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Simple Summary: Hypereosinophilia (HE) is defined as an elevated peripheral eosinophilic count
>1.5 × 109/L. It constitutes a broad spectrum of secondary non-hematologic disorders and primary
hematologic processes with heterogenous clinical presentations, a number of subclassifications
(familial, idiopathic, hypereosinophilic syndrome [HES], myeloid/lymphoid neoplasms, organ
restricted, or with unknown significance) and some can have potential lethal outcome from end-
organ damage, necessitating timely and accurate diagnosis. Treatment guidelines are established for
patients with HE based on its clinical presentation and risk stratification. Observation is recommended
for patients who have mild hypereosinophilia and lack organ damage-related signs and symptoms
while tyrosine kinase inhibitors are offered to patients harboring PDGFRA, PDGFRB, FGFR1, JAK2
or FLT3 rearrangements. Additionally, corticosteroids are considered as the mainstay of therapy,
hydroxyurea, and cytokine blockage (e.g., mepolizumab) have been used for lymphocytic-variant
HE, a second line therapy for steroid-resistant cases of HE, and as a novel targeted therapy for HES.

Abstract: Hypereosinophilia (HE) presents with an elevated peripheral eosinophilic count of >1.5 × 109/L
and is composed of a broad spectrum of secondary non-hematologic disorders and a minority of
primary hematologic processes with heterogenous clinical presentations, ranging from mild symp-
toms to potentially lethal outcome secondary to end-organ damage. Following the introduction of
advanced molecular diagnostics (genomic studies, RNA sequencing, and targeted gene mutation
profile, etc.) in the last 1–2 decades, there have been deep insights into the etiology and molecular
mechanisms involved in the development of HE. The classification of HE has been updated and
refined following to the discovery of clinically novel markers and targets in the 2022 WHO classifica-
tion and ICOG-EO 2021 Working Conference on Eosinophil Disorder and Syndromes. However, the
diagnosis and management of HE is challenging given its heterogeneity and variable clinical outcome.
It is critical to have a diagnostic algorithm for accurate subclassification of HE and hypereosinophilic
syndrome (HES) (e.g., reactive, familial, idiopathic, myeloid/lymphoid neoplasm, organ restricted,
or with unknown significance) and to follow established treatment guidelines for patients based on
its clinical findings and risk stratification.

Keywords: hypereosinophilia; hypereosinophilic syndrome; myeloid/lymphoid neoplasms; tyrosine-
kinase gene rearrangement; molecular diagnosis; targeted therapy

1. Introduction

Eosinophils are end-stage granulocytes derived from myeloid progenitors in the
bone marrow in response to stimulation by cytokines, (e.g., interleukin [IL]-3, IL-5, and
granulocyte-macrophage colony-stimulating factor [GM-CSF]). After terminal differentia-
tion, mature eosinophils are released into peripheral blood and either stay in circulation or
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infiltrate surrounding tissue. Mature eosinophils have a short half-life (5–8 h, ranging from
3 to 24 h) in the blood, but can be retained in tissue for several days (half-life of 8–12 days),
ranging from 1.5 days in lungs to 6 days in small intestines, thymus and uterus [1]. Mor-
phologically, eosinophils show coarse, round, orangish granules, distinguishing them from
neutrophils. Eosinophils play a significant role in the innate and adaptive immune sys-
tems by releasing various cytokines and cytoplasmic granules or by direct cell interaction.
They modulate the inflammatory response involving tissue remodeling and repair, defense
against parasites, and allergic reactions [2].

Normally, eosinophils only account for less than 5–6% of the circulating white blood
cells and usually absolute counts are <0.5 × 109/L in the blood. The level of eosinophils is
strictly regulated by the body’s cytokines. A circulating eosinophil count of ≥0.5 × 109/L
is defined as eosinophilia. An increase of eosinophils with an absolute eosinophil count
greater than 1.5 × 109/L is defined as hypereosinophilia (HE) [3].

Hypereosinophilic syndrome (HES) is a constellation of clinical presentations with
sustained HE on two occasions at least one month apart or marked tissue eosinophilia
associated with tissue damage or dysfunction. Symptoms may be mild presenting as
weakness or fatigue or be life threatening as a result of end organ damage or dysfunction
as seen with endomyocardial fibrosis and thromboembolism [4]. Caution should be taken
to excluded other etiologies that may result in organ damage.

Tissue HE can be visualized with light microscopy on biopsy. However, the thresholds
for eosinophilia are not well established in all tissue types. Having one or more of the fol-
lowing features may meet criteria for tissue HE: (A) for example, in diagnosing eosinophilic
esophagitis, the minimal requirement is >15 eosinophils per high-power field associated
with basal layer hyperplasia [5]; (B) within the bone marrow, 20% of nucleated cells must
be eosinophils [6]; (C) criteria can also be met if there is extensive eosinophilic infiltration
or marked deposition of eosinophilic granules or eosinophilic degranulation as detected by
immunofluorescence or monoclonal antibody for eosinophil peroxidase in the opinion of
the reviewing pathologist [6].

HE is composed of a wide spectrum of clinical scenarios, including primary (clonal
proliferation, hematologic) or secondary (reactive, non-hematologic) processes (Table 1).
Reactive hypereosinophilia is more common than clonal or primary HE. Therefore, it is
important to obtain a thorough clinical history and exclude secondary or reactive causes of
eosinophilia before diagnostic evaluation for primary HE. This review will focus on the
differential diagnoses of common variants of HE and discuss potential therapy options for
primary HE based on advanced molecular approaches.
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Table 1. Common subcategories of HE.

Primary/Clonal HE Secondary/Reactive HE

Category Example Category Example

Myeloproliferative
variants of HE (M-HES)

AML
ALL

MPN (CEL)
MLN-TK (PDGFRA, PDGFRB,

FGFR1, JAK2, FLT3
rearrangement, and

ETV6::ABL1 fusion and other
variants)

Fungal, parasite,
protozoal, viral, or

mycobacterial infection

Systemic fungal infection
(Coccidioides),

helminth infection
(tissue invasion phase),

ectoparasites,
Sarcocystis and
Cystoisospora,

HIV, COVID-19,
tuberculosis (rare)

T-lymphocytic variant
(L-HES) L-HES Atopic/Allergy

Atopic dermatitis, chronic
rhinosinusitis, asthma,
drug hypersensitivity

Idiopathic HE Autoimmune and
immune dysregulation

Connective tissue disorders,
UC, Crohn’s disease,
IgG4-related disease,

sarcoidosis

Category Example Neoplasm Leukemia, lymphoma (cHL,
T-cell), solid tumor

Idiopathic HES (iHES) HE with organ damage Therapy/medication Radiation, interleukin
or GM-CSF therapy

HE of unknown
significance (HEUS)

