
high grade.
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Figure 1. (A) Diagrammatic representation of the exclusion and inclusion criteria for the cohort 1
data set. 45 patients with only biopsy and 20 with mccRCC were excluded. (B) Distribution of sample
sizes in cohort 1, categorised by low- and high-grade. There was 80 and 107 low- and high-grade
tumours respectively. (C) Sample sizes for the various cohorts utilised in this study. The training,
internal and external validation samples for each of the four cohorts are highlighted.

2.6. Tumour Sub-Volume Segmentation Technique

In cohort 1, CT image slices for each patient were converted to 3D NIFTI (Neuroimag-
ing Informatics Technology Initiative) format using the Python programming language
version 3.9, then loaded into the 3D Slicer version 4.11.20210226 software for segmenta-
tion. Manual segmentation was performed on the 3D images, delineating the edges of the
tumour slice-by-slice to obtain the VOI.

The above procedure was performed by a blinded investigator (A.J.A.) with 14 years of
experience in interpreting medical images, who was unaware of the final pathological grade
of the tumour. Confirmatory segmentation was carried out by another blinded investigator
(A.J.) with 12 years of experience in using medical imaging technology on 20% of the samples,
in order to ascertain the accuracy of the first segmentation. Thereafter, the segmentations were
assessed and ascertained by an independent experienced urological surgical oncologist (G.N.),
taking into consideration radiology and histology reports. The gold standard pathology
diagnosis was assumed to be partial or radical nephrectomy histopathology.
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For cohort 2, Heller et al. [29] previously conducted segmentation by following a set
of instructions, including ensuring that the images of the patients contain the entire kidney,
drawing a contour which includes the entire tumour capsule and any tumour or cyst but
excluding all tissues other than renal parenchyma, and drawing a contour that includes the
tumour components but excludes all kidney tissues. In the present study, only the delineation
of kidney tumours achieved by Heller et al. [29] was considered. To perform delineation, a
web-based interface was created on the HTML5 Canvas, which allowed contours to be drawn
freehand on the images. The image series were sub-sampled in the longitudinal direction
regularly, such that the number of annotated slices depicting a kidney was about 50% that of
the original. Interpolation was also performed. More information on the segmentation of the
cohort 2 data set can be found in the report [29].

The segmentation result for both cohorts 1 and 2 was a binary mask of the tumour. In the
present study, the tumours were divided into different sub-regions based on their geometry
(i.e., periphery and core). The periphery refers to regions towards the edges of the tumour,
whereas the core represents regions close to the centre of the tumour. The core was obtained
through extracting 25%, 50%, and 75% of the binary mask from the centre of the tumour,
while the periphery was generated through extracting 25%, 50%, and 75% of the binary mask
starting from the edges of the tumour to form a rim as a hollow sphere. A detailed visual
description is shown in Figures 2–4. Mask generation was performed using a Python script
which automatically generated the sub-regions through image subtraction techniques.

(a) (b) (c) (d)

Figure 2. Manual segmentation of the 3D image slices of the tumour as presented by the red area
was performed using the 3D Slicer software: version 4.11.20210226 (a) axial plane; (b) coronal plane;
(c) sagittal plane; and (d) generated 3D VOI from the delineated 2D slices.
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(a) (b) (c) (d)

Figure 3. Manual segmentation of the 3D image slices using the 3D Slicer software: version
4.11.20210226 (a) 75% periphery (yellow) and core (green) of the tumour; (b) 50% periphery (green)
and core (purple) of the tumour; (c) 25% periphery (blue) and core (pink) of the tumour; and
(d) overlap of the periphery and core sub-regions.

(a) (b) (c) (d)

Figure 4. Representation of the 3D segmented regions: (a) 75% periphery (red) and core (blue) of
the tumour; (b) 50% periphery (green) and core (blue) of the tumour; (c) 25% periphery (yellow) and
core (pink) of the tumour; and (d) overlap of the periphery and core sub-regions.

2.7. Radiomics Feature Computation

Similar to our previous research [22], texture descriptors of the features were computed
using the PyRadiomics module in Python version 3.6.1. The aim of the PyRadiomics
module is to implement a standardised method for extracting radiomic features from
medical images, thus avoiding inter-observer variability [37]. The parameters used in
PyRadiomics were a minimum region of interest (ROI) dimension of 2, a pad distance of 5,
a normalisation value of false, and a normaliser scale of 1. There was no removal of outliers,
no re-sampled pixel spacing, and no pre-cropping of the image. SitkBSpline was used as
the interpolator, with the bin width set to 20.
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On average, PyRadiomics generated approximately 1500 features for each image and
enabled the extraction of 7 feature classes per 3D image. This was performed on the 3D image in
NIFTI format and the binary mask image. The extracted feature categories were as follows: first-
order (19 features), grey-level co-occurrence matrix (GLCM) (24 features), grey-level run-length
matrix (GLRLM) (16 features), grey-level size-zone matrix (GLSZM) (16 features), grey-level
dependence matrix (GLDM) (14 features), neighbouring grey-tone difference matrix (NGTDM)
(5 features), and 3D shape features (16 features). These features allow for computation of the
intensity of textures as well as their distribution in the image [37].

In a previous study [22], it was shown that a combination of the original feature classes
and filter features significantly improved the model performance. Therefore, we extracted the
filter class features in addition to the original features. These filter classes included the local
binary pattern (LBP-3D), gradient, exponential, logarithm, square-root, square, Laplacian of
Gaussian (LoG), and wavelet. The filter features were applied to every feature in the original
feature classes; for instance, as the first-order statistic feature class had 19 features, it follows
that it had 19 LBP filter features. The filter class features were named according to the name
of the original feature and the name of the filter class [37].

2.8. Feature Processing and Feature Selection

The features extracted using PyRadiomics were standardised to assume a standard
distribution. Scaling was performed using the Z-score, as shown in Equation (1), for both the
training and testing data sets independently, using only the mean and standard deviation
generated from the training set. This was carried out to avoid leakage of information while
also eliminating bias from the model. All of the features were transformed in such a way
that they followed a standard normal distribution with mean (µ) = 0 and standard deviation
(σ) = 1.

Z = (x − µ)/σ, (1)

where

Z: Value after scaling the feature.
x : The feature.
µ: Mean of all features in the training set.
σ: Standard deviation of the training set.

Normalisation reduces the effect of different scanners, as well as any influence that
intra-scanner differences may introduce in textural features, resulting in improved cor-
relation to histopathological grade [38]. The ground-truth labels were denoted as 1 for
high-grade and 0 for low-grade, for the purpose of enabling the ML models to understand
the data. Machine learning models usually encounter the “curse of dimensionality” in
the training data set [39], when the number of features in the data set is greater than the
number of samples. Therefore, we applied two feature selection techniques in an attempt to
reduce the number of features and retain only those features with the highest importance in
predicting the tumour grade. First, the inter-feature correlation coefficients were computed
and, when two features had a correlation coefficient greater than 0.8, one of the features
was dropped. Thereafter, we used the XGBoost algorithm to further select the features with
the highest importance for model development.

2.9. Sub-Sampling

In ML, the distribution of data among different classes is an important consideration
before developing an ML model. An imbalance in the data may cause the model to become
biased towards the majority class; instead of learning the features of the data, “cramming”
occurs, making the model inapplicable to real-life scenarios. In this research, our data
samples were imbalanced; therefore, we applied the synthetic minority oversampling
technique (SMOTE) to balance the data. Care should be taken when using SMOTE, as it
should only be applied in the training set and not the validation or testing sets; if this occurs,
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then there is a possibility that the model gains an unrealistic improvement in operational
performance due to data leakage [40].

2.10. Statistical Analysis

Common clinical features in this research were analysed using the SciPy package.
Comparisons were made based on age, gender, tumour size, and tumour volume against
the pathological grade. The chi-squared test (χ2) was conducted to compare the associations
between categorical groups. It is a non-parametric test that is used when the data do not
follow the assumptions of parametric tests, such as the assumption of normality in the
distribution of the data. The Student’s t-test is a popular statistical tool, which is used when
assessing the difference between two population means for continuous data; it is normally
used when the population follows a normal distribution and the population variance is
unknown. The point-biserial correlation coefficient (rpb) was calculated to further confirm
the significance in cases where statistical significance between clinical data was obtained.
The Pearson correlation coefficient (r) was used to measure the linear correlations in the
data between the radiomic features. The value of this coefficient ranged between −1 and
+1, with +1 signifying a strong positive correlation.

McNemar’s statistical test, which is a modified chi-squared test, was used to test
whether the difference between false negative (FN) and false positive (FP) was statistically
significant. It was calculated from the confusion matrix using the stats module in the
SciPy library. The chi-squared test for randomness was used to test whether the model
predictions differed from random predictions. The Dice similarity coefficient was used to
determine the inter-reader agreement for the segmentations. All statistical tests assumed a
significance level of p < 0.05 (i.e., the null hypothesis was rejected when the p-value was
less than 0.05). The radiomic quality score (RQS) was also calculated in order to evaluate
whether the research followed the scientific guidelines of radiomic studies. This study
followed the established guidelines of transparent reporting of a multi-variable prediction
model for individual prognosis or diagnosis (TRIPOD) [41].

2.11. Model Construction, Validation, and Evaluation

Several models were implemented to predict the pathological grade of ccRCC, using
the WHO/ISUP grading system as the gold standard. The choice of the implemented
models was motivated by previous research [22,23,32,35,42–49] where the models provided
satisfactory results for tumour subtype prediction using radiomics. The models were
constructed for cohort 1, 2, and the combined cohort. The ML models included support
vector machine (SVM), random forest (RF), extreme gradient boosting (XGBoost/XGB), naïve
Bayes (NB), multi-layer perceptron classifier (MLP), long short-term memory (LSTM), logistic
regression (LR), quadratic discriminant analysis (QDA), light gradient boosting machine
(LightGBM/LGB), category boosting (CatBoost/CB), and adaptive boosting (AdaBoost/ADB).
Different parameters were tested for each model to arrive at the optimum parameters giving
the best results. Refer to Table 1 for the parameter optimisation of the models.

Table 1. Parameter optimisation for machine learning models.

Models Parameters

SVM kernel = rbf, probability = True, random_state = 42, gamma = 0.2, C = 0.01.
RF n_estimators = 401, random_state = 42, max_depth = 3.
XGBoost random_state = 42, learning_rate = 0.01, n_estimators = 401, gamma = 0.52.
NB GaussianNB.
MLP hidden_layer_sizes = (401,201), activation = relu, solver = adam, max_iter = 5.

LSTM loss = binary_crossentropy, optimizer = Adam, lr = 0.01, metrics = accuracy, epochs = 1000,
batch_size = 16.

LR random_state = 42, max_iter = 4.
QDA reg_param = 0.05.
LightGBM random_state = 42, n_estimators = 9.
CatBoost random_state = 42, verbose = False, iterations = 50.
AdaBoost base_estimator = rf, n_estimators = 201, learning_rate = 0.01, random_state = 42.
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In total, 231 distinct models were constructed: 11 models for each of the 3 cohorts
and each tumour sub-region (11 × 3 × 7). For validation, the data set was divided into
training and testing sets. For the three main cohorts 1, 2 and 3; 67% of the data were used
for training and 33% were retained for testing. This formed part of our internal validation
procedure. Moreover, cohort 1 was validated against cohort 2 and vice versa, forming
part of our external validation procedure. It should be noted that, although cohort 1 was
taken to be analogous to a “single institution” data set, it was obtained from multiple
centres, and its comparison with cohort 2 was for the purpose of external validation of the
predictive models.

A subset of cohort 1 consisting of patients who underwent both a CT-guided per-
cutaneous biopsy and nephrectomy (28 samples) was evaluated using two separate ML
algorithms. One model was trained on cohort 1 but excluding the 28 patients who had
both procedures conducted, while the second model was trained on cohort 2, acting as
an external validator. The classifiers and sub-regions were determined for the two best-
performing classifiers and the three best-performing tumour regions. The objective of this
test was to assess the accuracy of tumour grade classification in biopsy histopathology
when compared to ML prediction using partial or total nephrectomy histopathology as
the gold standard. These 28 samples are referred to as cohort 4. In situations where the
biopsy grade histopathology was indeterminate for a specific tumour, we concluded its
final pathological grade as the opposite of the nephrectomy grade for that tumour (i.e., if
the nephrectomy outcome was high-grade but the biopsy result was indeterminate, we
concluded that the biopsy was low-grade for the purpose of analysis). It is worth-noting
that “Indeterminate results”are important as they do not contribute to decision-making and
one of the reasons biopsy approaches has not been adopted amongst clinician’s world over.
In fact, our group addressed this issue by 3 × 2 tables in a systematic review published
earlier [50]. We believe that all studies should report “indeterminate results” for the sake of
transparency and external validity.

Evaluation of the model performance was carried out using a number of metrics,
including accuracy (ACC), specificity (SPE), sensitivity (SEN), area under the curve of the
receiver operating characteristic curve (AUC-ROC), the Matthews correlation coefficient
(MCC), F1 score, McNemar’s test (McN), and the chi-squared test (χ2). All major metrics
were reported at 95% Confidence Interval (CI).

