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Simple Summary: Precision immuno-oncology, the development of personalized treatments using
the unique nature of an individual’s DNA, immune cells, and their tumor’s molecular profile, offers
great promise. However, it has been well documented that biological sex considerably influences
innate and adaptive immune responses, thereby conferring differences in the efficacy of lung cancer
therapy between men and women. Despite this, women remain underrepresented in oncology clinical
trials; this exclusion has resulted in our harboring of a limited understanding of the impact of im-
munotherapy on females and their survivorship, in addition to imprecise clinical recommendations.
This review provides an overview of the sex-specific differences in immunity and immunotherapy
efficacy, discusses contributing factors for the lack of women in clinical trials, and suggests future di-
rections for precision oncology research, to ultimately aid in the development of treatment guidelines
and recommendations that wholly consider the unique impact of immunotherapy on females and the
intersectionality among them.

Abstract: Precision immuno-oncology involves the development of personalized cancer treatments
that are influenced by the unique nature of an individual’s DNA, immune cells, and their tumor’s
molecular characterization. Biological sex influences immunity; females typically mount stronger
innate and adaptive immune responses than males. Though more research is warranted, we continue
to observe an enhanced benefit for females with lung cancer when treated with combination chemoim-
munotherapy in contrast to the preferred approach of utilizing immunotherapy alone in men. Despite
the observed sex differences in response to treatments, women remain underrepresented in oncology
clinical trials, largely as a result of gender-biased misconceptions. Such exclusion has resulted in the
development of less efficacious treatment guidelines and clinical recommendations and has created a
knowledge gap in regard to immunotherapy-related survivorship issues such as fertility. To develop
a more precise approach to care and overcome the exclusion of women from clinical trials, flexible
trial schedules, multilingual communication strategies, financial, and transportation assistance for
participants should be adopted. The impact of intersectionality and other determinants of health
that affect the diagnosis, treatment, and outcomes in women must also be considered in order to
develop a comprehensive understanding of the unique impact of immunotherapy in all women with
lung cancer.
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1. Introduction

Precision medicine involves tailoring interventions to patients by using their unique
biomarkers within their genetic characteristics or molecular profiles [1]. Thus, in preci-
sion oncology, interventions extend beyond simply obtaining patient demographics and
traditional clinical characteristics, and instead involve developing personalized treatment
strategies using therapies targeted at a patient’s tumor’s molecular profile, as well as aiding
in prognostication [2,3].

In tailoring interventions, it is important to consider sex disparities in the prognosis
and outcomes of lung cancer, particularly non-small cell lung cancer (NSCLC). Compared
to men, women are more frequently diagnosed with an adenocarcinoma subtype, at an
earlier age, after less tobacco exposure, and are more susceptible to targeted approaches [4].
Women with NSCLC also show significantly better survival across all treatment modalities,
regardless of stage or histology, though the magnitude of sex differences in mortality
continues to decline due to increases in female mortality [4–9]. Nevertheless, it is crucial to
recognize that cancer cells have the inherent capability to develop resistance to therapy,
leading to a decreased duration of response and success of treatment. For instance, a wide
variety of mechanisms, such as resistant EGFR-mutations, mutations in genes including
PIK3CA, ALK, BRAF, KRAS, and TP53, and amplifications of MET and HER2 genes, are
associated with acquired resistance to treatments such as osimertinib [10]. Understanding
resistance mechanisms is an important aspect to improving treatment strategies.