HE without organ damage
and unknown etiology Other Addison’s disease,

cholesterol emboli

Organ-restricted HE

Eosinophilic esophagitis,
Eosinophilic gastrointestinal

disorders,
Eosinophilic dermatitis,

Chronic eosinophilic
pneumonia

Family HE/Inborn errors
in immunity (IEIs) *

Omenn syndrome,
Wiskott-Aldrich syndrome,
Netherton syndrome, and

Hyper IgE syndrome
(DOCK8 deficiency),

Loeys-Dietz syndrome

Abbreviations: ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; ALL, acute lymphoblastic
leukemia; COVID, coronavirus disease; CEL, chronic eosinophilic leukemia; cHL, classic Hodgkin lymphoma;
GM-CSF, granulocyte-macrophage colony-stimulating factor; HE, hypereosinophilia; HES; hypereosinophilia
syndrome; HEUS, HE of unknown significance; HIV, human immunodeficiency virus; Ig, immunoglobulin; IL,
interleukin; L-HES, lymphoid-variant hypereosinophilia; M-HES, myeloproliferative variants of HE; MLN-TK,
myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene fusion; MPN, myeloproliferative
neoplasm; UC, ulcerative colitis. * These patients (IEIs) may have mild eosinophilia but tend to have a benign
course and are not associated with a neoplastic process. Some categorize them as a familial HE.

2. Epidemiology

Given the various causes of HE, its incidence, prevalence, and subclassification are not
well documented. If defining eosinophilia as an absolute eosinophil count ≥0.45 × 109/L,
the prevalence is approximately 1–2% in the general population [7]. In the United States, HE
is uncommon with an incidence estimated at 0.3–6.3 per 100,000 individuals [8]. According
to the data collected in the Surveillance, Epidemiology, and End Results (SEER), the
estimated incidence of HES including chronic eosinophilic leukemia (CEL) in age-adjusted
population is <1 per 100,000 [9]. The demographics for individuals affected it is quite
different for specific variants of HE. For example, HES affects mostly young to middle-aged
patients (20–50 years of age); however, variants associated with immunodeficiency can
be seen in children. These children are likely to present with higher eosinophil counts
and gastrointestinal (GI) symptoms [10]. Other HE variants, like myeloid/lymphoid
neoplasms (MLN) with PDGFRA/PDGFRB rearrangements are almost exclusively seen
in males while other variants like T-lymphocytic variants of HE (L-HES) show no gender
preference [11,12].
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3. Etiology

The etiology of HE can be categorized as primary, secondary, and idiopathic. Pri-
mary etiologies occur when clonal eosinophilic expansion results from specific genetic
mutations or rearrangements in hematopoietic cells. In secondary or reactive HE, the
expansion of eosinophils is a direct result of cytokine overproduction (e.g., IL-5) that can
often occur in parasitic infections, solid tumors, T-cell lymphomas, and some connective
tissue diseases. Any medication or supplement can cause a drug hypersensitivity reac-
tion or drug-associated eosinophilia. Although individuals affected can be asymptomatic,
some can present systemically with interstitial nephritis, eosinophilic hepatitis, or even
eosinophilia-myalgia syndrome [13]. Secondary HE can also be associated with specific
clinical syndromes like Churg-Strauss (eosinophilic granulomatosis and polyangiitis) and
immunodeficiencies. These eosinophils, in contrast to those in primary HE, are polyclonal.
Lastly, idiopathic HES (iHES) occurs when known causes of primary and secondary HE
have been excluded and the underlying cause is unknown. Some patients can present with
HE without explanation or with clinical complications related to tissue damage. These
cases are subcategorized as HE of unknown significance (HEUS).

4. Pathogenesis

In general, the receptors of eosinophils play a critical role in the body’s functional
response to antigens or clonal proliferation. (1) IL-5 receptor alpha subunit: IL-5 is produced
by eosinophils, basophils, NK-cells, and mast cells via activation of T-helper (Th2) cells.
Together with IL-2, IL-13 and chemokines ligands (CCL11, CCL24, CCL26), IL-5 and the IL-
5 receptor promote maturation of eosinophilic precursors, mediate activation of eosinophils,
prolong survival of eosinophils in circulation, and recruit mature eosinophils to the tissue,
leading to an inflammatory infiltrate. (2) Chemokine receptor-3 (CCR3): CCR1 is the
receptor for CCL3 and CCL5 and are expressed on eosinophils and considered the platelet-
activating factor receptor. Because of activation by CCL5 and other cytokines, CCL3 can
stimulate eosinophilic chemotaxis, which is important for eosinophil migration. (3) Lesser
known are sialic acid-binding immunoglobulin (IG)-like lectin (SIGLEC-8) and pattern
recognition receptors expressed by human eosinophils. SIGLEC-8 is a cell-surface IG-like
lectin which may affect elective apoptosis of eosinophils, while several protein families (e.g.,
toll-like receptors [TLR]) constitute pattern recognition receptors on eosinophils. One study
showed binding TLR7 ligand R837 on eosinophils increased IL-8 production. Additionally,
triggering TLR7 release is one of the key steps in adhesion, migration, and prolonged
survival of eosinophils.

In addition to responding to signals, eosinophils also interact with other granulocytes,
T-cells, B-cells, dendritic cells via MHC class II and costimulatory molecules, recruiting
Th2 cells, releasing CCL17, CCL22, a proliferation-inducing ligand (APRIL) and IL-6, etc.
Eosinophils also play a key role in maturing and activating dendritic cells. Additionally,
they can produce major basic proteins for activation of neutrophils and mast cells; IL-4 and
IL-13 for activation of macrophages, eosinophil cationic protein; eosinophil peroxidase for
activation of mast cells; and eosinophil-derived nerve growth factor for prolonging mast
cell survival. (Figure 1) [14].

Taken together, overproduction of eosinophils may be caused by a molecular de-
fect leading to altered signaling, or overproduction of IL-5 or other cytokines that could
stimulate eosinophil production and survival. Given the complexity of functions and the
interaction of eosinophils with other inflammatory cells as well as the degree of cytokine
release via different pathways, the clinical course of HE is very heterogeneous. Eosinophils
infiltrate and in cases of HES can damage the skin, lungs, GI tract and less commonly the
heart and brain. Defects in suppression of eosinophils, prolonged survival of eosinophils,
and enhanced eosinophilic activity could be other potential explanations for HE although
have not been thoroughly investigated.
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The mechanisms of tissue damage are a consequence of eosinophil infiltration, sec-
ondary tissue fibrosis, allergic reaction, ischemia, and hypercoagulability or thrombosis
induced by the release of eosinophilic granules [15].