In a highly imbalanced data set, accuracy is not reliable as it gives an overly optimistic
measure of the majority class [51]. MCC is an effective solution to overcome class imbalance
and has been applied by the Food and Drug Administration (FDA) agency in the USA for
the evaluation of MicroArrayII/Sequencing Quality control (MAQC/SEQC) projects [52].
There are situations, however, where MCC gives undefined or large fluctuations in the
results [53]. The combination of precision/recall, which is the F1-score [54], provides better
information than the pair of sensitivity/specificity [55] and has gained popularity since the
1990s in the machine learning world. Despite its popularity, the F1-score varies for class
swapping while the MCC is invariant. The AUC-ROC curve is a popular evaluation metric
used when a single threshold of the confusion matrix is unavailable [56]. It is also sensitive
to class imbalance, though it is widely used in the medical field; therefore, it was used in
this study to compare with previous research. All the other metrics have been reported as
well and it is at the readers discretion to compare which metrics suit the study.

3. Results
3.1. Study Population and Statistical Analysis

In cohort 1, after implementation of the inclusion and exclusion criteria, a total of
187 patients with pathologically proven ccRCC were obtained. Of these, 80 patients pre-
sented low-grade and 107 presented high-grade ccRCC. The mean age was 59.05 and
64 years for low- and high-grade tumours, respectively. Gender-wise, 65.78% of patients
were male and 34.22% were female. The average tumour size and tumour volume were
4.32 cm and 75.8 cm3, respectively, for low-grade patients, and 6.033 cm and 203.74 cm3,
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respectively, for high-grade patients. For cohort 2, the data set met all the inclusion and
none of the exclusion criteria; hence, no sample was eliminated. The mean age was 57.17
and 63.68 years for low- and high-grade patients. The average tumour size and tumour
volume were 3.89 cm and 51.44 cm3 for low-grade patients, and 6.81 cm and 235.26 cm3 for
high-grade patients, respectively. In terms of gender, 65.69% of patients were male, while
the rest were female.

Differences in average age, tumour size, and tumour volume (but not gender) were
statistically significant in cohorts 1, 2, and the combined cohort. However, using the
point-biserial correlation coefficient (rpb) to compare the correlation between the best
model prediction and the clinical features, no statistically significant difference was found.
Table 2 provides the characteristics and analysis of patients. The Dice similarity coefficient
score was 0.93, which indicated that there was a good inter-reader agreement for tumour
segmentation. The entire data set RQS was found to be 61.11%, signifying that the research
followed scientific radiomic guidelines. For the RQS rubric, we refer the reader to https:
//www.radiomics.world/rqs2 (accessed on 27 April 2023) [41].

Table 2. Statistical demographic characteristics of patient data.

Tumour and Patient Characteristics

Variable Low-Grade High-Grade p-Value rpb *1

cohort 1
n = 187

Age (Mean ± SD) 59.05 ± 12.28 64 ± 9.40 0 * 0.4
Size (cm) 4.32 ± 2.02 6.03 ± 3.23 0 * 0.6

Volume (cm3) 75.8 ± 90.90 203.74 ± 305.82 0 * 0.6
Gender 0.331

Male 49 (26.20%) 74 (39.57%)
Female 31 (16.58%) 33 (17.65%)

cohort 2
n = 204

Age (Mean ± SD) 57.17 ± 12.67 63.68 ± 11.14 0 * 0.88
Size (cm) 3.89 ± 2.16 6.81 ± 3.55 0 * 0.45

Volume (cm3) 51.44 ± 114.32 235.26 ± 326.10 0 * 0.56
Gender 0.25

Male 77 (37.75%) 57 (27.94%)
Female 50 (24.51%) 20 (9.80%)

cohort 3
n = 391

Age (Mean ± SD) 57.89 ± 12.55 63.86 ± 10.17 0 * 0.56
Size (cm) 3.89 ± 2.16 6.81 ± 3.55 0 * 0.2

Volume (cm3) 60.86 ± 106.55 216.93 ± 314.85 0 * 0.29
Gender 0.25

Male 126 (32.23%) 131 (33.50%)
Female 81 (20.72%) 53 (13.55%)

cohort 4
n = 28

Age (Mean ± SD) 57.12 ± 10.25 62.09 ± 9.39 0.22
Size (cm) 3.31 ± 0.94 4.02 ± 2.25 0.28

Volume (cm3) 25.98 ± 27.10 57.16 ± 70.40 0.13
Gender 1

Male 12 (42.86%) 8 (28.57%)
Female 5 (17.86%) 3 (10.71%)

* Statistical significance at the 0.05 level; *1 point-biserial correlation coefficient (rpb).

3.2. Feature Extraction, Pre-Processing, and Selection

A total of 1875 features were extracted using the PyRadiomics library. It should be
noted that there were no null values in the data, as it is crucial in the context of ML to handle
these values to avoid errors and undefined results. The Pearson correlation coefficient (r)
and extreme gradient boosting algorithm were used to reduce the number of features to an
optimal number. The number of features selected (FS) varied between the data sets.

https://www.radiomics.world/rqs2
https://www.radiomics.world/rqs2
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3.3. Model Validation and Evaluation
3.3.1. Internal Validation

Cohort 1: Of the developed models, the CatBoost classifier performed the best for the
majority of the tumour sub-region models, with its best classifier having an AUC of 85.0%
in the 100% tumour. When the tumour sub-region was considered, the 50% tumour core
and 25% tumour periphery exhibited the best performance, with an average AUC of 77.9%
and 78.6%, respectively. When the models’ core and periphery regions were averaged, the
best classifier was CatBoost, with an AUC of 80.0% = (80.7% + 79.3%)/2. Tables A1 and A2
provide the results obtained for cohort 1.

Cohort 2: The best-performing model in the cohort 2 data set was the CatBoost
classifier, with the best performance in the 50% tumour periphery having an AUC of 91.0%.
In terms of tumour sub-region, the 50% tumour core had the highest average AUC of 87.6%.
When the models’ subregions were averaged, the best classifier was CatBoost, with an AUC
of 86.5% = (87.0% + 86.0%)/2. Tables A3 and A4 provide the results obtained for cohort 2.

Cohort 3: When NHS and UMHC data were combined, the models with the highest
AUC were the 50% tumour core CatBoost classifier and the 75% tumour periphery RF
classifier, with AUC of 80.0% for both. The 50% tumour core was the best region, with an
average AUC of 76.9%. When the models’ core and periphery regions were averaged, the
best classifiers were RF and CatBoost, with AUC values of 77.3% = (76.3% + 78.3%)/2 and
77.0% = (77.3% + 76.7%)/2, respectively. Tables A5 and A6 provide the results obtained for
cohort 3.

3.3.2. External Validation

Cohort 1: When cohort 2 was used as the training set and cohort 1 was predicted on
its models, the best-performing model was the QDA 25% tumour periphery classifier, with
an AUC of 71.0%. For the tumour sub-region, the 25% tumour periphery was the best, with
an average AUC of 65.0%. When the models were averaged, the best classifier was QDA,
with an AUC of 67.7% = (67.3% + 68.0%)/2. Tables A7 and A8 provide the relevant results.

Cohort 2: With cohort 1 as the training set and cohort 2 as the testing set, the best-
performing model was the SVM 50% tumour core classifier, with an AUC of 77.0%. In
terms of tumour sub-region, the 50% tumour core was the best, with an average AUC
of 74.2%. When the models were averaged, the best classifier was RF, with an AUC of
74.8% = (74.3% + 75.3%)/2. Refer to Tables A9 and A10 for the results.

3.4. Comparison between Biopsy and Machine Learning Classification

When the biopsy classification results on the 28 samples separated from the NHS data
set were compared to ML predictions, machine learning exhibited the highest AUC values
of 95.0% and 80.0% for internal and external validation, respectively, using the CatBoost
classifier. This was better than the AUC of 31.0% obtained from biopsy results, in terms of
correctly grading renal cancer, as shown in Figure A1. Relevant statistics are provided in
Tables 3 and A11.

Table 3. Comparison of the best diagnostic performance in cohort 4 under biopsy and machine
learning models.

Biopsy Machine Learning

Metrics Internal Validation External Validation

ACC 35.71 ± 17.75 96.43 ± 5.22 82.14 ± 14.19
SPE 52.94 ± 23.73 100.0 ± 12.13 88.24 ± 13.54
SEN 9.09 ± 13.04 90.91 ± 13.04 72.73 ± 26.32
AUC 31.0 ± 17.1 95.0 ± 8.1 80.0 ± 14.8
MCC −0.40 0.93 0.62

F1 0.1 0.95 0.76
McN 0.64 0.32 0.65

χ2 0.15 0 0.06
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4. Discussion

Clear cell renal cell carcinoma is the most common subtype of renal cell carcinoma
and is responsible for the majority of renal cancer-related deaths. It comprises up to 80% of
RCC diagnoses [5], and is more likely to metastasise to other organs. Important diagnostic
criteria that must be derived include tumour grade, tumour stage, and the histological
type of the tumour. For most cancer patients, histological grade is a crucial predictor
of local invasion or systemic metastases, which may affect how well they respond to
treatment. To define the extent of the tumour, tumour staging-based clinical assessment,
imaging investigations, and histological assessment are required. A greater comprehension
of the neoplastic situation and awareness of the limitations of diagnostic techniques are
made possible through an understanding of the procedures involved in tumour diagnosis,
grading, and staging.

To accurately grade a tumour, several grading schemas have been applied, of which
the WHO/ISUP and Fuhrman grading systems are the most popular and widely accepted.
Previously, grading was focused on a collection of cytological characteristics of the tumour;
however, nuclear morphology has more recently become a major area of focus. The
Fuhrman grading system has been used for some time [57], with its worldwide adoption in
1982 [2].

There are several methodological issues with the study conducted by Fuhrman et al.;
for example, its reliance on retrospective data collected over a 13-year period raises ques-
tions about potential biases [1]. The system’s dependency on a small sample size of only
85 cases may also make its conclusions less generalisable [1,57]. The inclusion of several
RCC subtypes without subtype-specific grading eliminated the possibility of variations
in tumour behaviour [1,57,58]. It is difficult to grade consistently and accurately, due to
the complexity of the criteria, which call for the simultaneous evaluation of three nuclear
factors (i.e., nuclear size, nuclear irregularity, and nucleolar prominence) [57,58], resulting
in poor inter-observer reproducibility and interpretability. The lack of guidelines that can
be utilised to assign weights to the different discordant parameters to achieve a final grade
makes the Fuhrman system even more controversial [57,59]. Furthermore, the shape of
the nucleus has not been well-defined for different grades [57]. Grading discrepancies
are a result of conflict between the grading criteria and a lack of direction for resolving
them [1,3,58]. Additionally, imprecise standards for nuclear pleomorphism and nucleolar
prominence adversely affect classifications made by pathologists, resulting in increased
variability [57]. Even if a tumour is localised, grading according to the highest-grade
area could result in an over-estimation of tumour aggressiveness [1,57]. This system’s
inconsistent behaviour and poor reproducibility [58] have raised questions regarding its
dependability and potential effects on patient care and prognosis [60]. Flaws regarding
inter-observer repeatability [60], and the fact that the Fuhrman grading system is still
widely used despite these flaws, indicate that there is a need for more research and better
grading methods.

An extensive and co-operative effort resulted in the development of the ISUP grad-
ing system for renal cell neoplasia in 2012 as an alternative to the Fuhrman grading
system [57,58]. The system was ratified and adopted by the WHO in 2015 and renamed as
the WHO/ISUP grading system [1,4]. As opposed to the Fuhrman grading system, the
ISUP system focuses on the prominence of nuclei as the sole parameter that should be
utilised when identifying the tumour grade. This reduction in rating parameters has led to
better grade distinction and increased predictive value. This has also eliminated the contro-
versy around reproducibility that had been identified with respect to the Fuhrman grading
system. Previous studies have shown that there is a clear separation between grades 2 and
3 in the WHO/ISUP grading system, which was not the case with the Fuhrman system.
Indeed, in their study, Dugher et al. [3] have highlighted the downgrade of Fuhrman grades
2 and 3 to grades 1 and 2, respectively, in the WHO/ISUP system. This indicates that,
besides the overlap of grades in the Fuhrman system, there was also an over-estimation of
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grades—a problem that has been rectified with the WHO/ISUP grading system [3,23]. The
WHO/ISUP grading system has been highly associated with the prognoses of patients.

Pre-operative image-guided biopsy is a diagnostic tool that is used to identify the
tumour grade. However, there are inherent problems that have been identified in connec-
tion with this approach, including the fact that it is invasive in nature, causes discomfort,
and may lead to other complications in patients when the procedure is performed [12].
Therefore, non-invasive testing, imaging, and clinical evaluations may be necessary to
confirm the presence of ccRCC and its grade without having to undergo such a procedure.
Radiomics has gained traction in clinical practice in recent years, and has been a buzzword
since 2016 [20]. It refers to the extraction of high-dimensional quantitative image features in
what is known as image texture analysis, describing the pixel intensity in medical images
such as X-ray images as well as CT, MRI, CT/PET, CT/SPECT, US, and mammogram scans.
Radiomics approaches have been applied in a number of studies for the diagnosis, grading,
and staging of tumours. Machine learning is one of the major branches of AI, providing
methods that are trained on a set of known data and then tested on unknown data. In
this way, researchers have attempted to make machines more intelligent through deter-
mining spatial differences in data that would have been otherwise difficult for a human
being to decipher. Such approaches have been used in combination with texture analyses,
particularly for tumour classification, grading, and staging. They are capable of learning
and improving through the analysis of image textural features, thereby resulting in higher
accuracy than native methods [61].