Since the Human Genome Project, multiple large-scale studies have identified genomic,
transcriptomic, and proteomic variations that may act as potential drug targets. We have
also seen increased access to genomic sequencing on a patient-facing level, such that
full genomic next-generation sequencing (NGS) can be completed in days and provide
clinically relevant data [11]. With such advents of integrative genomics and advances in
bioinformatics, we have been able to process an ample amount of genomic and transcription
variations to identify potential targets with diagnostic and therapeutic implications [2,12].
This, combined with novel approaches to drug design, have contributed to the development
of newfound therapies addressing targets previously thought to be “undruggable” due
to factors such as their lacking defined ligand-binding pockets [13,14]. For instance, we
may now target KRAS mutations due to the advent of selective KRASG12C inhibitors [13].
Additionally, there are multiple ongoing studies examining how to combine these selective
inhibitors with other forms of therapy in addition to looking at non-G12C KRAS alleles [15].
Still, druggable driver mutations currently appear in low frequency amongst the cancer
population, limiting the effectiveness of targeted treatment [16].

With advances in molecular immunology, immune checkpoint inhibitors (ICIs) have
also become more sophisticated, with targeted immunotherapies more readily available.
Even as immunotherapy becomes the first-line treatment for multiple types of cancer,
though, there still remains a significant portion of patients who do not receive benefit [17,18],
making it important to recognize immunotherapy-specific predictive biomarkers. One
potential predictor of ICI response is the density of tumor-infiltrating lymphocytes (TILs)
within a tumor [19–21] as well as natural-killer (NK) cells; in patients with advanced
NSCLC receiving ICIs, lower NK cell values were independent prognostic factors for
shorter OS and PFS. Sarcopenic patients with advanced NSCLC receiving ICIs also showed
significantly worse PFS and had an 8.1 times higher risk of disease progression than non-
sarcopenic patients [22,23]. As CXCR4 expression increases with stage progression in
NSCLC, targeting the CXCL12/CXCR4 axis in immunotherapy has also emerged as a
treatment approach, though this axis is not prognostic in early-stage NSCLC patients of
either sex [24,25].

Another area garnering recent interest is a patient’s tumor microenvironment (TME) [26–29].
Notably, stromal cells are a cellular component within the TME and play a significant role
in tumor metabolism, growth, metastasis, immune evasion, and treatment resistance [30].
There is emerging evidence that this stromal compartment can additionally shape antitumor
immunity and responsiveness to immunotherapy [29,31]. For example, cancer-associated
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fibroblasts (CAFs) are the most common component of tumor stroma and are involved in
tumorigenesis, tumor metastasis, and tumor angiogenesis [32–34]. One way that CAFs
promote tumor progression is through the regulation of immune cells within the TME;
strategies include inhibiting natural killer cells via the secretion of cytokines, chemokines,
and MMPs [35]. Thus, several tailored strategies have been employed to combat these
tactics, including anti-angiogenic therapy, immune modulation/reprogramming, CAF
depletion, ECM targeting, and exosome or circulating tumor cell targeting, all of which are
areas of active research [36].

Overall, immunotherapy has great promise, particularly considering how it is overall
more effective and less toxic for patients [37–40]. However, the generalizability of current
preliminary trial results are unclear due to their lack of representation of women [41,42].
Indeed, it is well documented that biological sex influences innate and adaptive immunity,
as adult females typically mount stronger innate and adaptive immune responses compared
to males [43–46]. Furthermore, for the majority of cancers, age-adjusted mortality rates and
cancer-specific survival tend to be higher in males than females [47]. The implications of
sex differences with regard to immunotherapy have not yet been well studied, offering
opportunities for future research to provide more tailored data within populations that
reflect our diverse clinical environment.