Cancers 2024, 16, x FOR PEER REVIEW 5 of 25 
 

 

 
Figure 1. Proposed mechanisms of hypereosinophilia-related changes. With the appropriate trigger, 
cytokines or ligands (IL-3, IL-5, GM-CSF, tumor necrosis factor-alpha, interferon-gamma, leptin, 
CD40) can promote eosinophil proliferation and survival. Different cytokines or ligands (such as 
Fas, TGF beta, SIGLEC-8, CD30, and corticosteroids) can also facilitate eosinophil apoptosis. * Pro-
tein mediators include MBP, ECP, EPX, and eosinophil derived NGF. Abbreviations: CCR, chemo-
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EPX, eosinophil peroxidase; IG, immunoglobulin; IL, interleukin; L-HES, lymphocytic variant of 
hypereosinophilia; MBP, major basic protein; M-HES, myeloproliferative hypereosinophilia; NGF, 
nerve growth factor; SIGLEC-8: sialic acid-binding immunoglobulin-like lectin 8; TGF, transforming 
growth factor; TLR, toll-like receptor. Adapted from reference [14].  
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Figure 1. Proposed mechanisms of hypereosinophilia-related changes. With the appropriate trigger,
cytokines or ligands (IL-3, IL-5, GM-CSF, tumor necrosis factor-alpha, interferon-gamma, leptin,
CD40) can promote eosinophil proliferation and survival. Different cytokines or ligands (such as Fas,
TGF beta, SIGLEC-8, CD30, and corticosteroids) can also facilitate eosinophil apoptosis. * Protein
mediators include MBP, ECP, EPX, and eosinophil derived NGF. Abbreviations: CCR, chemokine
receptor; CD, cluster of differentiation; ECP, eosinophil cationic protein; GM-CSF, granulocyte-
macrophage colony-stimulating factor; HE, hypereosinophilia; HES, hypereosinophilic syndrome;
EPX, eosinophil peroxidase; IG, immunoglobulin; IL, interleukin; L-HES, lymphocytic variant of
hypereosinophilia; MBP, major basic protein; M-HES, myeloproliferative hypereosinophilia; NGF,
nerve growth factor; SIGLEC-8: sialic acid-binding immunoglobulin-like lectin 8; TGF, transforming
growth factor; TLR, toll-like receptor. Adapted from reference [14].

5. Diagnosis
5.1. Clinical

The clinical manifestation of HE is heterogenous, varying from asymptomatic to
systemic or syndromic secondary to organ damage. The diagnostic approach should follow
the guidelines proposed by the fifth edition of the World Health Organization (WHO)
Classification of Haematolymphoid Tumours and updated International Eosinophilia
Society (IES) (Figure 2) [3]. Secondary eosinophilia should always be investigated first. The
clinical history must be carefully reviewed for allergies, current medications, and infections,
particularly for the patients with immunocompromised status, (e.g., patients with HIV
with tissue-invasive strongyloidiasis). After excluding secondary causes of eosinophilia, a
systemic investigation for primary HE should be conducted [3]. Imaging studies (positron
emission tomography [PET] or computed tomography [CT] scan) are recommended to
evaluate for L-HES, suspected organomegaly, and hematolymphoid or non-hematologic
neoplasms. Serum troponin T or I, echocardiogram, imaging studies and pulmonary
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function tests are commonly ordered to evaluate organ dysfunction associated with HE,
in particular HES. Genetic counseling should be considered for patients with suspected
familial HE.

Cancers 2024, 16, x FOR PEER REVIEW 6 of 25 
 

 

Society (IES) (Figure 2) [3]. Secondary eosinophilia should always be investigated first. 
The clinical history must be carefully reviewed for allergies, current medications, and in-
fections, particularly for the patients with immunocompromised status, (e.g., patients 
with HIV with tissue-invasive strongyloidiasis). After excluding secondary causes of eo-
sinophilia, a systemic investigation for primary HE should be conducted [3]. Imaging 
studies (positron emission tomography [PET] or computed tomography [CT] scan) are 
recommended to evaluate for L-HES, suspected organomegaly, and hematolymphoid or 
non-hematologic neoplasms. Serum troponin T or I, echocardiogram, imaging studies and 
pulmonary function tests are commonly ordered to evaluate organ dysfunction associated 
with HE, in particular HES. Genetic counseling should be considered for patients with 
suspected familial HE. 

 
Figure 2. Diagnostic algorithm of hypereosinophilia. Abbreviations: AEC, absolute eosinophilic 
count, ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; BM, bone marrow; CEL, 
chronic eosinophilic leukemia; dx, diagnosis; FISH, fluorescence in situ hybridization; HE, hypere-
osinophilia; HEFA, familial hypereosinophilia; HEUS, hypereosinophilia of unknown significance; hx, 
history; iHES: idiopathic hypereosinophilia with organ damage; L-HES, lymphoid variant hypere-
osinophilia; MDS, myelodysplastic syndrome; M-HES, myeloid neoplasm-related hypereosino-
philia; MLN, myeloid or lymphoid neoplasms; MLN-TK, myeloid/lymphoid neoplasm with eosin-
ophilia and tyrosine kinase gene rearrangement; MPN, myeloproliferative neoplasm, Neg, negative; 
PB, peripheral blood; Pos, positive; SM, systemic mastocytosis. Adapted from reference [3]. 

5.2. Laboratory and Pathology 
Complete blood count (CBC) with differential counts, including absolute eosinophil 

count and duration of elevation should be closely monitored. 
To exclude secondary HE, laboratory tests for infectious causes including cultures for 

microorganisms, serology, or polymerase chain reaction (PCR) for viruses and fungi, and 
identification of parasites should be part of the initial evaluation. Serological testing for 
strongyloidiasis is usually requested in immunocompromised patients. An immunology 
profile should be ordered for individuals with inborn errors of immunity (IEIs) or known 
family history of hereditary HE. Immunoglobulin levels would be useful in those with 
IgG4-related disorders (elevated IgG4), suspected parasitic infection, hypersensitivity 

Figure 2. Diagnostic algorithm of hypereosinophilia. Abbreviations: AEC, absolute eosinophilic
count, ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; BM, bone marrow; CEL,
chronic eosinophilic leukemia; dx, diagnosis; FISH, fluorescence in situ hybridization; HE, hypere-
osinophilia; HEFA, familial hypereosinophilia; HEUS, hypereosinophilia of unknown significance; hx,
history; iHES: idiopathic hypereosinophilia with organ damage; L-HES, lymphoid variant hypere-
osinophilia; MDS, myelodysplastic syndrome; M-HES, myeloid neoplasm-related hypereosinophilia;
MLN, myeloid or lymphoid neoplasms; MLN-TK, myeloid/lymphoid neoplasm with eosinophilia
and tyrosine kinase gene rearrangement; MPN, myeloproliferative neoplasm, Neg, negative; PB,
peripheral blood; Pos, positive; SM, systemic mastocytosis. Adapted from reference [3].

5.2. Laboratory and Pathology

Complete blood count (CBC) with differential counts, including absolute eosinophil
count and duration of elevation should be closely monitored.

To exclude secondary HE, laboratory tests for infectious causes including cultures
for microorganisms, serology, or polymerase chain reaction (PCR) for viruses and fungi,
and identification of parasites should be part of the initial evaluation. Serological testing
for strongyloidiasis is usually requested in immunocompromised patients. An immunol-
ogy profile should be ordered for individuals with inborn errors of immunity (IEIs) or
known family history of hereditary HE. Immunoglobulin levels would be useful in those
with IgG4-related disorders (elevated IgG4), suspected parasitic infection, hypersensitiv-
ity disorder or hyper IgE syndrome (elevated immunoglobulin E [IgE]). Additionally, a
comprehensive metabolic chemistry panel and liver function tests are helpful in assessing
organ dysfunction.