Heterogeneity within tumours is a significant predictor of outcomes, with greater
diversity within the tumour being potentially linked to increased tumour severity. The
level of tumour heterogeneity can be represented through images known as kinetic maps,
which are simply signal intensity time curves [62–64]. Previous studies [65,66] that have
utilised these maps typically end up averaging the signal intensity features throughout
the solid mass; hence, regions with different levels of aggressiveness end up contributing
equally to determining the final features. This leads to a loss of information regarding the
correct representation of the tumour [67,68]. In some studies, there have been attempts to
preserve intra-tumoural heterogeneity through extracting the features at the periphery and
the core and analysing them separately [17–19,66]; however, this is still not sufficient, as
information from other sub-regions of the tumour is not considered.

The objective of this work was to study the impact of subregion intra-tumoural
heterogeneity on the grading of ccRCC, comparing and contrasting ML/AI based methods
combined with CT radiomics signatures with biopsy and partial and radical nephrectomy
in terms of determining the grade of ccRCC. Finally, the possibility of using CT radiomics
ML analysis as an alternative to—and, thereby, as a replacement for—the conventional
WHO/ISUP grading system in the grading of ccRCC was investigated.

The experimental findings of our research highlighted various aspects for discussion.
From the results, it was found that age, tumour size, and tumour volume were statistically
significant for cohorts 1, 2, and 3. However, for cohort 4, none of the clinical features
were found to be significant. Upon further analysis of the statistically significant clinical
features using the point-biserial correlation coefficient (rpb), no features were verified
as significant. Furthermore, the 50% tumour core was identified as the optimal tumour
sub-region, exhibiting the highest average performance across models in cohorts 1, 2, and
3, with average AUCs of 77.9%, 87.6%, and 76.9%, respectively. It is worth noting that the
25% tumour periphery presented an increase in average performance for cohort 1, having
an AUC of 78.6%; however, this result was not statistically different from that of the 50%
core, and it failed to register the best performance in the other cohorts.

Among the 11 classifiers, the CatBoost classifier was the best model in all three cohorts,
with average AUC values of 80.0%, 86.5%, and 77.0% for cohorts 1, 2, and 3, respectively.
Likewise, the best-performing distinct classifier per cohort was CatBoost, with AUC of
85.0% in the 100% core, 91.0% in the 50% periphery, and 80.0% in the 50% core for cohorts
1, 2, and 3, respectively. In the external validation, cohort 1 validated on cohort 2 data had
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the highest performance in the 25% periphery, with the highest AUC of 71.0% and the best
classifier being QDA. Conversely, cohort 2 validated on cohort 1 data provided the best
performance in the 50% core, with an AUC of 77.0% and the best classifier being the SVM.
Finally, in the comparison between biopsy- and ML-based classification of the 28 patients
who underwent both biopsy and nephrectomy (i.e., cohort 4), the ML model was found to
be more accurate, with the best AUC values for internal and external validation being 95.0%
and 80.0%, respectively, in comparison to an AUC of 31.0% when biopsy was performed.
In this case, the nephrectomy results of grading were assumed as the ground-truth.

For each of the 231 models the pathological grade of a tumour was predicted in less
than 2 s. It is worth noting that the segmentations in cohort 1 were markedly different from
those in cohort 2. Cohort 2 emerged as the highest-performing group, followed by cohort 1,
while the combined cohort, notably cohort 3, exhibited the lowest performance. This dis-
parity can be attributed to several factors, including variations in scanners, segmentations,
pixel size, section thickness, tube current, tube voltage, kernel reconstruction, enhancement
of contrast agent and imaging protocols. Moreover, cohort 1, in itself is a multi-institutional
data set from three different centres. This may contrebuted to the low performance during
external validation. Refer to Tables A1–A10 for comparison.

Clinical feature significance is an important aspect of any research, as it gives a general
overview of the data to be used in a study. Few studies have opted to include clinical
features which are statistically significant into their ML radiomics models [69,70]. Takahashi
et al. [70], for instance, incorporated 9 out of 12 clinical features into their prediction
model due to them being statistically significant [70]. In our study, age, tumour size, and
tumour volume were found to be statistically significant; however, they were not integrated
into the ML radiomics model as a confirmatory test using the point-biserial correlation
coefficient revealed a lack of significance. Nonetheless, there is a lack of clear guidelines
on the relationship between statistical significance and predictive significance. There is
a misunderstanding that association statistics may result in predictive utility; however,
association only provides information regarding a population, whereas predictive research
focuses on either multi-class or binary classification of a singular subject [71]. Moreover, the
degree of association between clinical features and the outcome is affected by sample size;
that is, statistical significance is likely to increase with an increase in sample size [72]. This
has been clearly portrayed in previous research, such as that of Alhussaini et al. [22]. Even
in our own research, for the cohort 4 data—despite being derived from the same population
as cohort 1—the age, tumour size, tumour volume, and gender were not statistically
significant, indicating that the sample size might be the likely cause.

4.1. Literature Related to Methodological Proposal

Zhao et al. [43], in their prospective research, presented interesting findings regarding
tumour sub-regions in ccRCC. In their research, they indicated that somatic copy number
alterations (CANs), grade, and necrosis are higher in the tumour core, compared to the
tumour margin. Our findings, obtained using different tumour sub-regions, tend to agree
with the study by Zhao et al. [43], even though the authors did not construct a predictive
ML algorithm.

He et al. [44] constructed five predictive CT scan models using an artificial neural
network algorithm, in order to predict the tumour grade of ccRCC using both conventional
image features and texture features. The best-performing model in their study, using the
corticomedullary phase (CMP) and the texture features, provided an accuracy of 91.8%.
This is comparable to our study, in which the CatBoost classifier attained the highest
accuracy of 91.1%. However, He et al. [44] did not use other metrics, which could have
been useful in analysing the overall success of the prediction. For instance, the research
could have depicted a high accuracy but with bias towards one class. Moreover, the research
findings were not externally validated; hence, its performance is unclear with respect to
other data sets.
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Similar to He et al. [44], Sun et al. [35] constructed an SVM algorithm to predict the
pathological grade of ccRCC. The results of their research gave an AUC of 87.0%, sensitivity
of 83.0%, and specificity of 67.0%. However, we found that they erred by giving an overly
optimistic AUC with a very low specificity. This can easily be seen by analysing our SVM
results for the best-performing SVM model, which had an AUC of 86.0%, sensitivity of 81.0%,
and specificity of 91.5%. Our best model—the CatBoost classifier—performed much better.

Xv et al. [45] set out to analyse the performance of the SVM classifier using three feature
selection algorithms for the differentiation of ccRCC pathological grades in both clinical–
radiological and radiomics features. The three algorithms were the LASSO, recursive
feature elimination (RFE), and ReliefF algorithms. Their best-performing model was SVM–
ReliefF with combined clinical and radiomics features, with an AUC of 88.0% in the training
set, 85.0% in the validation set, and 82.0% in the test set. It is worth noting that we used none
of the feature selection algorithms used by Xv et al. [45], but obtained better performance.

Cui et al. [46] conducted internal and external validation for the purpose of predicting
the pathological grade of ccRCC. Their research achieved satisfactory performance, with
internal and external validation accuracy of 78.0% and 61.0%, respectively, in the corti-
comedullary phase using the CatBoost classifier. Compared to their research, our findings
indicated better performance when the CatBoost classifier was used for both the internal
and external validation, with an accuracy of 91.2% and 76.0%, respectively, in the CMP.

Wang et al. [47] also conducted a multi-centre study using a logistic regression
model; however, they used both biopsy and nephrectomy as the ground-truth, despite
the challenges that have been highlighted regarding biopsies. They did not report on the
internal validation performance; however, their training AUC, sensitivity, and specificity
were 89.0%, 85.0%, and 84.0%, respectively. Likewise, their external validation AUC,
sensitivity, and specificity were 81.0%, 58.0%, and 95.0%, respectively. Their external
validation performance was better than our performance using the LR model, which
obtained an AUC, sensitivity, and specificity of 74.0%, 59.7%, and 88.2%, respectively.
However, in general, our CatBoost classifier still out-performed their LR model.

Moldovanu et al. [48] investigated the use of multi-phase CT using LR to predict
the WHO/ISUP nuclear grade of ccRCC. When our results were compared with their
validation set, which yielded an AUC, sensitivity, and specificity of 81.0%, 72.7%, and 75.9%
in the corticomedullary phase, our research exhibited higher performance not only in the
best-performing model but also in the LR model, which obtained an AUC, sensitivity, and
specificity of 84.0%, 71.4%, and 95.8%, respectively.

Yi et al. [49] have performed research for prediction of the WHO/ISUP pathological
grade of ccRCC using both radiomics and clinical features with an SVM model. The
264 samples used were from the nephrographic phase (NP). We noted that there was a
massive class imbalance in the data, with a ratio between low- and high-grade samples
of 78:22; however, they did not highlight how this issue was resolved. Nonetheless, the
testing accuracy yielded an AUC of 80.2%, lower than that obtained in our research.

Similar to our study, Karagöz and Guvenis [42] constructed a 3D radiomic feature-
based classifier to determine the nuclear grade of ccRCC using the WHO/ISUP grading
system. The best results were obtained using the LightGBM model, which obtained an
AUC of 0.89. They also carried out tumour dilation and contraction by 2 mm, which led
them to conclude that the ML algorithm is robust against deviation in segmentation by
observers. Our best model out-performed their research and our sample size was much
larger, thereby providing more trustworthy results.

Demirjian et al. [23] also constructed a 3D model using data from two institutions
using RF, AdaBoost, and ElasticNet classifiers. The best-performing model, RF, obtained an
AUC of 0.73. This model performance was lower than in our research. The use of a data set
graded using the Fuhrman system for testing may have led to poor results, as WHO/ISUP
and Fuhrman use different parameters for grading; hence, it is not advisable to use the
Fuhrman grade as the ground-truth for a model trained using WHO/ISUP.
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Shu et al. [32] extracted radiomics features from the CMP and NP to construct 7 ML
algorithms, with the best model in the CMP (i.e., the MLP algorithm) achieving an accuracy
of 0.97. The findings of this study are quite interesting, but the gold standard used for
grade prediction was not discussed; this may lead us to the conclusion that biopsy was
part of the gold standard. We have highlighted the controversies surrounding biopsies and,
accordingly, the research may have been affected by such issues. There are some studies
which have applied deep learning for the prediction of tumour grade [73–75]. The AUC
in these studies ranged from 77.0% to 88.2%. These results are not only worse than those
obtained in the current research, but the Fuhrman grading system was also used as the
gold standard.

4.2. Biopsy Grading and Its Comparison with ML

A biopsy Biopsy is a commonly used diagnostic tool for the identification of RCC
subtypes. The diagnostic accuracy of biopsy for RCC has been reported to range from
86.0 to 98.0%, but this can be influenced by various factors [12,76,77]. Notably, when it
comes to grading RCC, the range of accuracy widens to between 43.0 and 76.0% [12,76–83].
Nevertheless, a biopsy’s accuracy in classifying renal cell tumours is debatable (Millet et al.,
2012 [80]). Different studies have contended that a kidney biopsy typically understates the
final grade. For instance, biopsies underestimated the nuclear grade in 55% of instances and
only properly identified 43% of the final nuclear grades [78]. In particular, the final nuclear
grade was marginally more likely to be understated in biopsies of larger tumours, while
histologic subtype analysis yielded more accurate results; especially when evaluating clear
cell renal tumours. In the research by Blumenfeld et al. [78], only one case of the nuclear
grade being over-estimated was reported. In the study of Millet et al. [80], biopsy led to
under-estimation of the grade in 13 cases while, in 2 cases, it over-estimated the grade.

In our study, we found that the accuracy of biopsy was 35.7% in determining the
tumour grade, with a sensitivity and specificity of 9.1% and 52.9%, respectively, in the
28 NHS samples (cohort 4) when nephrectomy was used as a gold standard as shown in
Table 3. These results are in agreement with previous studies [78,80] which determined
biopsy to perform poorly in grading tumours. The results obtained through biopsies were
compared to our ML models, and the models out-performed biopsies by far; in fact, our
worst-performing model was still better than biopsy. The best model had an accuracy of
96.4%, sensitivity of 90.9%, and specificity of 100% in the internal validation, comprising a
60.7% improvement in accuracy. Likewise, in the external validation, there was a 46.4%
improvement in accuracy, with an accuracy, sensitivity, and specificity of 82.1%, 72.7%,
and 88.2%, respectively as presented in Table A11. Therefore, we can conclude that ML
approaches are able to distinguish low- from high-grade ccRCC with better accuracy, when
compared to biopsy, and thus should be considered as a replacement.

In previous research, no paper has tackled the effect of tumour sub-region with regard
to the grading of ccRCC; hence, there were no studies with which our results could be
compared. The current research dived deeper into the possibility of pre-operatively grading
ccRCC without the need for biopsy. Moreover, the effect of the information contained in
different tumour sub-regions on grading was analysed. It is the belief of the authors of this
research that the results of this study will assist clinicians in finding the best management
strategies for patients of ccRCC, as well as enabling informative pre-treatment assessments
that allow treatments to be tailored to individual patients.