2. Sex Differences in Response to Immunotherapy

As previously noted, females typically express a more robust immune response, as
they tend to have a higher B-cell response to various antigens and produce more interferons
in macrophages and dendritic cells [48]. Sex hormones such as estrogen and testosterone
also play a role in regulating the immune system; estrogen is thought to recruit immune
cells that suppress the immune response, while androgens contrastingly may enhance
it by promoting T-cell proliferation [48,49]. Estrogen-mediated immunomodulation also
affects antigen-presenting cells and regulator T cells, with estrogen-enhancing PD-L1
expression [50]. Studies have further shown that sex chromosomes are determinants of
sex dimorphism of anticancer immunity, owing to greater than fifty X-linked genes that
play key roles in the innate immunity encoding for pro-inflammatory cytokines (e.g., TLR7
and TLR8) and in the regulation of adaptive immunity (e.g., IL2RG and IL13RA2) [51].
These X-linked genes are responsible for several transcription factors such as FOX-3 that
are crucial for the development of regulatory T-cells and their functioning is responsible
for suppressing immune responses [52]. Hormonal variations in women, such as those
occurring during different phases of the menstrual cycle or menopause, may also influence
immune responses and treatment efficacy [9,53]. Evidence suggests that females with
early-stage NSCLC, specifically, also mount a stronger immune response due to their
“hot” TME enriched with dendritic cells, CD4+ T cells, B cells, and a higher clonality of
TILs. On the contrary, females with advanced NSCLC or those who are not treatment
naïve have cancerous cells associated with complex resistance mechanisms and T-cell
exhaustion, leading to the expression of multiple immune checkpoints; importantly, such
differences are observed regardless of age, stage of disease, tumor histotype, and smoking
status [54]. Sex differences in gut microbial composition may also play a role in the efficacy
of immunotherapy. One study found that anti-PD-L1 could decrease the relative abundance
of Lachnospiraceae, a bacteria associated with favorable responses to ICIs in female mice,
while exerting no effect on male mice [55]. A higher relative abundance of Lachnospira
has also been found in pre-menopausal women compared to post-menopausal women,
who had similar levels to men [56]; the decline in microbiota diversity associated with
aging might negatively influence ICIs [57]. Similarly, older adults have increased levels of
regulatory T cells and pro-inflammatory cytokines such as interleukin (IL)-6, key mediators
of immune evasion and resistance to ICIs. Though this decline might in principle result in
an altered efficacy of immunotherapy in older patients, more research is needed; limited,
non-generalizable subgroup analyses indicate that older patients may in fact gain the
same benefit from immunotherapy as younger patients [57]. The breadth of recognized
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differences in the immunity between females and males has led to significant research
aiming to determine if there is a difference in survival between women and men who are
treated with ICIs. Several meta-analyses have been conducted with varying results.

A meta-analysis carried out by Conforti et al. explored sex-based differences in
response to immunotherapy for lung cancer [58]. A prior meta-analysis conducted by this
group included 20 randomized controlled trials (RCTs) and was the first to demonstrate a
difference in the efficacy of ICIs in men and women [overall survival hazard ratio (OS-HR)
0.86 (95% CI 0.79–0.93) vs. 0.72 (95% CI 0.65–0.79) for females and males, respectively] [53].
In this subsequent study aiming to further investigate these findings, researchers integrated
data from two meta-analyses, the first demonstrating how females derived a significantly
greater benefit compared to males when receiving anti–PD-1/PD-L1 plus chemotherapy
vs. chemotherapy for treatment across various solid tumors [0.48 (95% CI, 0.35–0.67) vs.
0.76 (95% CI, 0.66–0.87) for females and males, respectively]. The second meta-analysis
included lung cancer trials alone and confirmed the prior observation that immunotherapy
alone yielded greater benefits for males compared to females [0.78 (95% CI, 0.60 to 1.00)
vs. 0.97 (95% CI, 0.79 to 1.19) for males and females, respectively]. Importantly, it also
showed that the combined chemoimmunotherapy strategy proves more efficacious for
females [0.44 (95% CI, 0.25–0.76)] compared to males [0.76 (95% CI, 0.64–0.91)], regardless
of age, smoking status, or histology [58]. Kindred findings supporting the benefits of
combined chemoimmunotherapy for females have been published in a meta-analysis
conducted by Liang et al., which included 16 RCTs involving 10,155 patients with advanced
NSCLC. This study demonstrated a more favorable OS-HR for women who were treated
with ICI+ chemotherapy vs. chemotherapy alone when compared to males [0.63 (95% CI
0.42–0.92) vs. 0.79 (95% CI 0.70–0.89) for females and males, respectively] [59]. A later study
conducted by Wu et al. encompassed 11 clinical trials (4 of which trials were for NSCLC)
and corroborated the findings of Conforti et. al., demonstrating that males treated with
ICIs were associated with a higher PFS and OS when compared to females, but notably, this
difference was not observed with the NSCLC cohort [60]. Yet another meta-analysis that
included only five phase-3 NSCLC trials (KEYNOTE 010, KEYNOTE 024, CHECKMATE
017, CHECKMATE 026, and CHECKMATE 057) comparing anti-PD1 ICI (pembrolizumab
or nivolumab) to chemotherapy showed that a significant OS benefit was observed in males
but not in females; this analysis, however, was limited by significant heterogeneity between
studies and various cut-offs for biomarker expressions [61–63]. For instance, the inclusion
criteria for the KEYNOTE 010, KEYNOTE 024, and CHECKMATE 026 trials involved PD-L1
tumor-expression positivity, while by contrast, the CHECKMATE 017 and CHECKMATE
057 trials enrolled patients with NSCLC without considering their PD-L1 status [64].