To confirm diagnosis of primary HE and begin potential target therapy, a more com-
prehensive, systemic approaching is necessary which should include: (1) morphologic
evaluation of peripheral blood, bone marrow, and immunophenotyping by flow cytometry
analysis or immunohistochemistry; (2) conventional cytogenetics; (3) fluorescence in situ
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hybridization (FISH); (5) molecular studies with PCR; and (6) next generation sequenc-
ing (targeted gene mutation panel or RNA sequencing for fusion products) to identify
histopathologic and clonal evidence of an acute or chronic hematolymphoid neoplasm (see
Clinical Variants section). Serum tryptase levels should be drawn if clinically suspicious for
systemic mastocytosis (SM) with or without associated myeloid neoplasms. T-cell and/or
B-cell gene rearrangements detected by PCR assess lymphocyte clonality and flow cytome-
try analysis aids in detecting abnormal T-cell subsets (CD3−/CD4+ or CD3+/CD4−/CD8−)
like those seen in L-HES [11].

One should be careful making a diagnosis solely based on the morphology of eosinophils
in peripheral blood or bone marrow as it may be misleading. Cytologically abnormal
eosinophils with increased size, cytoplasmic vacuoles, or abnormal granulation or nuclear
lobation can be seen in both reactive and neoplastic conditions. Eosinophil morphology
may not be reliable; however, examination of the peripheral blood, bone marrow aspirate
smears, and core biopsy together may help narrow the diagnosis, especially with elevated
blast counts, presence of parasitic infection, or evidence of lymphoma. Bone marrow biopsy
is essential in diagnosing a myeloproliferative variant of HE (M-HES), while tissue biopsy
is indicated for suspected organ damage or organ restricted HE.

Lastly, a diagnosis of iHES should only be made after a thorough investigation of
known primary and secondary causes. Assessing tissue damage and organ dysfunction
can be performed with clinical signs and symptoms, tissue biopsy, and specific tests (see
Table 2). The diagnostic algorithm is shown in Figure 2.

Table 2. Diagnosis of hypereosinophilia-induced organ damage and dysfunction [15].

Symptoms and Signs Functional Tests Tissue Biopsy

Cardiac (myocarditis) Dyspnea, arrythmia,
ischemic attack

Serum troponin
ECG, EchoCG, MRI N/A

Lung Dyspnea, hypoxemia,
eosinophilic pleural effusions

CXR, chest CT,
pulmonary function testing

Bronchoalveolar lavage,
Lung bx,

Pleural fluid cytology

GI tract (eosinophilic
esophagitis, gastritis, enteritis,

colitis)

Esophagus: reflux, dysphagia
Bowel: abdominal pain, GI

bleed, ischemia
Serum LFT, amylase, lipase Endoscopic tissue bx

Cutaneous
Urticaria, angioedema, rash,

erythematous papules, or
nodules

N/A Skin bx

Renal Chronic UTI-like symptoms Serum creatinine level,
Urine eosinophils Kidney bx

Neurologic Peripheral neuropathy, TIA,
stroke

Head MRI,
Head CT,

Nerve conduction studies

Nerve biopsy
(rarely performed)

Abbreviations: bx, biopsy; CT, computed tomography; CXR, chest radiograph; GI, gastrointestinal; ECG, elec-
trocardiogram; EchoCG, echocardiogram; GI, gastrointestinal; LFT, liver function test; MRI, magnetic resonance
imaging; N/A, not applicable; TIA, transient ischemic attack; UTI, urinary tract infection.

5.3. Potential Genetic Determinants and Biomarkers

Extracellular vesicles and a number of potential blood-based biomarkers are being
investigated to aid in diagnosis and treatment of atopic conditions [16]. Eosinophils have
been noted to carry microRNA (miRNA) in extracellular vesicles to other cells, potentially
playing a role in gene regulation and expression [16]. One study sequenced the eosinophil
transciptome in individuals with atopic conditions and compared them to healthy controls.
They discovered at least 18 miRNAs were differentially expressed in individuals with
allergic conditions when compared to those unaffected [17]. Additionally, genome-wide
association studies (GWAS) have identified multiple genes (chromosomes 1q23 [FCER1A],
5q31 [RAD50, IL13, IL4], 12q13 [STAT6], loci 6p21.3 [HLA-DRB1] and 16p12 [IL4R, IL21R])
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that may influence the regulation of IgE and serum IgE levels [18]. Interestingly, the
relationships of total serum IgE levels and atopic conditions may not be as simple as
initially thought. Specific atopic conditions (asthma, allergies rhinitis, atopic dermatitis)
show little overlap with genetic determinants of total serum IgE levels, suggesting that
elevated serum IgE levels may be an epiphenomenon [19–21]. A stronger association may
be seen in specific IgE with allergic conditions rather than total serum IgE levels [22–24].
Studies are ongoing, but potential genetic markers and biomarkers are on the horizon.

6. Differential Diagnosis

The differential diagnosis for eosinophilia is vast, encompassing reactive and neoplas-
tic conditions. A good clinical history is paramount for determining the etiology. Being
familiar with clinical variants of HE is critical in narrowing down the differential diagnoses
of HE. The clinical features, in addition to laboratory, pathology and genetic findings are
briefly illustrated in Table 3.

Table 3. Critical features and diagnostic clues of reactive and neoplastic eosinophilia [25,26].

Clinical Laboratory/
Pathology

Molecular/
Genetic Study

Secondary (reactive)

Allergy

Including atopic or non-atopic
diseases: ABPA, asthma, allergic

rhinitis, ECRS, NARES, food
allergies, atopic dermatitis, drug

allergies (e.g., DRESS),
eosinophilic otitis media,

eosinophilic laryngitis

Elevated IgE level N/A

Infection

Infected microorganism related
signs and symptoms

Parasitic (Toxocara, Toxoplasma,
Strongyloides, Ascariasis,

Trichinella, Echinococcus, scabies,
microfilariae),

Fungal (Coccidioides),
Viral (HIV, HCV)

Positive culture of
microorganisms, elevated

viral load or antibody titers,
identification of parasites

PCR or NGS positive for
specific microorganisms

Autoimmune

Connective tissue disorders,
sarcoidosis, IBD, bullous

pemphigoid, systemic vasculitis,
granulomatosis with

polyangiitis,
eosinophilic granulomatosis

with
polyangiitis (Churg–Strauss

syndrome)

Depending on disease type,
presence of rheumatoid factor,

ANA, anti-dsDNA, etc.
N/A

Immunodeficiency
Hyper IgE syndrome (Job

syndrome),
Omenn syndrome

Markedly elevated IgE level

STAT3 mutations (Job
syndrome); RAG1 and RAG2

mutations (Omenn
syndrome)

Organ
specific HE

Esophagitis (dyspepsia,
dysphasia,

reflux), gastroenteritis, cystitis,
pneumonia (cough),

dermatologic
conditions (rash, pruritis)

Tissue infiltration by
eosinophils, infectious or
neoplastic etiologies have

been excluded

N/A
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Table 3. Cont.