5. Limitations, Takeaways and Summary
5.1. Limitations and Future Research

The work encountered a few challenges which are important to highlight. The samples
used in this study were obtained from different institutions, and the scans were captured
using different scanners and protocols. This may have lowered the overall performance of
the models. However, it was important to use such data as the research was not meant to
be institution-specific but, instead, generally applicable. Second, the retrospective nature
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of the research may have limited our work, and it is therefore recommended that more
research should be conducted through a prospective study. Third, the current research
assumed that the divided tumour sub-regions (25%, 50%, and 75% core and periphery) are
heterogeneous in nature. In this regard, more research using pixel intensity measurement
from different tumour sub-regions is encouraged. Fourth, manual segmentation is not
only time-consuming but also subject to observer variability; thus, research on automated
tumour image segmentation techniques is encouraged. Fifth, the predominant approach
to grading ccRCC studies revolves around utilising a binarised model output. This is
motivated by two primary factors. First, there exists a notable discrepancy in the sample
sizes across different grades, with grades 1 and 4 exhibiting smaller sample size compared
to grades 2 and 3. Second, adopting a 4-class model is perceived to yield minimal impact
on patient management, given the similarity in management strategies between low grades
(I and II) and high grades (III and IV) [84]. Nonetheless, there is merit in exploring the
application of a 4-class model in forthcoming investigations, as doing so may validate
the suitability of radiomics machine learning analyses in delineating distinct WHO/ISUP
grading categories. Moreover, despite this being one of the few studies which has used
a large sample size, we still consider our sample size to be small with respect to ML and
AI approaches, which often require larger data sets for training. Finally, it’s advisable to
undertake a deep learning research using a substantial data set based on the WHO/ISUP
grading systems.

5.1.1. Take-Home Messages

- Radiomics features combined with ML algorithms have the potential to predict the
WHO/ISUP grade of ccRCC more accurately than pre-operative biopsy.

- Analysing different tumour subregions, such as the 50% tumour core and 25% tumour
periphery, provides valuable information for determining tumour grade.

- Analysing different cohorts from both single and multi-centre studies represented
the effect of data heterogeneity on the model’s performance. This underscores the
importance of implementing a robust model that generalises well for real-world
applications in grading ccRCCs.

- The study highlighted the promising application of advanced imaging techniques and
ML in oncology for precise tumour grading.

5.1.2. Summary

In this study, an in-depth radiomics ML analysis of ccRCC was carried out with the
purpose of determining the clinical significance of intra-tumoural sub-region heterogeneity
in CT scans and biopsies with respect to the accuracy of tumour grading. In this regard, the
results support the assertion that tumour sub-regions are an important factor to consider
while grading ccRCC. We were able to demonstrate that the 50% tumour core can be
considered the best sub-region for determining the tumour grade; however, this should
not be interpreted as indicating that other tumour sub-regions are unimportant. Indeed,
the results indicated only small differences in performance for the different tumour sub-
regions; therefore, the different regions should be analysed independently and taken
into consideration for the final grading outcome. Regarding the second objective on the
importance of biopsy in grading, through comparison of our research results with biopsy
results, we were able to demonstrate that ML approaches yield much better results in terms
of determining the ccRCC WHO/ISUP grade. Finally, the performance of the ML models in
determining tumour grade demonstrates the potential benefit of using ML as an alternative
or replacement for biopsy in determining the tumour grade.

6. Conclusions

In conclusion, the present work demonstrated the potential of ML models for distin-
guishing low- from high-grade ccRCC. In essence, ML approaches can act as a “virtual
biopsy,” being potentially far superior to biopsy for grading purposes. These findings have
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important clinical significance for addressing the challenges that are experienced in relation
to biopsies, leading to improved clinical management and contributing to oncological
precision medicine.
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Table A1. Representation of Cohort 1 diagnostic performance using core sub-regions and 100% tumour under different models. In the training set, the sample size
was 125, with 76 high-grade and 49 low-grade samples. In the testing/internal validation set, the sample size was 62, comprising 31 high-grade and 31 low-grade
samples.

Cohort 1 Core n = 187 Internal Validation

Region SVM RF XGB NB MLP LSTM LR QDA LGB CB ADB AVG FS

ACC 71.0 ± 11 74.2 ± 11 71.0 ± 11 72.6 ± 11 69.4 ± 11 74.2 ± 11 74.2 ± 11 71.0 ± 11 74.2 ± 11 80.7 ± 10 69.4 ± 11 72.9
SPE 71.0 ± 16 71.0 ± 16 71.0 ± 16 67.7 ± 16 71.0 ± 16 80.7 ± 14 71.0 ± 16 67.7 ± 16 71.0 ± 16 80.7 ± 14 74.2 ± 15 72.4
SEN 71.0 ± 16 77.4 ± 15 71.0 ± 16 77.4 ± 15 67.7 ± 16 67.7 ± 16 77.4 ± 15 74.2 ± 15 77.4 ± 15 80.7 ± 14 64.5 ± 17 73.3

75% AUC 71.0 ± 11 74.0 ± 11 71.0 ± 11 73.0 ± 11 69.0 ± 12 74.0 ± 11 74.0 ± 11 71.0 ± 11 74.0 ± 11 81.0 ± 10 * 69.0 ± 12 72.8 7
MCC 0.42 0.48 0.42 0.45 0.39 0.49 0.48 0.42 0.48 0.61 0.39 -

F1 0.71 0.75 0.71 0.74 0.69 0.72 0.75 0.72 0.75 0.81 0.68 -
McN 1.00 0.62 1.00 0.47 0.82 0.32 0.62 0.64 0.62 0.10 0.49 -

χ2 0.13 0.05 0.13 0.07 0.18 0.04 0.05 0.12 0.05 0 0.16 -

ACC 79.0 ± 10 79.0 ± 10 82.3 ± 10 74.2 ± 11 74.2 ± 11 75.8 ± 11 77.4 ± 10 79.0 ± 10 79.0 ± 10 82.3 ± 10 75.8 ± 11 78.0
SPE 74.2 ± 15 74.2 ± 15 87.1 ± 12 71.0 ± 16 74.2 ± 15 77.4 ± 15 74.2 ± 15 74.2 ± 15 71.0 ± 16 77.4 ± 15 71.0 ± 16 73.9
SEN 83.9 ± 13 83.2 ± 13 77.4 ± 15 77.4 ± 15 74.2 ± 15 74.2 ± 15 80.7 ± 14 83.9 ± 13 87.1 ± 12 87.1 ± 12 80.7 ± 14 79.6

50% AUC 79.0 ± 10 79.0 ± 10 82.0 ± 10 74.0 ± 11 74.0 ± 11 76.0 ± 11 77.0 ± 11 79.0 ± 10 79.0 ± 10 82.0 ± 10 * 76.0 ± 11 77.9 * 8
MCC 0.58 0.58 0.65 0.48 0.48 0.52 0.55 0.58 0.59 0.65 0.52 -

F1 0.80 0.80 0.81 0.75 0.74 0.75 0.78 0.80 0.81 0.8 0.77 -
McN 0.41 0.41 0.37 0.62 1.00 0.80 0.59 0.41 0.17 0.37 0.44 -

χ2 0.01 0.01 0 0.05 0.05 0.03 0.02 0.01 0.01 0 0.03 -

ACC 74.2 ± 11 74.2 ± 11 79.0 ± 10 74.2 ± 11 72.3 ± 11 74.2 ± 11 77.4 ± 10 79.0 ± 10 80.7 ± 10 79.0 ± 10 72.6 ± 11 76.1
SPE 71.0 ± 16 74.2 ± 15 71.0 ± 16 74.2 ± 15 67.7 ± 16 71.0 ± 16 74.2 ± 15 71.0 ± 16 77.4 ± 15 77.4 ± 15 67.7 ± 16 72.4
SEN 77.4 ± 15 74.2 ± 15 87.1 ± 12 74.2 ± 15 77.4 ± 15 77.4 ± 15 80.7 ± 14 87.1 ± 12 83.9 ± 13 80.7 ± 14 77.4 ± 15 78.1

25% AUC 74.0 ± 11 74.0 ± 11 79.0 ± 10 74.0 ± 11 73.0 ± 11 74.0 ± 11 77.0 ± 11 79.0 ± 10 81.0 ± 10 * 79.0 ± 10 73.0 ± 11 76.1 19
MCC 0.48 0.48 0.59 0.48 0.45 0.48 0.55 0.59 0.61 0.58 0.45 -

F1 0.75 0.74 0.81 0.74 0.74 0.75 0.78 0.81 0.81 0.79 0.74 -
McN 0.62 1.00 0.17 1.00 0.47 0.62 0.59 0.17 0.56 0.78 0.47 -

χ2 0.05 0.05 0.01 0.05 0.07 0.05 0.02 0.01 0.00 0.01 0.07 -

AVG AUC 74.7 75.7 77.3 73.7 72.0 74.7 76.0 76.3 78.0 80.7 * 72.7 -

ACC 77.4 ± 10 79.0 ± 10 79.0 ± 10 74.2 ± 11 69.4 ± 11 72.0 ± 11 75.8 ± 11 75.8 ± 11 74.2 ± 11 85.5 ± 9 77.4 ± 10 76.3
SPE 77.4 ± 15 71.0 ± 16 77.4 ± 15 71.0 ± 16 71.0 ± 16 71.0 ± 16 74.2 ± 15 74.2 ± 15 77.4 ± 15 77.4 ± 15 74.2 ± 15 74.2
SEN 77.4 ± 15 87.1 ± 12 80.7 ± 14 77.4 ± 15 67.7 ± 16 74.2 ± 15 77.4 ± 15 77.4 ± 15 71.0 ± 16 93.6 ± 8 80.7 ± 14 78.6

100% AUC 77.0 ± 11 79.0 ± 11 79.0 ± 10 74.0 ± 11 69.0 ± 12 73.0 ± 11 76.0 ± 11 76.0 ± 11 74.0 ± 11 85.0 ± 9 * 77.0 ± 11 76.3 * 16
MCC 0.55 0.59 0.58 0.48 0.39 0.45 0.52 0.52 0.48 0.72 0.55 -

F1 0.77 0.81 0.79 0.75 0.69 0.73 0.76 0.76 0.73 0.87 0.78 -
McN 1.00 0.17 0.78 0.62 0.82 0.81 0.80 0.80 0.62 0.10 0.59 -

χ2 0.02 0.01 0.01 0.05 0.18 0.08 0.03 0.03 0.05 0 0.02 -

* Bold represents the best value for models and sub-regions.
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Table A2. Representation of cohort 1 diagnostic performance using periphery sub-regions under different models. In the training set, the sample size was 125, with
76 high-grade and 49 low-grade samples. In the testing/internal validation set, the sample size was 62, comprising 31 high-grade and 31 low-grade samples.

Cohort 1 Periphery n = 187 Internal Validation

Region SVM RF XGB NB MLP LSTM LR QDA LGB CB ADB AVG FS

ACC 74.2 ± 11 74.2 ± 11 71.0 ± 11 75.8 ± 11 71.0 ± 11 69.0 ± 12 71.0 ± 11 74.2 ± 11 71.0 ± 11 77.4 ± 10 72.6 ± 11 72.8
SPE 71.0 ± 16 71.0 ± 16 71.0 ± 16 80.7 ± 14 71.0 ± 16 77.4 ± 15 67.7 ± 16 67.7 ± 16 71.0 ± 16 77.4 ± 15 71.0 ± 16 72.4
SEN 77.4 ± 15 77.4 ± 15 71.0 ± 16 71.0 ± 16 71.0 ± 16 61.3 ± 17 74.2 ± 15 80.7 ± 14 71.0 ± 16 77.4 ± 15 74.2 ± 15 73.3

75% AUC 74.0 ± 11 74.0 ± 11 71.0 ± 11 76.0 ± 11 71.0 ± 11 69.0 ± 12 71.0 ± 11 74.0 ± 11 71.0 ± 11 77.0 ± 11 * 73.0 ± 11 72.8 8
MCC 0.48 0.48 0.42 0.52 0.42 0.39 0.42 0.49 0.42 0.55 0.45 -

F1 0.75 0.75 0.71 0.75 0.71 0.67 0.72 0.76 0.71 0.77 0.73 -
McN 0.62 0.62 1.00 0.44 1.00 0.25 0.64 0.32 1.00 1.00 0.81 -

χ2 0.05 0.05 0.13 0.03 0.13 0.12 0.12 0.04 0.13 0.02 0.08 -

ACC 71.0 ± 11 75.8 ± 11 79.0 ± 10 72.6 ± 11 72.6 ± 11 69.4 ± 11 74.2 ± 11 74.2 ± 11 74.2 ± 11 77.4 ± 10 71.0 ± 11 73.8
SPE 71.0 ± 16 74.2 ± 15 71.0 ± 16 71.0 ± 16 71.0 ± 16 64.5 ± 17 74.2 ± 15 64.5 ± 17 61.3 ± 17 77.4 ± 15 64.5 ± 17 69.5
SEN 71.0 ± 16 77.4 ± 15 87.1 ± 12 74.2 ± 15 74.2 ± 15 74.2 ± 15 74.2 ± 15 83.9 ± 13 87.1 ± 12 77.4 ± 15 77.4 ± 15 76.0