Despite the largely homogenous nature of the aforementioned data, several other meta-
analyses examining the differences in the efficacy of ICIs among females and males have
produced conflicting results [65,66]. For instance, a large-scale meta-analysis conducted
by Wallis et al. encompassed 23 RCTs of patients, most of whom were in their 70s, and
showed no statistically significant differences between the sexes when comparing ICIs to
chemotherapy [65]. Boticelli et al. selected 36 clinical trials in which ICIs (anti-CTLA-4/PD-
1/PD-L1) were studied and also did not appreciate any statistical differences in OS or
PFS between the sexes; notably, however, this research did not include studies evaluating
anti-PD-L1 ICIs in their final analysis [66]. Several other published studies (Table 1) have
compared sex disparities in the outcomes for patients treated with ICIs. Despite varying
results, a consistent theme noted continues to be the benefit for females when treated with
combination chemoimmunotherapy; this contrasts with studies demonstrating that men
experience a statistically significant benefit from ICIs alone compared to chemotherapy.
It is important to recognize that limitations within all studies include the possibility for
residual confounding factors such as the diverse range of tumor types considered, the
absence of records pertaining to hormonal and PD-L1 status based on sex, and variations in
biomarker expression cut-offs, which may influence the heterogenous results. Additionally,
as meta-analyses rely on aggregate data instead of individual data, they may suffer from
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ecological fallacy. The inclusion of studies that are underpowered to explore the effect
of sex disparities on outcomes, as well as the potential confounding impact of age on
results, poses challenges, and more conclusive data are needed to delineate sex differences
in response to ICIs. This includes addressing sex variations at the grassroot level and
improving the gender-based diversity in the recruitment of patients to clinical trials.

Table 1. Studies evaluating the impact of gender on response to immune checkpoint inhibition.

Study Type of Study Sample Size Cancers
Included

Treatment
Regimen Outcome Sex Differences

in OS
Hazard Ratios
(If Available)

[66] Meta-Analysis 11 RCTs Solid tumors ICI vs.
chemotherapy OS, PFS

No significant
difference in males
and females noted

for OS or PFS

Anti-PD1: OS (males vs.
females: HR 0.72, 95%

CI 0.64–0.83 vs. HR
0.81, 95% CI 0.70–0.94,

p = 0.285)
Anti PD-1 PFS: (males
vs. females: HR 0.66,
95% CI 0.52–0.82 vs.

HR 0.85, 95% CI
0.66–1.09, p =0.158).