Clinical Laboratory/
Pathology

Molecular/
Genetic Study

Therapy/
Medication

Radiation, IL-2, IL-3, IL-5, or
GM-CSF N/A N/A

Endocrine
disorders Addison’s disease Decreased aldosterone,

increased ACTH N/A

Rare diseases

Gleich syndrome (episodic
angioedema, eosinophilia,

polyclonal IgM)
Eosinophilia-myalgia syndrome

Eosinophilia, polyclonal IgM
for Gleich syndrome N/A

Other
GvHD, cholesterol

embolization, radiation
exposure

GvHD specific findings Post-engraftment
analysis for GvHD

Primary (clonal)

MLN-TK

Variable, male predominance,
hepatosplenomegaly,

anemia;
Good response to

imatinib or other TKI,
Variable steroid response

Concurrent or subsequent
myeloid and lymphoid

neoplasms;
increased serum B12,
thrombocytopenia,

dysplastic eosinophils
± myelofibrosis,

leukoerythroblastosis

FISH, RT-PCR or RNA
sequencing for PDGFRA

(CHIC deletion), PDGFRB,
FGFR1, JAK2, or FLT3

fusions, and ETV6::ABL1
fusion

CEL
Asymptomatic or

symptomatic (B-symptoms),
systemic involvement

Eosinophilia > 1.5 × 109/L
on at least two occasions over

an interval of 4+ weeks,
clonality identified,

abnormal BM morphology,
<20% blasts.

Excludes: CHIP, MPN,
MDS/MPN, MDS, MLN-TK,
SM and AML with inv(16).

Tissue eosinophilic
infiltrate can be seen

Clonal abnormalities, e.g.,
mutations involving ASXl1,

DNMT3A, EZH2, TET2,
SRSF2, SETBP1, and CBL

(VAF ≥ 10%, more than one
mutation preferred)

KIT-mutated SM

Depends on affected organ or
tissue, asymptomatic to pruritic

(skin), diarrhea (GI),
organomegaly

Increased serum tryptase PCR or NGS for c-KIT
mutation

Lymphoid variant of HE
(L-HES)

Male = Female,
may manifest with skin lesions,

GI symptoms, or
obstructive lung disease;
potential progression to

T-cell lymphoma,
rare cardiac involvement,

responds to steroids with good
outcome

Abnormal T-cell population
(often sCD3−/CD4+),

increased IL-4 and IL-5 levels,
increased serum IgE,

increased TARC (thymus
activation regulated

chemokine)

Clonal TCR gene
rearrangement detected by

PCR

Paraneoplastic HE

AML
Cytopenia related signs and

symptoms (e.g., pallor, infection,
bleeding)

Circulating blasts ± HE;
bone marrow with increased

blasts (can be < 20%),
immature eosinophilic

precursors

inv(16),
t(16;16)/CBFB::MYH11
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Table 3. Cont.

Clinical Laboratory/
Pathology

Molecular/
Genetic Study

B-ALL

Cytopenia related signs and
symptoms (e.g., pallor, infection,

bleeding),
±lymphadenopathy or

splenomegaly

PB and BM loaded with
B-lymphoblasts and increased

eosinophils

t(5;14)(q31.1;q32.3)
/IGH::IL3

MDS Asymptomatic,
weakness, fatigue

Cytopenia, thrombocytosis
seen in MDS with del(5q);

bone marrow dysplasia ≥ 10%
of each lineage, ±increased

blasts

Del(5q)/-5, del(7q)/-7, +8,
del(20q)/-20, del(17p)/-17,

KMT2A/MLL rearrangement
SF3B1 or TP53 mutation *

MDS/MPN ±Splenomegaly

Leukocytosis, commonly
monocytosis or

thrombocytosis, BM with
mixed myelodysplastic and
myeloproliferative features

Cytogenetic alterations
related to MDS and/or

MPN, molecular changes
related to SF3B1, JAK2,

CALR, MPL can be identified

SM, MPN
other than CEL

Pruritis for SM,
splenomegaly

Leukocytosis for CML;
elevated serum tryptase level

for SM

BCR::ABL1 for CML,
c-KIT D816V or

other variants for SM,
JAK2, CALR, or MPL

mutation

cHL B-symptoms,
lymphadenopathy

Tissue biopsy with
Reed-Sternberg or Hodgkin

cells positive for CD30, CD15,
dim PAX-5 and MUM1 and

negative for CD20, and CD45

B-cell gene
rearrangement by PCR

LCH Lytic bone lesions,
skin lesions

Tissue biopsy with
Langerhans cell proliferation

and eosinophilic infiltrate,
positive for CD1a, S100,

Langerin, +/− BRAF

40% with BRAF V600E

T-cell neoplasms AILT, PTCL

Sheets of abnormal
proliferation of neoplastic
T-cells, along with reactive
histiocytes, or plasma cells
and EBV+ B-cells (AILT)

TET2, ROA mutation

Non-hematologic
malignancies

Adenocarcinoma of the lung,
gastrointestinal tract, pancreas,
thyroid, genital and skin tumors

Solid tumor confirmed by
tissue

biopsy, elevated cancer
markers (e.g., CEA, CA19.9,

TSH)

Genomic study for gene
alteration specific to the

tumor

Idiopathic

iHES

Variable, mild to intensive
pruritus,

angioedema, accompany with
organ damage related signs or

symptoms

HE or tissue eosinophilic
infiltrate,

does not fulfill the dx criteria
of reactive or neoplastic HE +
eosinophilic organ damage

No clonal abnormality
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Table 3. Cont.