50% AUC 71.0 ± 11 76.0 ± 11 79.0 ± 10 * 73.0 ± 11 73.0 ± 11 69.0 ± 12 74.0 ± 11 74.0 ± 11 74.0 ± 11 77.0 ± 11 71.0 ± 11 73.7 11
MCC 0.42 0.52 0.59 0.45 0.45 0.39 0.48 0.49 0.50 0.55 0.42 -

F1 0.71 0.76 0.81 0.73 0.73 0.71 0.74 0.76 0.77 0.77 0.72 -
McN 1.00 0.80 0.17 0.81 0.81 0.49 1.00 0.13 0.05 1.00 0.35 -

χ2 0.13 0.03 0.01 0.08 0.08 0.16 0.05 0.02 0.01 0.02 0.09 -

ACC 77.4 ± 10 80.7 ± 10 79.0 ± 10 82.3 ± 10 75.8 ± 10 72.6 ± 11 77.4 ± 10 80.7 ± 10 79.0 ± 10 83.9 ± 9 75.8 ± 11 78.6
SPE 74.2 ± 15 80.7 ± 14 71.0 ± 16 83.9 ± 13 80.7 ± 13 71.0 ± 16 77.4 ± 15 74.2 ± 15 74.2 ± 15 80.7 ± 14 64.5 ± 17 75.7
SEN 80.7 ± 14 89.7 ± 11 87.1 ± 12 80.7 ± 14 77.4 ± 15 74.2 ± 15 77.4 ± 15 87.1 ± 12 83.9 ± 13 87.1 ± 12 87.1 ± 12 81.4

25% AUC 77.0 ± 11 81.0 ± 10 79.0 ± 10 82.0 ± 10 76.0 ± 11 73.0 ± 11 77.0 ± 11 81.0 ± 10 79.0 ± 10 84.0 ± 9 * 76.0 ± 11 78.6 * 9
MCC 0.55 0.61 0.59 0.65 0.52 0.45 0.55 0.62 0.58 0.68 0.53 -

F1 0.78 0.81 0.81 0.82 0.77 0.73 0.77 0.82 0.80 0.84 0.78 -
McN 0.59 1.00 0.17 0.76 0.44 0.81 1.00 0.25 0.41 0.53 0.07 -

χ2 0.02 0 0.01 0 0.03 0.08 0.02 0.00 0.01 0 0.01 -

AVG AUC 74.0 77.0 76.3 77.0 73.3 70.3 74.0 76.3 78.0 79.3 * 73.3 -

* Bold represents the best value for models and sub-regions.
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Table A3. Representation of cohort 2 diagnostic performance using core sub-regions and 100% tumour under different models. The sample size in the training set
was 136 (high-grade = 56, low-grade = 80), and in the testing/internal validation set, it was 68 (high-grade = 21, low-grade = 47).

Cohort 2 Core n = 204 Internal Validation

Region SVM RF XGB NB MLP LSTM LR QDA LGB CB ADB AVG FS

ACC 86.8 ± 8 85.3 ± 8 82.3 ± 9 80.9 ± 9 82.0 ± 9 82.3 ± 9 85.3 ± 8.4 85.3 ± 8 80.9 ± 9 86.8 ± 8 77.9 ± 10 83.5
SPE 93.6 ± 7 85.1 ± 10 78.7 ± 12 80.9 ± 11 83.0 ± 11 83.0 ± 11 89.4 ± 9 89.4 ± 9 76.6 ± 12 87.2 ± 10 76.6 ± 12 84.9
SEN 71.4 ± 19 85.7 ± 15 90.5 ± 11 81.0 ± 17 81.0 ± 17 81.0 ± 17 76.2 ± 18 76.2 ± 18 90.5 ± 11 85.7 ± 15 81.0 ± 17 81.8

75% AUC 83.0 ± 9 85.0 ± 9 85.0 ± 9 81.0 ± 9 82.0 ± 9 82.0 ± 9 83.0 ± 8.9 83.0 ± 9 84.0 ± 9 86.0 ± 8 * 79.0 ± 10 83.0 9
MCC 0.68 0.68 0.65 0.59 0.61 0.61 0.66 0.66 0.62 0.71 0.54 -

F1 0.77 0.78 0.76 0.72 0.74 0.74 0.76 0.76 0.75 0.80 0.69 -
McN 0.32 0.21 0.02 0.17 0.25 0.25 1.00 1.00 0.01 0.32 0.07 -

χ2 0 0 0 0 0 0 0 0 0 0 0 -

ACC 88.2 ± 8 88.2 ± 8 88.2 ± 8 88.2 ± 8 85.0 ± 8 83.8 ± 9 88.2 ± 8 91.2 ± 7 88.2 ± 8 89.7 ± 7 86.8 ± 8 87.9
SPE 91.5 ± 8 87.2 ± 10 87.2 ± 10 91.5 ± 8 85.1 ± 10 80.9 ± 11 95.8 ± 5 91.5 ± 8 85.1 ± 10 89.4 ± 8.8 85.1 ± 10 88.2
SEN 81.0 ± 17 90.5 ± 11 90.5 ± 11 90.0 ± 11 85.7 ± 15 90.5 ± 11 71.4 ± 19 90.5 ± 11 95.2 ± 7 90.5 ± 11 90.5 ± 11 87.8

50% AUC 86.0 ± 8.2 89.0 ± 7.4 89.0 ± 7.4 86.0 ± 8.2 85.0 ± 8.5 86.0 ± 8.2 84.0 ± 8.7 91.0 ± 6.8 90.0 ± 7.1 90.0 ± 7.1 * 88.0 ± 7.7 87.6 * 12
MCC 0.72 0.74 0.74 0.72 0.68 0.67 0.72 0.80 0.76 0.77 0.72 -

F1 0.81 0.83 0.83 0.81 0.78 0.78 0.79 0.86 0.83 0.84 0.81 -
McN 1.00 0.16 0.16 1.00 0.21 0.03 0.16 0.41 0.03 0.26 0.1 -

χ2 0 0 0 0 0 0 0 0 0 0 0 -

ACC 85.3 ± 8 85.3 ± 8 82.4 ± 9 82.4 ± 9 79.0 ± 10 79.4 ± 10 82.4 ± 9 83.8 ± 9 80.0 ± 10 85.3 ± 8 85.3 ± 8 83.5
SPE 85.1 ± 10 85.1 ± 10 80.9 ± 11 83.0 ± 11 78.7 ± 12 80.9 ± 11 83.0 ± 11 83.0 ± 11 83.0 ± 11 83.0 ± 11 87.2 ± 10 83.0
SEN 85.7 ± 15 85.7 ± 15 85.7 ± 15 81.0 ± 17 81.0 ± 17 76.2 ± 18 81.0 ± 17 85.7 ± 15 81.0 ± 17 85.7 ± 15 81.0 ± 17 82.7

25% AUC 85.0 ± 9 85.0 ± 9 83.0 ± 9 82.0 ± 9 80.0 ± 10 79.0 ± 10 82.0 ± 9 84.0 ± 9 81.0 ± 9 85.0 ± 9 * 84.0 ± 9 82.7 10
MCC 0.68 0.68 0.63 0.61 0.56 0.55 0.61 0.65 0.59 0.68 0.67 -

F1 0.78 0.78 0.75 0.74 0.71 0.70 0.74 0.77 0.72 0.78 0.77 -
McN 0.21 0.21 0.08 0.25 0.11 0.29 0.25 0.13 0.17 0.21 0.53 -

χ2 0 0 0 0 0 0 0 0 0 0 0 -

AVG AUC 84.7 86.3 85.7 83.0 82.3 82.3 83.0 86.0 85.0 87.0 * 83.7 -

ACC 85.3 ± 8 85.3 ± 8 80.9 ± 9 85.3 ± 8 82.0 ± 9 82.4 ± 9 82.4 ± 9 82.4 ± 9 86.8 ± 8 86.8 ± 8 83.8 ± 9 84.1
SPE 91.5 ± 8 85.1 ± 10 83.0 ± 11 87.2 ± 10 83.0 ± 11 85.1 ± 10 81.0 ± 11 81.0 ± 11 89.4 ± 9 87.2 ± 10 85.1 ± 10 85.3
SEN 71.4 ± 19 85.7 ± 15 76.2 ± 18 81.0 ± 17 81.0 ± 17 76.2 ± 18 85.7 ± 14 85.7 ± 14 81.0 ± 17 85.7 ± 15 81.0 ± 17 81.0

100% AUC 81.0 ± 9 85.0 ± 9 80.0 ± 10 84.0 ± 9 82.0 ± 9 81.0 ± 9 83.0 ± 9 83.0 ± 9 85.0 ± 9 86.0 ± 8 * 83.0 ± 9 83.0 * 9
MCC 0.65 0.68 0.57 0.67 0.61 0.60 0.63 0.63 0.69 0.71 0.64 -

F1 0.75 0.78 0.71 0.77 0.74 0.73 0.75 0.75 0.79 0.80 0.76 -
McN 0.53 0.21 0.41 0.53 0.25 0.56 0.08 0.08 0.74 0.32 0.37 -

χ2 0 0 0 0 0 0 0 0 0 0 0 -

* Bold represents the best value for models and sub-regions.
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Table A4. Representation of cohort 2 diagnostic performance using peripheral sub-regions under different models. The sample size in the training set was 136
(high-grade = 56, low-grade = 80), and in the testing/internal validation set, it was 68 (high-grade = 21, low-grade = 47).

Cohort 2 Periphery n = 204 Internal Validation

Region SVM RF XGB NB MLP LSTM LR QDA LGB CB ADB AVG FS

ACC 88.2 ± 8 85.3 ± 8 83.8 ± 9 86.8 ± 8 79.4 ± 10 76.5 ± 10 76.5 ± 10 86.8 ± 8 80.9 ± 9 85.3 ± 8 88.2 ± 8 83.8
SPE 95.8 ± 5 82.4 ± 11 85.1 ± 10 91.5 ± 8 76.6 ± 12 72.3 ± 13 89.4 ± 9 93.6 ± 7 80.9 ± 11 87.2 ± 10 87.2 ± 10 86.8
SEN 71.4 ± 19 85.7 ± 15 81 ± 17 76.2 ± 18 85.7 ± 15 85.7 ± 15 71.4 ± 19 71.4 ± 19 81.0 ± 17 81.0 ± 17 76.2 ± 18 78.8

75% AUC 84.0 ± 9 85.0 ± 9 * 83.0 ± 9 84.0 ± 9 81.0 ± 9 79.0 ± 10 80.0 ± 10 83.0 ± 9 81.0 ± 9 84.0 ± 9 82.0 ± 9.1 82.4 * 8
MCC 0.72 0.68 0.64 0.69 0.58 0.54 0.62 0.68 0.59 0.67 0.63 -

F1 0.79 0.78 0.76 0.78 0.72 0.69 0.73 0.77 0.72 0.77 0.74 -
McN 0.16 0.21 0.37 0.74 0.03 0.01 0.76 0.32 0.17 0.53 0.76 -

χ2 0 0 0 0 0 0 0 0 0 0 0 -

ACC 86.8 ± 8 88.2 ± 8 75.0 ± 10 85.3 ± 8 75.0 ± 10 79.4 ± 10 76.5 ± 10 88.2 ± 8 76.5 ± 10 91.2 ± 7 88.2 ± 8 85.1
SPE 91.5 ± 8 95.8 ± 5 70.2 ± 13 87.2 ± 10 70.2 ± 13 78.7 ± 12 76.6 ± 12 95.8 ± 5 72.3 ± 13 91.5 ± 8 95.8 ± 5 84.9
SEN 76.2 ± 18 71.4 ± 19 85.7 ± 15 81.0 ± 17 85.7 ± 15 81.0 ± 17 76.2 ± 18 71.4 ± 19 85.7 ± 15 90.5 ± 11 71.4 ± 19 79.7

50% AUC 84.0 ± 9 84.0 ± 9 78.0 ± 10 84.0 ± 9 78.0 ± 10 80.0 ± 10 76.0 ± 10 84.0 ± 9 79.0 ± 10 91.0 ± 7 * 84.0 ± 9 82 12
MCC 0.69 0.72 0.52 0.67 0.52 0.56 0.50 0.72 0.54 0.80 0.72 -

F1 0.78 0.79 0.68 0.77 0.68 0.71 0.67 0.79 0.69 0.86 0.79 -
McN 0.74 0.16 0.01 0.53 0.01 0.11 0.13 0.16 0.01 0.41 0.16 -

χ2 0 0 0 0 0 0 0 0 0 0 0 -

ACC 85.3 ± 8 85.3 ± 8 76.5 ± 10 82.4 ± 9 77.9 ± 10 75.0 ± 10 76.5 ± 10 89.7 ± 7 80.9 ± 9 83.8 ± 9 85.3 ± 8 82.4
SPE 85.1 ± 10 87.2 ± 10 72.3 ± 13 83.0 ± 11 76.6 ± 12 74.5 ± 12 78.7 ± 12 93.6 ± 7 83.0 ± 11 85.1 ± 10 85.1 ± 10 82.8
SEN 85.7 ± 15 81.0 ± 17 85.7 ± 15 81.0 ± 17 81.0 ± 17 76.2 ± 18 71.4 ± 19 81.0 ± 17 76.2 ± 18 81.0 ± 17 85.7 ± 15 80.52

25% AUC 85.0 ± 9 84.0 ± 9 79.0 ± 10 82.0 ± 9 79.0 ± 10 75.0 ± 10 75.0 ± 10 87.0 ± 8 * 80.0 ± 10 83.0 ± 9 85.0 ± 9 81.27 16
MCC 0.68 0.67 0.54 0.61 0.54 0.48 0.48 0.76 0.57 0.64 0.68 -

F1 0.78 0.77 0.69 0.74 0.69 0.65 0.65 0.83 0.71 0.76 0.78 -
McN 0.21 0.53 0.01 0.25 0.07 0.09 0.32 0.71 0.41 0.37 0.21 -

χ2 0 0 0 0 0 0 0 0 0 0 0 -

AVG AUC 84.3 84.3 80.0 83.3 79.3 78.0 77.0 84.7 80.0 86.0* 83.7 -

* Bold represents the best value for models and sub-regions.
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Table A5. Representation of cohort 3 diagnostic performance using core sub-regions and 100% tumour under different models. The sample size in the training set
was 261 (high-grade = 122, low-grade = 139), and in the testing/internal validation set, it was 130 (high-grade = 62, low-grade = 68).