[67]
Systematic
Review &

Meta-Analysis

21 RCTs,
26,598 patients Solid tumors

ICI alone or
with

chemotherapy
vs.

chemotherapy

OS, PFS

Similar OS in males
and females for

anti-PD-1/PDL-1.
Anti-CTLA-4 use was

associated with
longer OS in men

only

OS: Females (HR, 0.77;
95% CI 0.67–0.89,

p < 0.001)
Males (HR, 0.73; 95%

CI 0.66–0.80, p < 0.001)

[53] Meta-Analysis 20 RCTs,
11,351 patients Solid tumors

CTLA-4 or
PD-1 inhibitors

vs.
chemotherapy

OS
Men experienced
longer OS when

compared to females

OS: Women (HR, 0.86;
95% CI 0.79–0.93), Male

(HR, 0.72; 95% CI
0.65–0.79)

[58] Meta-Analysis
8 RCTs,

574 NSCLC
patients

NSCLC

PD-L1 or
PD-L1 alone or

with
chemotherapy

vs.
chemotherapy

OS, PFS

Women had better
OS with PD-1 and

chemotherapy
combination when
compared to Males.
Males had a better

OS in the
immunotherapy

alone arm

OS PD-1/PD-L1 alone:
Females (HR, 0.97; 95%
CI = 0.79 to 1.19), Male

(HR, 0.78 (95%
CI = 0.60 to 1.00)
OS combination:

Females (HR, 0.44 95%
CI = 0.25 to 0.76), Male
(HR, 0.76; 95% CI = 0.64

to 0.91)

[65] Meta-Analysis 23 RCTs,
13,271 patients Solid Tumors

ICI vs.
standard
therapies

OS

Benefit noted in both
men and women
with no statistical
difference noted

between the sexes

OS: Females (HR, 0.77;
95% CI, 0.67–0.88;

p = 0.002), Men (HR,
0.75; 95% CI, 0.69–0.81;

p < 0.001)

[60] Meta-Analysis 11 RCTs,
6096 patients

Solid tumors,
(4 lung cancer

RCTs)

CTLA-4 or
PD-1 inhibitors

vs.
chemotherapy

OS, PFS

Better PFS and OS
seen in males vs.

females treated with
ICI. However, this

was not noted in the
NSCLC cohort.

OS: Females (HR = 0.74;
95% CI, 0.65–0.84;

p < 0.001)
Males (HR = 0.62; 95%
CI, 0.53–0.71, p < 0.001)

[59] Meta-Analysis 16 RCTs,
10,155 patients NSCLC

ICI alone or
with

chemotherapy
vs.

chemotherapy
alone

OS

Those who received
ICIs (with or without
chemotherapy) had

longer OS than those
who did not receive

ICIs and was
comparable between

both genders

Overall: Females (HR:
0.74, 95%Cl 0.63–0.87),

Males (HR: 0.76, 95%Cl
0.71–0.81)

ICI + Chemo: females
(HR: 0.63, 95%Cl

0.42–0.92), males (HR:
0.79, 95%Cl 0.70–0.89)

ICI alone: Females (HR:
0.83, 95%Cl 0.73–0.95),

Males (HR: 0.74, 95%Cl
0.67–0.81)
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Table 1. Cont.

Study Type of Study Sample Size Cancers
Included

Treatment
Regimen Outcome Sex Differences

in OS
Hazard Ratios
(If Available)

[68] Meta-Analysis 15 RCTs,
9583 patients Lung cancer

ICI alone or
with

chemotherapy
vs.

chemotherapy
alone

OS, PFS

Both females and
males benefited from
anti-PD-1 therapies

and benefit was seen
only for males with

anti-PD-L1 therapies.