Clinical Laboratory/
Pathology

Molecular/
Genetic Study

HEUS

Nonspecific or asymptomatic;
no evidence of eosinophilic

organ
damage-associated signs and

symptoms

HE or tissue eosinophilic
infiltrate,

not fulfilling the dx criteria of
reactive or neoplastic HE

None

* TP53 mutation: interpretation upon ICC or the fifth edition WHO classification. Abbreviations: ABPA, al-
lergic bronchopulmonary aspergillosis; ACTH: adrenocorticotrophic hormone; AILT, angioimmunoblastic T-
cell lymphoma; AML: acute myeloid leukemia; ANA: anti-nuclear antibody; B-ALL, acute B-lymphoblastic
leukemia/lymphoma; BM, bone marrow; CEA, carcinoembryonic antigen; CEL: chronic eosinophilic leukemia;
CHIP, clonal hematopoiesis of indeterminate potential; cHL, classic Hodgkin lymphoma; CML, chronic myeloid
leukemia; DRESS, drug reaction with eosinophilia and systemic symptoms; dsDNA, double stranded deoxyri-
bonucleic acid; dx, diagnostic; EBV, Epstein-Barr virus; ECRS, eosinophilic chronic rhinosinusitis; GM-CSF,
granulocyte-macrophage colony-stimulating factor; GvHD: graft-versus-host disease; HCV, hepatitis C virus;
HE, hypereosinophilia; HEus: hypereosinophilia of unknown significance; HIV, human immunodeficiency virus;
IBD, inflammatory bowel disease; ICC, intrahepatic cholangiocarcinoma; Ig, immunoglobulin; iHES: idiopathic
hypereosinophilic syndromes; IL, interleukin; LCH, Langerhans cell histiocytosis; L-HES, lymphoid variant of
HE; MDS, myelodysplastic neoplasm; MDS/MPN, myelodysplastic/myeloproliferative neoplasms; MLN-TK,
myeloid/lymphoid neoplasm with eosinophilia and tyrosine kinase gene rearrangement; MPN, myeloproliferative
neoplasm; N/A, not applicable; NARES, nonallergic rhinitis with eosinophilia syndrome; NGS, Next-generation
sequencing; PB, peripheral blood; PCR, polymerase chain reaction, PTCL, peripheral T-cell lymphoma; SM, sys-
temic mastocytosis; TARC, thymus activation-regulated chemokine; TCR, T-cell receptor; TSH, thyroid-stimulating
hormone; VAF, variant allele frequency.

6.1. Myeloproliferative Variants of Hypereosinophilia (M-HES)

Myeloid or lymphoid neoplasms with eosinophilia can demonstrate gene rearrange-
ments in PDGFRA, PDGFRB, FGFR1, JAK2, or FLT3 or ETV6::ABL or other tyrosine kinase
gene fusion (MLN-TK). These are collectively recognized in the fifth edition of the WHO
classification of Hematolymphoid Tumours as myeloid/lymphoid neoplasms (MLN) with
eosinophilia and defining gene rearrangements.

There is a large spectrum of clinical manifestations for MLN-TK, which may mimic
CEL, other myeloproliferative neoplasms (MPN), systemic mastocytosis (SM), myelodys-
plastic neoplasm (MDS), myelodysplastic/myeloproliferative neoplasms (MDS/MPN),
T- or B-lymphoblastic leukemia, or acute myeloid leukemia (AML). Before TK-related
gene rearrangements were identified, MLN-TK were likely misdiagnosed especially with
such a heterogeneous clinical and morphologic presentation on tissue or bone marrow
biopsy where eosinophilia may be absent. Concurrent or subsequent development of MLN
should trigger an investigation of MLN-TK as the cause. Routine karyotyping may or may
not be helpful given the various TK genes and their numerous gene partners and cryptic
alterations. FISH studies and RNA sequencing have become essential in detection, utilizing
specific gene probes for specific gene translocations.

MLN-TK originate from pluripotent hematopoietic stem cells that give rise to neu-
trophils, eosinophils, monocytes, mast cells, and lymphocytes. Each key TK gene har-
bors multiple partner genes (Table 4). FIP1L1 is the most common partner for PDGFRA.
FIP1L1::PDGFRA leading to a cryptic deletion of chromosome 4q12, which is the most
common molecular aberration in this group and can be detected by FISH, but not by
conventional karyotyping. Patients present with elevated serum vitamin B12 and tryptase
levels along with prominent peripheral blood and/or tissue eosinophilia. In general, bone
marrow is usually hypercellular with an increase in eosinophils and mast cells and may
show reticulin fibrosis in cases without leukemic transformation. Overall prognosis for
these patients is favorable with imatinib treatment.

MLN with PDGFRB rearrangement involves chromosomal rearrangements of 5q32
leading to formation of a PDGFRB fusion gene. Its most common partner gene is ETV6,
but other partner genes and variants have been described. Like MLN with PDGFRA
rearrangement, it is extremely sensitive to TK inhibitors (TKI). Marked eosinophilia with
accompanying neutrophilia and monocytosis is common. Overall survival is approximately
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90% over 10 years; however, patients presenting with complex cytogenetics have worse
outcomes [27,28].

Similar to other MLN-TK, FGFR1 rearrangements can present with varying pheno-
types and clinically manifested as B-cell or T-cell lymphoblastic leukemia/lymphoma,
AML, mixed phenotype leukemia, MPN, or MDS/MPN due in part to the different FGFR1
fusion partner genes and their effect on the intracellular signaling pathways. For exam-
ple, ZMYM2::FGFR1 most commonly presents as a T-lymphoblastic leukemia/lymphoma,
BCR::FGFR1 and TPR::FGFR1 present histologically similar to chronic myeloid leukemia
(CML), and CEP43::FGFR1 and CNTRL::FGFR1 show features similar to chronic myelomono-
cytic leukemia (CMML). Prominent eosinophilia with or without neutrophilia or monocy-
tosis is noted in the peripheral blood. Unlike PDGFRA and PDGFRB, patients with MLN
with FGFR1 rearrangements have an aggressive clinical course with blast transformation
within 1–2 years of diagnosis [3].

MLN with JAK2 rearrangement is an emerging entity. PCM1 is its most common fusion
partner. Other partner genes described include but are not limited to BCR and ETV6 [29].
Clinically patients present as a MPN or MDS/MPN with neutrophilia and/or monocytosis
with varying degrees of eosinophilia and rarely with HE. Those with ETV6::JAK2 commonly
present as B-ALL though BCR::JAK2 presents with MDS with neutrophilia or B-ALL [29,30].
In patients with PCM1:JAK2, the bone marrow is typically hypercellular demonstrating
eosinophilia, erythroid hyperplasia with dyserythropoiesis, and myelofibrosis [30]. Prog-
nosis is variable with some patients presenting with indolent disease and others presenting
with a more aggressive clinical course [3].

Patients with MLN with FLT3 rearrangement often present with leukocytosis with or
without eosinophilia and monocytosis and frequently show extramedullary involvement.
ETV6 is the most common fusion partner [31]. Histologically, the marrow may present with
features of MDS, MPN, CMML with blasts of any of cell origin (myeloid, B-cell, or T-cell).
These patients usually have an aggressive clinical course [32].

MLN with ETV6::ABL1 may show overlapping histologic features with CML, but
can also present as an MDS/MPN with neutrophilia or a CEL. Prognosis is poor for these
patients [3].

KIT-mutated SM can also present with clonal eosinophilia. Patients with KIT p.D816V
mutation are not sensitive to imatinib therapy, but may respond to midostaurin, a multi-
targeted protein kinase inhibitor or avapritinib, a potent KIT D816V inhibitor [33]. Bone
marrow shows mast cell infiltrates consisting of aggregates of ≥15 mast cells in which
>25% are atypical or spindle-shaped and show aberrant expression of CD2, CD25 and/or
CD30. Serum tryptase levels are persistently >20 ng/mL. Mutation burden predicts patient
survival and risk of progression. Eosinophils may be increased in the marrow, which may
be secondary reaction or part of the neoplastic clone [3] (Table 4).