Cohort 3 Core n = 391 Internal Validation

Region SVM RF XGB NB MLP LSTM LR QDA LGB CB ADB AVG FS

ACC 70.8 ± 8 76.9 ± 7 74.6 ± 7 71.5 ± 8 73.1 ± 8 71.5 ± 8 73.1 ± 8 74.6 ± 7 73.1 ± 8 76.2 ± 7 73.9 ± 8 73.6
SPE 69.1 ± 11 76.5 ± 10 73.5 ± 10 73.5 ± 10 77.9 ± 10 72.1 ± 11 70.6 ± 11 77.9 ± 10 76.5 ± 10 77.9 ± 10 76.8 ± 10 74.7
SEN 72.6 ± 11 77.4 ± 10 75.8 ± 11 69.4 ± 11 67.7 ± 12 71.0 ± 11 75.8 ± 11 71.0 ± 11 69.4 ± 11 74.2 ± 11 71.0 ± 11 72.3

75% AUC 71.0 ± 8 77.0 ± 7 * 75.0 ± 7 71.0 ± 8 73.0 ± 8 72.0 ± 8 73.0 ± 8 74.0 ± 8 73.0 ± 8 76.0 ± 7 74.0 ± 8 73.6 14
MCC 0.42 0.54 0.49 0.43 0.46 0.43 0.46 0.49 0.46 0.52 0.48 -

F1 0.70 0.76 0.74 0.70 0.71 0.70 0.73 0.73 0.71 0.75 0.72 -
McN 0.52 0.72 0.60 0.87 0.40 0.87 0.40 0.60 0.61 0.86 0.73 -

χ2 0.01 0 0 0 0 0.01 0 0 0 0 0 -

ACC 76.9 ± 7 76.9 ± 7 76.2 ± 7 76.9 ± 7 73.1 ± 8 76.2 ± 7 77.7 ± 7 79.2 ± 7 78.5 ± 7 80.0 ± 7 74.6 ± 7 76.6
SPE 75.0 ± 10 77.9 ± 10 77.9 ± 10 77.9 ± 10 70.6 ± 11 72.1 ± 11 76.5 ± 10 76.5 ± 10 77.9 ± 10 79.4 ± 10 76.5 ± 10 76.3
SEN 79.0 ± 10 75.8 ± 11 74.2 ± 11 75.8 ± 11 75.8 ± 11 80.7 ± 10 79.0 ± 10 82.3 ± 10 79.0 ± 10 80.7 ± 10 72.6 ± 11 77.7

50% AUC 77.0 ± 7 77.0 ± 7 76.0 ± 7 77.0 ± 7 73.0 ± 8 76.0 ± 7 78.0 ± 7 79.0 ± 7 78.0 ± 7 80.0 ± 7 * 75.0 ± 7 76.9 * 24
MCC 0.54 0.54 0.52 0.54 0.46 0.53 0.55 0.59 0.57 0.60 0.49 -

F1 0.77 0.76 0.75 0.76 0.73 0.76 0.77 0.79 0.78 0.79 0.73 -
McN 0.47 1.00 0.86 1.00 0.40 0.21 0.58 0.34 0.71 0.69 0.86 -

χ2 0 0 0 0 0 0 0 0 0 0 0 -

ACC 74.6 ± 7 74.6 ± 7 72.1 ± 8 73.1 ± 8 72.3 ± 8 71.5 ± 8 71.5 ± 8 73.1 ± 8 73.1 ± 8 76.2 ± 7 70.8 ± 8 73.0
SPE 80.9 ± 9 75.0 ± 10 75.0 ± 10 72.1 ± 11 76.5 ± 10 72.1 ± 11 71.0 ± 11 72.2 ± 10 73.5 ± 10 77.9 ± 10 72.1 ± 11 74.2
SEN 67.7 ± 11 74.2 ± 11 69.4 ± 11 74.2 ± 11 67.7 ± 12 71.0 ± 11 72.6 ± 11 74.2 ± 11 72.6 ± 11 74.2 ± 11 69.4 ± 11 71.6

25% AUC 74.0 ± 8 75.0 ± 7 72.0 ± 8 73.0 ± 8 72.0 ± 8 72.0 ± 8 72.0 ± 8 73.0 ± 8 73.0 ± 8 76.0 ± 7 * 71.0 ± 8 73.0 32
MCC 0.49 0.49 0.44 0.46 0.44 0.43 0.43 0.46 0.46 0.52 0.41 0.46

F1 0.72 0.74 0.70 0.73 0.70 0.70 0.71 0.72 0.72 0.75 0.69 -
McN 0.22 0.86 0.74 0.61 0.50 0.87 0.62 0.61 0.87 0.86 1.00 -

χ2 0 0 0 0 0 0.01 0.01 0 0 0 0.01 -

AVG AUC 74.0 76.3 * 74.3 73.7 72.7 73.3 74.3 75.3 74.7 77.3 * 73.3 -

ACC 73.9 ± 8 76.2 ± 7 75.4 ± 7 75.4 ± 7 71.5 ± 8 73.9 ± 8 74.6 ± 7 75.4 ± 7 78.5 ± 7 78.5 ± 7 74.6 ± 7 75.2
SPE 73.5 ± 10 72.1 ± 11 77.9 ± 10 79.4 ± 10 76.5 ± 10 72.1 ± 11 71.0 ± 11 76.5 ± 10 82.4 ± 9 80.9 ± 9 76.5 ± 10 76.2
SEN 74.2 ± 11 80.7 ± 10 72.6 ± 11 71.0 ± 11 66.1 ± 12 75.8 ± 11 79.0 ± 10 74.2 ± 11 74.2 ± 11 75.8 ± 11 72.6 ± 11 74.2

100% AUC 74.0 ± 8 76.0 ± 7 75.0 ± 7 75.0 ± 7 71.0 ± 8 74.0 ± 8 75.0 ± 7 75.0 ± 7 78.0 ± 7 78.0 ± 7 * 75.0 ± 7 75.1 * 15
MCC 0.48 0.53 0.51 0.51 0.43 0.48 0.50 0.51 0.57 0.57 0.49 -

F1 0.73 0.76 0.74 0.73 0.69 0.73 0.75 0.74 0.77 0.77 0.73 -
McN 0.73 0.21 0.72 0.48 0.41 0.49 0.22 1.00 0.45 0.71 0.86 -

χ2 0 0 0 0 0 0 0 0 0 0 0 -

* Bold represents the best value for models and sub-regions.
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Table A6. Representation of cohort 3 diagnostic performance using periphery sub-regions under different models. The sample size in the training set was 261
(High-grade = 122, Low-grade = 139), and in the testing/internal validation set, it was 130 (High-grade = 62, Low-grade = 68).

Cohort 3 Periphery n = 391 Internal Validation

Region SVM RF XGB NB MLP LSTM LR QDA LGB CB ADB AVG FS

ACC 70.0 ± 8 80.0 ± 7 74.6 ± 7 71.5 ± 8 70.0 ± 8 70.8 ± 8 72.3 ± 8 75.4 ± 8 73.1 ± 7 77.7 ± 7 72.3 ± 8 73.5
SPE 70.6 ± 11 82.4 ± 9 73.5 ± 10 72.1 ± 11 70.6 ± 11 69.1 ± 11 70.6 ± 11 77.9 ± 10 76.5 ± 10 77.9 ± 10 72.1 ± 11 73.9
SEN 69.4 ± 11 77.4 ± 10 75.8 ± 11 71.0 ± 11 69.4 ± 11 72.6 ± 11 74.2 ± 11 72.6 ± 11 69.4 ± 11 77.4 ± 10 72.6 ± 11 72.9

75% AUC 70.0 ± 8 80.0 ± 7 * 75.0 ± 7 72.0 ± 8 70.0 ± 8 71.0 ± 8 72.0 ± 8 75.0 ± 7 73.0 ± 8 78.0 ± 7 72.0 ± 8 73.5 22
MCC 0.40 0.60 0.49 0.43 0.40 0.42 0.45 0.51 0.46 0.55 0.45 -

F1 0.69 0.79 0.74 0.70 0.69 0.70 0.72 0.74 0.71 0.77 0.71 -
McN 0.87 0.69 0.60 0.87 0.87 0.52 0.50 0.72 0.61 0.85 0.74 -

χ2 0.01 0 0 0.01 0.01 0.01 0 0 0 0 0 -

ACC 73.9 ± 8 76.9 ± 7 75.4 ± 7 72.3 ± 8 70.0 ± 8 71.5 ± 8 75.4 ± 7 74.6 ± 7 74.6 ± 7 76.2 ± 7 69.2 ± 8 74.0
SPE 70.6 ± 11 77.9 ± 10 75.0 ± 10 72.1 ± 11 75.0 ± 10 69.1 ± 11 69.1 ± 11 80.9 ± 10 69.1 ± 11 70.6 ± 11 66.2 ± 11 71.7
SEN 77.4 ± 10 75.8 ± 11 75.8 ± 11 72.6 ± 11 64.5 ± 12 74.2 ± 11 82.3 ± 10 67.7 ± 12 80.7 ± 10 82.3 ± 10 72.6 ± 11 75.1

50% AUC 74.0 ± 8 77.0 ± 7 * 75.0 ± 7 72.0 ± 8 70.0 ± 8 72.0 ± 8 76.0 ± 7 74.0 ± 8 75.0 ± 7 76.0 ± 7 69.0 ± 8 73.6 26
McC 0.48 0.54 0.51 0.45 0.40 0.43 0.52 0.49 0.50 0.53 0.39 -

F1 0.74 0.76 0.75 0.71 0.67 0.71 0.76 0.72 0.75 0.77 0.69 -
McN 0.30 1.00 0.72 0.74 0.42 0.41 0.08 0.22 0.12 0.11 0.34 -

χ2 0 0 0 0 0.01 0 0 0 0 0 0.01 -

ACC 75.4 ± 8 77.7 ± 7 76.9 ± 7 75.4 ± 7 73.1 ± 8 73.1 ± 8 75.4 ± 7 75.4 ± 7 76.2 ± 7 76.2 ± 7 74.6 ± 7 75.4
SPE 83.8 ± 11 77.9 ± 10 80.9 ± 9 76.5 ± 10 72.1 ± 11 73.5 ± 10 76.5 ± 10 72.1 ± 11 77.9 ± 10 73.5 ± 10 75.0 ± 10 76.5
SEN 66.1 ± 12 77.4 ± 10 72.6 ± 11 74.2 ± 11 74.2 ± 11 72.6 ± 11 74.2 ± 11 79.0 ± 10 74.2 ± 11 79.0 ± 10 74.2 ± 11 74.3

25% AUC 75.0 ± 7 78.0 ± 7 * 77.0 ± 7 75.0 ± 7 73.0 ± 8 73.0 ± 8 75.0 ± 7 76.0 ± 7 76.0 ± 7 76.0 ± 7 75.0 ± 7 75.4 * 21
MCC 0.51 0.55 0.54 0.51 0.46 0.46 0.51 0.51 0.52 0.53 0.49 -

F1 0.72 0.77 0.75 0.74 0.72 0.72 0.74 0.75 0.75 0.76 0.74 -
McN 0.08 0.85 0.47 1.00 0.61 0.87 1.00 0.29 0.86 0.37 0.86 -

χ2 0 0 0 0 0 0 0 0 0 0 0 -

AVG AUC 73.0 78.3 * 75.7 73.0 71.0 72.0 74.3 75.0 74.7 76.7 * 72.0 -

* Bold represents the best value for models and sub-regions.
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Table A7. Representation of diagnostic performance for the external validation of cohort 1 using core sub-regions under different models. Cohort 2, comprising
204 samples (77 high-grade and 127 low-grade), was used as the training set, while cohort 1, with 187 samples (107 high-grade and 80 low-grade), served as the
testing/external validation set.