Anti-PD-1: Females
(HR = 0.69, 95% CI,

0.52–0.93)
Males (HR = 0.73, 95%

CI, 0.67–0.80)
Anti-PD-L1: Females
(HR = 0.69, 95% CI,

0.44–1.07),
Males: (HR = 0.80, 95%

CI, 0.69–0.92)

3. Lack of Inclusion in Clinical Trials

Clinical trials are pivotal for shaping treatment protocols, yet persistent sex disparities
exist affecting the inclusion of women. Indeed, research reveals a historical underrepre-
sentation, with only 34.7% of participants in cancer preventive and therapy studies from
1990 to 2001 being female [69]. Though a more recent analysis involving data from 2008
to 2020 showed that females constituted 46.9% of participants in oncologic clinical trials,
there were concerning proportional participation rates (PPR) of 0.912 across all trials, with
women facing significant underrepresentation in surgical (PPR 0.74) and other invasive
(PPR 0.69) oncology trials [70]. Further, recent immunotherapy trials such as the AEGEAN
and KEYNOTE671, investigating perioperative chemoimmunotherapy in NSCLC, revealed
a stark disparity of approximately 70% of participants in both treatment and placebo arms
being male [71,72]. While the 2018 ADAURA trial did recruit over twice as many females
as males (207 men, 471 women), it is important to note that this trial evaluated drug efficacy
for an EGFR mutation, occurring over twice as often in females than in males (59% vs.
26%) [73]. Thus, appropriate representation is still needed for women when the mutation
is not as prominent as EGFR. Underrepresentation also continues to be particularly pro-
nounced among older women (>65 years) and those of minority race/ethnicity, though this
trend extends to men as well [9].

The exclusion of women from clinical trials stems from a complex interplay of medical
and societal considerations. A prominent factor is the potential impact of experimental
treatments on fetal development, raising concerns related to pregnancy [74]. As women
exhibit a higher incidence of autoimmunity and hypersensitivity reactions, caution is
prompted regarding pregnant women’s inclusion in trials involving novel drugs or ther-
apies [75]. Historical barriers also include a perception in the United States that women
needed protection from clinical research, rooted in the adverse effects of thalidomide and
diethylstilbestrol [69,74]. Past injustices such as the development of the HeLa cell line have
also led to distrust of medical research [74]. Gender-specific barriers, including heightened
time, financial costs, and increased familial responsibilities borne by women exacerbate
such challenges [9]. The continuous lack of emphasis on women’s health research, limited
awareness of trial opportunities, and fears related to randomization further compound
the issue. More so, lingering gender-biased misconceptions that women are more difficult
to recruit, are less willing to participate in trials, and are more difficult to work with [69]
also persist as formidable obstacles to equitable representation [9,69]. For minoritized
patient populations, additional barriers include stringent and narrow trial designs that
may inadvertently exclude racial and ethnic minorities at a disproportionate rate [76,77],
overly complex or lack of translated informational materials [78–81], and lack of local
availability [76]. These patients may be hesitant to participate in clinical trials due to having
a lack of trust in clinical research [82,83], as well as due to the financial toxicity [84,85]
associated with trial participation, transportation needs, and other social determinants of
health [86]. Owing to implicit biases, physicians also have less trust in and are less likely to
offer a clinical trial to racial and ethnic minorities [87].
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The repercussions of excluding women from clinical trials are extensive, impacting
survivorship, treatment efficacy, sexual health, and fertility, and contribute to a lack of
prospective validation for medication dosages and treatment protocols specifically tailored
to women with lung cancer [9]. Consequently, women in targeted therapy trials are
25% more likely to experience severe adverse events than men, along with a heightened
risk of underreporting [9,88–90]. Sex-specific variations in chemotherapy outcomes also
reveal higher response rates but increased toxicities in women [91]. Immunotherapy, as
previously noted, presents a different scenario, with men often experiencing greater efficacy,
risk reduction, and benefits from the treatment alone, compared to women [53].