Table 4. Clinical and molecular features of MLN-TK.

Partners Concurrent Mutations Typical Clinical Association Reference (PMID)

PDGFRA * FIP1L1, KIF5B, CDK5RAP2,
STRN, ETV6, BCR, TNKS2 N/A

MPN or MDS/MPN typically
in chronic phase and less

frequently in blast phase of
myeloid or lymphoid lineage

[34–41]

PDGFRB

WDR48, CAPR1N1, TPM3,
PDE4DIP, SPTBN, PRKG2,

GOLGA4, TNIP1, HIP1,
HECW1, KANK1, CCDC6,
SART3, GIT2, ERC1, BIN2,
NIN, CCDC88C, TP53BP1,
NDE1, RABEP1, SPECC1,
MYO18A, COL1A1, DTD1

N/A

Commonly CMML with
eosinophilia and less

commonly MDS/MPN with
neutrophilia (formerly aCML),

and CEL (or MPN with
eosinophilia)

[42–44]



Cancers 2024, 16, 1383 13 of 24

Table 4. Cont.

Partners Concurrent Mutations Typical Clinical Association Reference (PMID)

FGFR1

ZMYM2, FGFR1OP, TRIM24,
MYO18A, HERVK, FGFR1OP2,

RANBP2, LRRFIP1, CUX1,
CPSF6, BCR, TPR, CEP43,

CNTRL

Concurrent mutations
involving RUNX1;

associated with increased
proliferation of the

clone and poor outcome

Variable phenotype including
precursor B-cell, T-cell,

myeloid or MPAL or MPN or
MDS/MPN with associated
eosinophilia, rarely B-ALL

[45–52]

JAK2 PCM1, ETV6, BCR
ASXL1, BCOR, ETV6,

RUNX1, SRSF2, TET2, and
TP53

MPN, ALL, AML [53]

FLT3
BCR, ZMYM2, TRIP11,

SPTBN1, GOLGB1, CCDC88C,
ZBTB44, MYO18A

ASXL1, SETBP1, U2AF1,
STAT5B, TP53, SRSF2,

TET2, RUNX1, and
PTPN11

Extramedullary involvement
with T-ALL, MyeS, or rarely

with mixed-phenotype
features including B-cell, T-cell,

or myeloid lineage disease.

[31,54,55]

ETV6::ABL1 ETV6::ABL1 N/A MDS/MPN with neutrophilia,
CEL, or other MDS/MPN. [56–59]

Other
ETV6::FGFR2; ETV6::LYN;

ETV6::NTRK3; RANBP2::ALK;
BCR::RET and FGFR1OP::RET

N/A

MDS/MPN, often with
notable eosinophilia,
±monocytosis, T-cell

differentiation is more
common such as T-ALL or

PTCL, mast cell proliferations
and/or bone marrow fibrosis

[60–65]

Abbreviations: aCML, atypical chronic myeloid leukemia; ALL, acute lymphoblastic leukemia; AML,
acute myeloid leukemia; B-ALL, B-cell acute lymphoblastic leukemia; CEL, chronic eosinophilic leukemia;
CMML, chronic myelomonocytic leukemia; MDS, myelodysplastic syndromes; MDS/MPN, myelodysplas-
tic/myeloproliferative neoplasms; MLN, myeloid/lymphoid neoplasms; MPAL, mixed-phenotype acute leukemia;
MPN, myeloproliferative neoplasms; Mye-S, myeloid sarcoma; N/A, not applicable; PTCL, peripheral T-cell
lymphoma; T-ALL, T-cell acute lymphoblastic leukemia; TKs, tyrosine kinases. * PDGFA active domain mutation
can also lead to the MLN according to fifth edition. WHO Classification of Haematolymphoid Tumours. JAK-STAT
signaling pathway is the key mode of signal transduction. Activation of STAT5 is triggered by a vast variety of
cytokines and growth factors. A recurrent STAT5b N642H mutation is recently identified in a subset of M-HES
and plays a key role in pathogenesis. Detection of the unique mutation sheds a light in diagnosis and potential
targeted therapy for M-HES [66].

6.2. T-Lymphocytic Variants of HE (L-HES)

There is a group of patients who show an expansion of aberrant T-cells and eosinophilia
excluding other explainable etiologies [67]. The prevalence of a lymphocytic variant of HES
is not well defined. In L-HES, IL-5-producing T-cells have been identified in the peripheral
blood [68]. Most commonly, these aberrant T-cells are CD3−/CD4+, but other phenotypes
have been described (e.g., CD3+/CD4+/CD7− and CD3+/CD4−/CD8−) [69]. Aberrant
loss of CD7 or CD27 has been reported [67]. An aberrant CD3-gamma gene transcription
may cause the lack of CD3 expression [70]. These patients frequently have skin and soft
tissue involvement, lymphadenopathy, and have elevated serum IgE. Skin manifestations
are variable, which can present as a rash, macular-papular lesions, or erythematous changes.
Superficial enlargement of the lymph nodes is one of the most common manifestations
of systemic disease [69], warranting biopsy and immunophenotyping. A third of these
patients have elevated lymphocyte counts [69].

Not much is known about the molecular mechanism. T-helper type 2 (Th2) cytokines
(IL-4, IL-13 and GM-CSF) may be involved in the increased serum IgE production and poly-
clonal hypergammaglobulinemia [71–74]. One recent study identified a somatic mutation
in STAT5 [75] though another study described a gain of function mutation in STAT3 [76,77].
Distinguishing L-HES from T-cell lymphoma is important because L-HES usually follows
an indolent course, have mixed reactive and clonal lymphocyte populations, and respond
well to corticosteroids [70]. However, transformation to T-cell lymphoma may occur and
patients should be followed regularly [78]. Evaluation using only PCR for T-cell clonality
is insufficient to differentiate the two entities. If possible, additional laboratory studies
should be utilized to confirm elevated levels of Th2 cytokines in these patients [3,79].
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6.3. Idiopathic HES (iHES)

Cases of HE with end organ damage in which the etiology is unknown even after
careful evaluation fall under the category of iHES [80]. These patients should have elevated
eosinophilic count >1.5 × 109/L for at least 6 months associated with tissue damage. If
tissue damage is not identified, it then should be called idiopathic HE (iHE).

Importantly, reactive causes of eosinophilia, myeloid malignancies associated eosinophilia
(including AML, MPN, MDS, MDS/MPN and SM), and the presence of an aberrant T-
cell population (L-HES) must be excluded. The presence of a clonal genetic or molecular
aberration, in conjunction with abnormal bone marrow findings favor a diagnosis of CEL
according to the fifth edition of the WHO Classification of Haematolymphoid Tumours.