Cohort 1 Core n = 187 External Validation

Region SVM RF XGB NB MLP LSTM LR QDA LGB CB ADB AVG FS

ACC 66.3 ± 7 65.0 ± 7 65.0 ± 7 62.0 ± 7 61.0 ± 7 63.1 ± 7 64.7 ± 7 66.3 ± 7 62.0 ± 7 65.7 ± 7 62.5 ± 7 63.9
SPE 61.3 ± 11 47.5 ± 11 55.0 ± 11 55.0 ± 7 53.8 ± 11 53.7 ± 11 63.8 ± 11 68.8 ± 10 47.5 ± 11 58.8 ± 11 45.0 ± 11 56.3
SEN 70.1 ± 9 77.6 ± 8 72.0 ± 9 67.2 ± 9 66.3 ± 9 70.1 ± 9 65.4 ± 9 64.5 ± 9 73.0 ± 8 71.0 ± 9 75.7 ± 8 70.3

75% AUC 66.0 ± 7 63.0 ± 7 63.0 ± 7 61.0 ± 7 60.0 ± 7 62.0 ± 7 65.0 ± 7 67.0 ± 7 * 60.0 ± 7 65.0 ± 7 60.0 ± 7 62.9 19
MCC 0.31 0.26 0.27 0.22 0.20 0.24 0.29 0.33 0.21 0.30 0.22 -

F1 0.7 0.72 0.70 0.67 0.66 0.68 0.68 0.69 0.69 0.70 0.70 -
McN 0.90 0.03 0.46 0.91 0.91 0.55 0.32 0.10 0.12 0.80 0.03 -

χ2 0.01 0 0.01 0.04 0.05 0.01 0.02 0.01 0 0.01 0 -

ACC 68.5 ± 7 64.7 ± 7 62.6 ± 7 63.1 ± 7 61.0 ± 7 62.6 ± 7 68.5 ± 7 70.1 ± 7 64.7 ± 7 68.5 ± 7 63.1 ± 7 65.2
SPE 57.5 ± 11 57.5 ± 11 58.8 ± 11 63.8 ± 11 51.3 ± 11 63.8 ± 11 62.5 ± 11 62.5 ± 11 55.0 ± 11 60.0 ± 11 47.5 ± 11 58.2
SEN 76.6 ± 8 70.1 ± 9 65.4 ± 9 62.6 ± 9 68.2 ± 9 61.7 ± 9 72.9 ± 8 75.7 ± 8 72.0 ± 9 74.8 ± 8 74.7 ± 8 70.4

50% AUC 67.0 ± 7 64.0 ± 7 62.0 ± 7 63.0 ± 7 60.0 ± 7 63.0 ± 7 68.0 ± 7 69.0 ± 7 * 63.0 ± 7 67.0 ± 7 61.0 ± 7 64.3 * 20
MCC 0.35 0.28 0.24 0.26 0.20 0.25 0.35 0.38 0.27 0.35 0.23 -

F1 0.74 0.69 0.67 0.66 0.67 0.65 0.73 0.74 0.70 0.73 0.70 -
McN 0.24 0.81 0.63 0.19 0.56 0.15 0.90 0.59 0.25 0.52 0.07 -

χ2 0 0.01 0.04 0.04 0.03 0.05 0 0 0.01 0 0 -

ACC 66.8 ± 7 64.7 ± 7 68.5 ± 7 64.7 ± 7 62.0 ± 7 64.7 ± 7 67.4 ± 7 65.8 ± 7 63.1 ± 7 65.8 ± 7 63.1 ± 7 65.1
SPE 63.8 ± 11 53.8 ± 11 55.0 ± 11 66.3 ± 10 50.0 ± 11 57.5 ± 11 66.3 ± 10 63.8 ± 11 52.5 ± 11 60.0 ± 11 45.0 ± 11 57.6
SEN 69.2 ± 9 72.9 ± 8 78.5 ± 8 63.6 ± 9 71.0 ± 9 70.1 ± 9 68.2 ± 9 67.3 ± 9 71.0 ± 9 70.1 ± 9 76.6 ± 8 70.6

25% AUC 66.0 ± 7 63.0 ± 7 67.0 ± 7 65.0 ± 7 61.0 ± 7 64.0 ± 7 67.0 ± 7 * 66.0 ± 7 62.0 ± 7 65.0 ± 7 61.0 ± 7 64.3 * 15
MCC 0.33 0.27 0.35 0.29 0.21 0.28 0.34 0.31 0.24 0.30 0.23 -

F1 0.70 0.70 0.74 0.67 0.68 0.69 0.71 0.69 0.69 0.70 0.70 -
McN 0.61 0.32 0.09 0.14 0.29 0.81 0.37 0.45 0.40 1.00 0.02 -

χ2 0 0 0 0.02 0.01 0.01 0 0.01 0.01 0.01 0 -

AVG AUC 66.3 63.3 64.0 63.0 60.3 63.0 66.7 67.3 * 61.7 65.7 60.7 -

ACC 66.8 ± 7 66.3 ± 7 65.8 ± 7 65.2 ± 7 59.9 ± 7 64.2 ± 7 62.6 ± 7 67.9 ± 7 62.0 ± 7 65.8 ± 7 64.2 ± 7 64.6
SPE 61.3 ± 11 62.5 ± 11 61.3 ± 11 52.5 ± 11 51.3 ± 11 51.3 ± 11 61.3 ± 11 68.8 ± 10 47.5 ± 11 52.5 ± 11 60.0 ± 11 56.8
SEN 71.0 ± 9 69.2 ± 9 69.2 ± 9 74.8 ± 8 66.2 ± 9 73.8 ± 8 63.6 ± 9 67.3 ± 9 72.9 ± 8 75.7 ± 8 67.3 ± 9 70.1

100% AUC 66.0 ± 7 66.0 ± 7 65.0 ± 7 64.0 ± 7 59.0 ± 7 63.0 ± 7 62.0 ± 7 68.0 ± 7 * 60.0 ± 7 64.0 ± 7 64.0 ± 7 63.7 * 23
MCC 0.32 0.32 0.30 0.28 0.18 0.26 0.25 0.36 0.21 0.29 0.27 -

F1 0.71 0.70 0.70 0.71 0.65 0.70 0.66 0.71 0.69 0.72 0.68 -
McN 1.00 0.71 0.80 0.17 0.73 0.18 0.34 0.20 0.12 0.13 0.71 -

χ2 0 0.01 0.01 0 0.06 0 0.05 0 0 0 0.02 -

* Bold represents the best value for models and sub-regions.
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Table A8. Representation of diagnostic performance for the external validation of cohort 1 using periphery sub-regions under different models. The training set
utilised Cohort 2, which consisted of 204 samples (77 high-grade and 127 low-grade), whereas Cohort 1, comprising 187 samples (107 high-grade and 80 low-grade),
was employed for testing/external validation set.

Cohort 1 Periphery n = 187 External Validation

Region SVM RF XGB NB MLP LSTM LR QDA LGB CB ADB AVG FS

ACC 62.6 ± 7 71.7 ± 7 62.6 ± 7 62.0 ± 7 62.6 ± 7 61.5 ± 7 62.6 ± 7 66.3 ± 7 64.2 ± 7 65.2 ± 7 62.0 ± 7 63.9
SPE 57.5 ± 11 53.8 ± 11 48.8 ± 11 51.3 ± 11 47.5 ± 11 53.8 ± 11 61.3 ± 11 53.8 ± 11 50.0 ± 11 51.3 ± 11 48.8 ± 11 52.5
SEN 66.4 ± 9 71.0 ± 9 72.90 ± 8 70.1 ± 9 73.8 ± 8 67.3 ± 9 63.6 ± 9 75.7 ± 8 74.8 ± 8 75.7 ± 8 72.0 ± 9 71.2

75% AUC 62.0 ± 7 62.0 ± 7 61.0 ± 7 61.0 ± 7 61.0 ± 7 61.0 ± 7 62.0 ± 7 65.0 ± 7 * 62.0 ± 7 63.0 ± 7 60.0 ± 7 61.8 15
MCC 0.24 0.25 0.22 0.22 0.22 0.21 0.25 0.30 0.26 0.28 0.21 -

F1 0.67 0.69 0.69 0.68 0.69 0.67 0.66 0.72 0.70 0.71 0.68 -
McN 0.81 0.47 0.15 0.41 0.09 0.81 0.34 0.17 0.11 0.11 0.19 -

χ2 0.04 0.01 0 0.02 0 0.04 0.05 0 0 0 0.01 -

ACC 61.5 ± 7 66.3 ± 7 64.7 ± 7 64.2 ± 7 61.5 ± 7 63.1 ± 7 62.6 ± 7 67.4 ± 7 63.1 ± 7 65.2 ± 7 65.2 ± 7 64.1
SPE 55.0 ± 11 50.0 ± 11 55.0 ± 11 51.3 ± 11 48.8 ± 11 67.5 ± 10 62.5 ± 11 71.3 ± 10 50.0 ± 11 60.0 ± 11 42.5 ± 11 55.8
SEN 66.4 ± 9 78.5 ± 8 72.0 ± 9 73.8 ± 8 71.0 ± 9 59.8 ± 9 62.6 ± 9 64.5 ± 9 72.9 ± 8 69.2 ± 9 82.2 ± 7 70.3

50% AUC 61.0 ± 7 64.0 ± 7 63.0 ± 7 63.0 ± 7 60.0 ± 7 64.0 ± 7 63.0 ± 7 68.0 ± 7 * 61.0 ± 7 65.0 ± 7 62.0 ± 7 63.1 21
MCC 0.21 0.30 0.27 0.26 0.20 0.27 0.25 0.35 0.23 0.29 0.27 -

F1 0.66 0.73 0.70 0.70 0.68 0.65 0.66 0.69 0.69 0.69 0.73 -
McN 1.00 0.03 0.46 0.18 0.24 0.04 0.23 0.05 0.19 0.90 0 -

χ2 0.05 0 0.01 0 0.01 0.03 0.05 0 0 0.01 0 -

ACC 65.2 ± 7 66.3 ± 7 69.5 ± 7 65.2 ± 7 66.3 ± 7 64.7 ± 7 64.2 ± 7 70.6 ± 7 64.2 ± 7 68.5 ± 7 63.6 ± 7 66.2
SPE 55.0 ± 11 51.3 ± 11 57.5 ± 11 63.8 ± 11 53.8 ± 11 51.3 ± 11 52.5 ± 11 70.0 ± 10 58.8 ± 11 58.8 ± 11 50.0 ± 11 56.6
SEN 72.9 ± 8 77.6 ± 8 78.5 ± 8 66.4 ± 9 75.7 ± 8 74.8 ± 8 72.9 ± 8 71.0 ± 9 68.2 ± 9 75.7 ± 8 73.8 ± 8 73.4

25% AUC 64.0 ± 7 64.0 ± 7 68.0 ± 7 65.0 ± 7 65.0 ± 7 63.0 ± 7 63.0 ± 7 71.0 ± 7 * 63.0 ± 7 67.0 ± 7 62.0 ± 7 65.0 * 25
MCC 0.28 0.30 0.37 0.30 0.30 0.27 0.26 0.41 0.27 0.35 0.25 -

F1 0.71 0.72 0.75 0.69 0.72 0.71 0.70 0.73 0.69 0.73 0.70 -
McN 0.39 0.06 0.15 0.39 0.17 0.14 0.27 0.35 0.90 0.36 0.15 -

χ2 0 0 0 0.01 0 0 0 0 0.02 0 0 -

AVG AUC 62.3 63.3 64.0 63.0 62.0 62.7 62.7 68.0 * 62.0 65.0 61.3 -

* Bold represents the best value for models and sub-regions.
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Table A9. Representation of diagnostic performance for the external validation of cohort 2 using core sub-regions under different models. The training set consisted
of cohort 1, which included 187 samples (107 high-grade and 80 low-grade), while cohort 2, comprising 204 samples (77 high-grade and 127 low-grade), was utilised
for testing/external validation set.