More so, limited prospective data assessing sexual dysfunction with cancer treatment,
which remains underdiagnosed and undertreated [92], are available, resulting in a narrow
understanding of how different cancer therapies affect libido, fertility, and overall sexual
satisfaction in female patients [9]. Per the recently published SHAWL study, the largest
study to date evaluating sexual health in patients with lung cancer, a resounding 77% of
women experienced moderate to severe sexual dysfunction, with marked differences before
and after cancer treatment [93]. However, these sexual health needs of women with cancer
are often overlooked in clinical settings due to providers’ implicit discomfort, inexperience,
or inaccurate perceptions of patient priorities [9,94]. In fact, a recent systematic study
discovered that males with cancer had higher rates of patient–provider discussions of
sexual issues than women [94]. Such disparities hinder the development of effective
strategies to address issues such as vaginal dryness, pain during intercourse, or changes in
body image [95].

Prospective information regarding the risks and long-term effects of cancer treat-
ments on fertility is also lacking [96]. Compounded with the lack of general treatment
guidance specifically tailored to women, this knowledge gap may result in even more
poorly informed decision-making for women of reproductive age facing cancer diagnoses.
Often, women may be unaware of fertility preservation options available to them or the
impact of treatments on their ability to conceive in the future. Unsurprisingly, clinical
recommendations about suitable treatments for pregnant patients with lung cancer are
far from standardized, as most knowledge regarding treatment effects has been derived
from research conducted in animal models or from data extrapolated from patients with
breast cancer [97]. Though understudied, alkylating agents commonly used in lung cancer
treatments have been associated with the highest risk of ovarian failure among cytotoxic
chemotherapeutic medications [98], while the results from immunotherapy include the risk
for hypogonadism, hypophysitis, hypothyroidism, low birth weight, increased miscarriage
rates, stillbirth, and premature delivery [98,99]. Early-generation tyrosine kinase inhibitors,
too, have been shown to negatively affect total follicle count, oocyte recovery, and ovarian
reserve, reduce an embryo’s overall developmental potential, and even produce terato-
genic effects [100]. Moreover, the evaluation of reproductive function and fertility is often
insufficient when examining the consequences of cancer treatments [96]. As research re-
veals oncologists’ suboptimal knowledge, practices, and attitudes on fertility preservation
and pregnancy during and after treatments [101–103], divergent survivorship experiences
between men and women have been observed in discussions about fertility [9,96]. Unlike
men, who were frequently advised to preserve sperm, women expressed negative senti-
ments regarding fertility preservation, citing inadequate information and presentation of
their available options as contributing factors [9,104].

Despite the aforementioned implications, precision oncology discussions often over-
look sex differences, which may unintentionally compromise the effectiveness of treatment
strategies, limit informed decision-making, and impact the development of supportive
care interventions (Figure 1). Without a diverse clinical trial participant pool, the effi-
cacy, safety, pharmacokinetics, and pharmacodynamics of oncological treatments may
not be adequately assessed for women, leading to disparities in outcomes [105,106]. The
oversight of sex differences thereby undermines the fundamental principles of precision
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medicine, which aims to utilize treatments based on individual characteristics, including
biological sex.
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4. Future Directions

Sex-specific clinical research in women with lung cancer remains a pressing and
unmet need (Figure 2). Future research initiatives should focus on sex-specific responses,
hormonal influences, interactions with concurrent medications, and their effects on fertility,
sexual health, survivorship, and overall outcomes [95,107]. These initiatives should also
explore the interactions between immunotherapy and other medications commonly used
by women, including hormone replacement therapies or contraceptives [108]. It is also
imperative to scrutinize intersectionality; studying the diverse intersections of factors
such as race, socio-economic status, and other determinants of health will shed light
on disparities that affect the diagnosis, treatment, and outcomes in women with lung
cancer [9,108].