Cohort 2 Core n = 204 External Validation

Region SVM RF XGB NB MLP LSTM LR QDA LGB CB ADB AVG FS

ACC 72.1 ± 6 72.1 ± 6 68.1 ± 6 76.5 ± 6 67.7 ± 6 63.2 ± 7 74.5 ± 6 74.0 ± 6 72.6 ± 6 73.0 ± 6 74.0 ± 6 71.6
SPE 70.9 ± 8 70.9 ± 8 67.7 ± 8 92.1 ± 5 67.7 ± 8 56.7 ± 9 84.3 ± 6 83.5 ± 6 78.0 ± 7 74.0 ± 8 89.0 ± 5 75.9
SEN 74.0 ± 10 74.0 ± 10 68.8 ± 10 50.7 ± 11 67.5 ± 10 74.0 ± 10 58.4 ± 11 58.4 ± 11 63.6 ± 11 71.4 ± 10 49.4 ± 11 64.6

75% AUC 72.0 ± 6 72.0 ± 6 68.0 ± 6 71.0 ± 6 68.0 ± 6 65.0 ± 7 71.0 ± 6 71.0 ± 6 71.0 ± 6 73.0 ± 6 69.0 ± 6 70.1 34
MCC 0.45 0.44 0.36 0.49 0.34 0.30 0.44 0.43 0.42 0.44 0.43 -

F1 0.67 0.67 0.62 0.62 0.61 0.60 0.63 0.63 0.64 0.67 0.59 -
McN 0.02 0.02 0.03 0 0.05 0 0.10 0.13 1.00 0.14 0 -

χ2 0 0 0 0 0 0 0 0 0 0 0 -

ACC 78.9 ± 6 77.9 ± 6 71.6 ± 6 78.4 ± 6 73.0 ± 6 74.0 ± 6 76.5 ± 6 78.9 ± 6 72.6 ± 6 76.0 ± 6 77.9 ± 6 76.0
SPE 83.5 ± 6 79.5 ± 7 70.1 ± 8 89.8 ± 5 71.7 ± 8 80.3 ± 7 85.8 ± 6 89.8 ± 5 74.8 ± 8 77.2 ± 7 91.3 ± 5 81.3
SEN 71.4 ± 10 75.3 ± 10 74.0 ± 10 59.7 ± 11 75.3 ± 10 63.6 ± 10 61.0 ± 11 61.0 ± 11 68.8 ± 10 74.0 ± 10 55.8 ± 11 67.3

50% AUC 77.0 ± 6 * 77.0 ± 6 72.0 ± 6 75.0 ± 6 73.0 ± 6 72.0 ± 6 73.0 ± 6 75.0 ± 6 72.0 ± 6 76.0 ± 6 74.0 ± 6 74.2 * 24
MCC 0.55 0.54 0.43 0.53 0.46 0.44 0.49 0.54 0.43 0.50 0.52 -

F1 0.72 0.72 0.66 0.68 0.68 0.65 0.66 0.69 0.65 0.70 0.66 -
McN 0.88 0.30 0.02 0.01 0.02 0.68 0.08 0.01 0.29 0.20 0 -

χ2 0 0 0 0 0 0 0 0 0 0 0 -

ACC 72.1 ± 6 74.5 ± 6 72.6 ± 6 76.3 ± 6 73.0 ± 6 70.1 ± 6 73.0 ± 6 72.6 ± 6 68.14 ± 6 74.5 ± 6 75.0 ± 6 72.9
SPE 78.7 ± 7 77.2 ± 7 76.4 ± 7 90.6 ± 5 82.7 ± 7 78.0 ± 7 88.2 ± 6 81.9 ± 7 70.1 ± 8 82.7 ± 7 86.6 ± 6 81.2
SEN 61.0 ± 11 70.1 ± 10 66.2 ± 11 53.3 ± 11 57.1 ± 11 57.1 ± 11 48.1 ± 11 57.1 ± 11 64.9 ± 11 61.0 ± 11 55.8 ± 11 59.3

25% AUC 70.0 ± 6 74.0 ± 6 * 71.0 ± 6 72.0 ± 6 70.0 ± 6 68.0 ± 6 68.0 ± 6 70.0 ± 6 68.0 ± 6 72.0 ± 6 71.0 ± 6 70.4 22
MCC 0.40 0.47 0.42 0.48 0.41 0.36 0.40 0.40 0.34 0.45 0.45 -

F1 0.62 0.67 0.65 0.63 0.62 0.59 0.57 0.61 0.61 0.64 0.63 -
McN 0.69 0.41 0.59 0 0.14 0.52 0 0.18 0.17 0.27 0.02 -

χ2 0 0 0 0 0 0 0 0 0 0 0 -

AVG AUC 73.0 74.3 * 70.3 72.8 70.3 66.3 70.7 72.0 70.3 73.7 71.3 -

ACC 75.0 ± 6 77.0 ± 6 71.6 ± 6 75.6 ± 6 71.1 ± 6 76.5 ± 6 75.0 ± 6 74.5 ± 6 73.5 ± 6 72.1 ± 6 73.5 ± 6 74.1
SPE 79.5 ± 7 79.5 ± 7 81.9 ± 7 88.2 ± 6 73.2 ± 8 90.6 ± 5 81.1 ± 7 81.1 ± 7 77.2 ± 7 74.0 ± 8 89.0 ± 5 81.4
SEN 67.5 ± 10 72.7 ± 10 54.6 ± 11 54.6 ± 11 67.5 ± 10 53.3 ± 11 64.9 ± 11 63.6 ± 11 67.5 ± 10 68.8 ± 10 48.1 ± 11 62.1

100% AUC 74.0 ± 6 76.0 ± 6 * 68.0 ± 6 71.0 ± 6 70.0 ± 6 72.0 ± 6 73.0 ± 6 72.0 ± 6 72.0 ± 6 71.0 ± 6 69.0 ± 6 71.6 * 32
MCC 0.47 0.52 0.38 0.46 0.4 0.48 0.46 0.45 0.44 0.42 0.41 -

F1 0.67 0.70 0.59 0.63 0.64 0.63 0.66 0.65 0.66 0.65 0.58 -
McN 0.89 0.47 0.12 0 0.24 0 0.67 0.58 0.59 0.23 0 -

χ2 0 0 0 0 0 0 0 0 0 0 0 -

* Bold represents the best value for models and sub-regions.
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Table A10. Representation of diagnostic performance for the external validation of cohort 2 using periphery sub-regions under different models. Cohort 1,
comprising 187 samples (107 high-grade and 80 low-grade), was utilised as the training set, while Cohort 2, consisting of 204 samples (77 high-grade and 127
low-grade), served for testing/external validation set.

Cohort 2 Periphery n = 204 External Validation

Region SVM RF XGB NB MLP LSTM LR QDA LGB CB ADB AVG FS

ACC 76.0 ± 6 75.0 ± 6 67.7 ± 6 72.1 ± 6 70.6 ± 6 74.0 ± 6 75.5 ± 6 70.1 ± 6 68.1 ± 6 68.1 ± 6 72.1 ± 6 71.8
SPE 80.3 ± 7 74.8 ± 8 74.8 ± 8 78.7 ± 7 75.6 ± 7 87.4 ± 6 87.4 ± 6 68.5 ± 8 77.2 ± 7 70.1 ± 8 88.2 ± 6 78.5
SEN 68.8 ± 10 75.3 ± 10 55.8 ± 11 61.0 ± 11 62.3 ± 11 52.0 ± 11 55.8 ± 11 72.7 ± 10 53.3 ± 11 64.9 ± 11 45.5 ± 11 60.7

75% AUC 75.0 ± 6 75.0 ± 6 * 65.0 ± 7 70.0 ± 6 69.0 ± 6 70.0 ± 6 72.0 ± 6 71.0 ± 6 65.0 ± 7 68.0 ± 6 67.0 ± 7 69.7 28
MCC 0.49 0.49 0.31 0.40 0.38 0.43 0.46 0.40 0.31 0.34 0.38 -

F1 0.68 0.69 0.57 0.62 0.62 0.60 0.63 0.65 0.56 0.61 0.55 -
McN 0.89 0.07 0.81 0.69 0.80 0 0.01 0.01 0.39 0.17 0 -

χ2 0 0 0 0 0 0 0 0 0 0 0 -

ACC 74.0 ± 6 75.5 ± 6 66.7 ± 6 71.6 ± 6 74.5 ± 6 74.5 ± 6 74.0 ± 6 75.5 ± 6 68.1 ± 6 70.6 ± 6 75.5 ± 6 72.8
SPE 76.4 ± 6 74.8 ± 8 67.7 ± 8 82.7 ± 7 85.0 ± 6 85.0 ± 6 79.5 ± 7 86.6 ± 6 75.6 ± 7 77.2 ± 7 94.5 ± 4 80.5
SEN 70.1 ± 11 76.6 ± 9 64.9 ± 11 53.3 ± 11 57.1 ± 11 57.1 ± 11 64.9 ± 11 57.1 ± 11 55.8 ± 11 59.7 ± 11 44.0 ± 11 60.1

50% AUC 73.0 ± 6 76.0 ± 6 * 66.0 ± 7 68.0 ± 6 71.0 ± 6 71.0 ± 6 72.0 ± 6 72.0 ± 6 66.0 ± 7 68.0 ± 6 69.0 ± 6 70.2 28
MCC 0.46 0.50 0.32 0.38 0.44 0.44 0.45 0.46 0.32 0.37 0.47 -

F1 0.67 0.70 0.60 0.59 0.63 0.63 0.65 0.64 0.57 0.61 0.58 -
McN 0.34 0.05 0.09 0.07 0.05 0.05 0.89 0.02 0.71 0.80 0 -

χ2 0 0 0 0 0 0 0 0 0 0 0 -

ACC 75.5 ± 6 75.5 ± 6 67.2 ± 6 74.5 ± 6 69.1 ± 6 71.6 ± 6 77.5 ± 6 76.0 ± 6 71.6 ± 6 72.1 ± 6 75.0 ± 6 73.2
SPE 77.2 ± 7 75.6 ± 7 74.8 ± 8 88.2 ± 6 67.7 ± 8 81.1 ± 7 88.2 ± 6 85.0 ± 6 77.2 ± 7 74.02 ± 8 91.3 ± 5 80.0
SEN 72.7 ± 10 75.3 ± 10 54.6 ± 11 52.0 ± 11 71.4 ± 10 55.8 ± 11 59.7 ± 11 61.0 ± 11 62.3 ± 11 68.8 ± 10 48.1 ± 11 62.0

25% AUC 75.0 ± 6 75.0 ± 6 * 65.0 ± 7 70.0 ± 6 70.0 ± 6 68.0 ± 6 74.0 ± 6 73.0 ± 6 70.0 ± 6 71.0 ± 6 70.0 ± 6 71.0 * 24
MCC 0.49 0.50 0.30 0.44 0.38 0.38 0.51 0.48 0.40 0.42 0.45 -

F1 0.69 0.70 0.56 0.61 0.64 0.60 0.67 0.66 0.62 0.65 0.59 -
McN 0.26 0.09 0.71 0 0.02 0.19 0.02 0.12 1.00 0.23 0 -

χ2 0 0 0 0 0 0 0 0 0 0 0 -

AVG AUC 74.3 75.3 * 65.3 69.3 70.0 69.7 72.7 72.0 67.0 69.0 68.7 -

* Bold represents the best value for models and sub-regions.



Cancers 2024, 16, 1454 31 of 35

Table A11. Diagnostic performance for best-performing regions in cohort 4. 159 samples from cohort
1 were allocated to the training set, comprising 96 high-grade and 63 low-grade samples. Additionally,
cohort 4, with 28 samples, was designated for the testing/internal validation set, including 11 high-
grade and 17 low-grade samples. On the other hand, Cohort 2, consisting of 77 high-grade and
127 low-grade samples, served as the training set, while cohort 4 was reserved for the testing/external
validation set.

Cohort 4

Internal Validation External Validation

Region QDA CB Region QDA CB

ACC 82.1 ± 14 85.7 ± 13 71.4 ± 17 75.0 ± 16
SPE 94.1 ± 9 94.1 ± 9 82.4 ± 18 70.6 ± 22
SEN 63.6 ± 28 72.7 ± 26 54.6 ± 29 81.8 ± 20

75% AUC 79.0 ± 15 83.0 ± 14 50% 68.0 ± 17 76.0 ± 16
Core MCC 0.62 0.70 Core 0.39 0.51

F1 0.74 0.80 0.60 0.72
McN 0.18 0.32 0.48 0.26

χ2 0.03 0.02 0.23 0.20

ACC 82.1 ± 14 92.9 ± 8 67.9 ± 17 78.6 ± 15
SPE 70.6 ± 22 94.1 ± 9 64.7 ± 23 82.4 ± 18
SEN 100.0 ± 14 90.9 ± 13 72.7 ± 26 72.7 ± 26

50% AUC 85.0 ± 13 93.0 ± 10 50% 69.0 ± 17 78.0 ± 15
Core MCC 0.70 0.85 Periphery 0.37 0.55

F1 0.81 0.91 0.64 0.73
McN 0.03 1.00 0.32 1.00

χ2 0.02 0 0.45 0.13

ACC 75.0 ± 16 96.4 ± 5 75.0 ± 16 82.1 ± 14
SPE 64.7 ± 23 100.0 ± 12 76.5 ± 20 88.2 ± 14
SEN 90.9 ± 13 90.9 ± 13 72.7 ± 26 72.7 ± 26

25% AUC 78.0 ± 15 95.0 ± 8 * 25% 75.0 ± 16 80.0 ± 15 *
Periphery MCC 0.55 0.93 Periphery 0.49 0.62

F1 0.74 0.95 0.70 0.76
McN 0.06 0.32 0.71 0.65

χ2 0.11 0 0.23 0.06

AVG AUC 80.7 90.3 * 70.7 78.0 *

ACC 85.7 ± 13 92.9 ± 8 78.6 ± 15 78.6 ± 15
SPE 94.1 ± 9 94.1 ± 9 88.2 ± 14 76.5 ± 20
SEN 72.7 ± 26 90.0 ± 14 63.6 ± 28 81.8 ± 20

100% AUC 83.0 ± 14 93.0 ± 10 100% 76.0 ± 16 79.0 ± 15
MCC 0.70 0.85 0.54 0.57

F1 0.80 0.91 0.70 0.75
McN 0.32 1.00 0.41 0.41

χ2 0.02 0 0.09 0.13

* Bold represents the best value for models and sub-regions.
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