A comprehensive approach involving healthcare providers, researchers, pharmaceu-
tical companies, institutions, and governing bodies is also needed to promote a more
unified understanding of clinical outcomes in women with lung cancer and enhance pa-
tient awareness and accessibility. Establishing standardized protocols and guidelines that
consider sex-specific needs is necessary to ensure consistent and evidence-based care [96],
but to increase the understandability of these guidelines, emphasis should be placed on
community engagement and patient outreach. Implementing educational programs on
cutting-edge therapies, treatment side effects, and sexual dysfunction to inform healthcare
providers and women can empower patients to actively participate in treatment deci-
sions [9]. Telemedicine initiatives can also enhance awareness and accessibility, particularly
for those in remote or underserved areas, thereby enabling broader inclusion in clinical
care and trials [9].
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As socio-economic factors, access to care, and caregiver responsibilities can also affect
women’s ability to enroll and remain engaged in clinical research, educating healthcare
teams on the implications of clinical trial unenrollment is of paramount importance, as is
adopting specific strategies for recruiting and retaining female participants. Measures such
as flexible trial schedules, financial assistance, and transportation support can significantly
enhance the participation rates among diverse groups of women [9,109]. Culturally sensi-
tive and multilingual communication strategies should also be employed to reach a broader
demographic, ensuring that research findings are representative of the diverse population
affected by lung cancer. Involving patient advocates with clinical trial designs and utilizing
patient navigators and community outreach may also help. Studies have also found that
government-funded studies, as well as studies with first or senior female authors, had a
higher percentage of female participants [9]. Furthermore, incentivizing clinical trialists
and industry sponsors to address enrollment challenges could be implemented [109,110].
Although regulatory agencies have issued guidance to the pharmaceutical industry to study
and reflect diversity within real-world populations, it is important to note that these direc-
tives are non-binding [110]. Innovative approaches, such as implementing hospital quality
carrot-and-stick programs and drawing inspiration from industries outside of healthcare
that have successfully tackled disparity gaps, can contribute to a more holistic and effective
tactic in promoting equity [110].

5. Conclusions

The surging interest in precision immuno-oncology has highlighted a diverse range of
promising therapeutic approaches for patients with cancer. Nevertheless, there remains a
high priority to consider immunotherapy in the context of sex differences due to the more
robust immune response of females, the immune-suppressing response of sex hormones
such as estrogen, the vast array of X-linked genes that contribute to females’ immune-
suppressing response, unique variations in the TME for females, and the observed sex
differences in response to various lung cancer treatments. Though future large-scale, more
standardized research is warranted to rectify conflicting results regarding the effectiveness
of immunotherapy on females and males with lung cancer, we continue to observe an
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enhanced benefit for females when treated with combination chemoimmunotherapy in
contrast to the more favorable approach of utilizing ICIs alone in men. Multi-disciplinary
collaboration among healthcare providers, researchers, pharmaceutical companies, institu-
tions, and governing bodies will be necessary to provide a more unified understanding of
clinical outcomes in women with lung cancer.

Enhancing the effectiveness of treatment plans, guidelines, and recommendations
that are specifically tailored to the unique needs of patients begins with improving the
gender-based diversity of clinical trials. Sex-specific variations in immunotherapy, targeted
therapy, and chemotherapy outcomes continue to be observed as a result of this inadequate
representation; more so, treatment implications on issues related to sexual dysfunction,
fertility, and other survivorship issues unique to women are largely unknown. To overcome
persistent gender bias and societal obstacles facilitating the historic and current exclusion
of women from clinical trials, efforts should be made to incorporate flexible trial schedules,
multilingual communication strategies, and financial and transportation assistance for
participants, as well as adopting strategies to incentivize trials to more equally represent the
diverse body of patients with lung cancer. Of equal importance throughout all efforts is the
need to consider the impact of intersectionality, including race, socio-economic status, and
other determinants of health that affect the diagnosis, treatment, and outcomes in women
with lung cancer. Such endeavors will aid in developing a more tailored understanding of
the unique impact of immunotherapy on females, with an ultimate goal of constructing
and implementing standardized protocols and guidelines that consider intersectionality,
sex-specific needs, and opportunities across practices in various medical settings.
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