6.4. Hypereosinophilia of Undetermined Significance (HEUS)

Patients with persistent HE without HE defined organ damage who do not meet
diagnostic criteria for iHES, or familial HES, and have no known reactive or neoplastic
disorders that could lead to HE are subclassified as HE of undetermined significance
(HEUS) [6]. Essentially, HEUS is a diagnosis of exclusion. Those that fall in this category
could potentially evolve into any of the already described specific subtypes of HE. Thus,
close clinical monitoring is warranted.

6.5. Familial HE/HES

Familial HE/HES includes a list of hereditary disorders and syndromes that often
present in childhood usually with accompanying. Familial HES shows an autosomal dom-
inant inheritance. Patients and affected family members typically present with marked
eosinophilia with some end organ damage. Eosinophilia can begin as early as four months
of age. Some may remain asymptomatic, but others fatally progress to endomyocardial
fibrosis. Variants of familial HES can be associated with single organ damage [81–83]. The
gene responsible for familial HES has been mapped to chromosomal 5q31-q33 [84]. Inter-
estingly, the mutation does not involve genes encoding IL-3, IL-4, IL-5, IL-13 or GM-CSF.
Many children with IEIs manifest with life-long mild eosinophilia without developing HES.

In a study conducted by the National Institute of Health (NIH) on familial HES,
13 affected (having >1.5 × 109 eosinophils/L at least twice, 6 months apart) were compared
to 11 unaffected family members. Levels of major basic protein and eosinophil derived
neurotoxin were elevated in patients with familial HES. Similarly, increased expression of
CD25, CD69, and HLA-DR (activation markers) were detected on flow cytometry in the
affected when compared to unaffected family members. However, compared to patients
with non-familial HES, the levels of eosinophil granule proteins and activation markers
were not as high, suggesting those with familial HES may have a benign clinical course
due to less eosinophil activation [85].

6.6. Specific or Defined Syndromes Associated with HE

HE can be associated with primary immunodeficiency disorders that show autosomal
dominant or recessive or X-linked inheritance [6]. The defects can be caused by (1) antibody
deficiencies (e.g., common variable immunodeficiency disorder), or combined immunod-
eficiencies (e.g., Omenn syndrome, Wiskott-Aldrich syndrome, Netherton syndrome, or
hyper IgE syndrome); (2) diseases associated with dysregulation of cellular immunity (e.g.,
autoimmune lymphoproliferative syndrome [ALPS]); or (3) dysregulation of phagocytosis
(e.g., severe congenital neutropenia, formerly Kostmann disease) [6].

Disorders associated with immune dysregulation can also present with eosinophilia
> 1.5 × 109/L. The etiology of eosinophilia is unclear, but conditions include inflamma-
tory bowel disease, sarcoidosis, CARD9 deficiency, collagen-vascular disease, IgG4-related
disease, HIV/AIDS infection, and hyper IgE syndromes like DOCK8 deficiency [86]. Gle-
ich syndrome, also known as episodic angioedema with eosinophilia, presents clinically
with recurrent episodes of angioedema, fever, pruritus, and weight gain with laboratory
findings showing elevated serum IgM and marked eosinophilia in the blood [87]. Other
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diseases associated with eosinophilia include eosinophilic granulomatosis with polyangiitis
(Churg-Strauss syndrome), a disease limited to the blood vessels [88] and Loeys-Dietz syn-
drome, a rare genetic multisystem connective disorder that commonly shows eosinophilic
gastrointestinal disease and in severe cases predisposes individuals to aortic aneurysms
and dissections [89,90].

6.7. Organ-Restricted HE Conditions

Organ-restricted HE conditions demonstrate a peripheral eosinophilia > 1.5 × 109/L
and involve a single organ. This disorder includes eosinophilic esophagitis, eosinophilic
gastrointestinal disorders, eosinophilic dermatitis, chronic eosinophilic pneumonia, and
eosinophilic cellulitis (Wells’ syndrome) [6] and can be difficult to distinguish from iHES.

6.8. Secondary/Reactive HE

Reactive conditions must be excluded as the cause of HE. Allergies and atopic condi-
tions, infections (parasitic, fungal, etc.), collagen-vascular disease (Churg-Strauss syndrome,
Kimura disease), cyclical eosinophilia, Löffler syndrome, and angiolymphoid hyperplasia
can all present with eosinophilia. Administration of cytokines IL-2, IL-3, IL-5, or GM-CSF
as medication can also elevate the number of eosinophils in blood. Additionally, any
medication can cause a drug hypersensitivity reaction or drug-associated eosinophilia.
Eosinophilia can also result from paraneoplastic processes. For example, T-cell lymphoma,
classic Hodgkin lymphoma, SM, AML, MPN, and certain solid tumors (e.g., lung cancer,
renal cell carcinoma, etc.) can abnormally release IL-2, IL-3, IL-5 or GM-CSF [91–95].

In addition to the clinical variants of HES already discussed, other myeloid neoplasms
with associated HE must be excluded. AML with inv(16)(p13.1;q22) or t(16;16)(p13.1;q22)
usually demonstrates eosinophils with characteristic coarse, baso-eosinophilic granules.
MDS/MPN with neutrophilia (formerly atypical chronic myeloid leukemia, BCR::ABL-
negative) can demonstrate eosinophilia in addition to leukocytosis, neutrophilic dysplasia,
and frequent mutations involving SETBP1. CMML can demonstrate sustained monocytosis
and myelodysplasia with or without elevated eosinophilia. For the latter, FISH for PDGFRB
rearrangement should be evaluated to exclude MLN-TK. Of course, CEL should also
be considered as a differential diagnosis if criteria for other myeloid neoplasms have
not been met. Diagnostic criteria for CEL, specifically the time interval for sustained
hypereosinophilia and evidence of both clonality and abnormal bone marrow morphology,
have been updated in the fifth edition of the WHO Classification of Hematolymphoid
neoplasms and International Consensus Classification (ICC) [53] (Table 3).

7. Treatment

Managing HE depends on various factors including the underlying cause, clinical
symptoms, and acuity of condition (Figure 3) [6,96]. The choice of treatment also varies
depending on whether patients are asymptomatic or have organ damage. Glucocorti-
coid is typically the first line treatment for most forms of HE; however, management
can differ in cases in which HE is caused by underlying parasitic disease, immunodefi-
ciency syndrome or MLN-TK, such as MLN with FIP1L1::PDGFRA or steroid-resistant HE
cases. For example, topical steroids with or without oral administration is the treatment
of choice for eosinophilic dermatitis, while oral prednisone is used to manage localized
eosinophilic infiltrates. Systemic cytoreduction therapy (hydroxyurea, methotrexate, and
cyclophosphamide) and immunoadjuvants (e.g., interferon, and cyclosporin) are consid-
ered second-line therapeutic strategies for iHES and M-HES. Recent data showed that
the majority patients (65–85%) with iHES, L-HES, and CEL were treated with first-line
corticosteroids, whereas patients with M-HES were managed with TKI (e.g., imatinib)
(81%); interferon alpha therapy was the optional regimen for those with CEL (42%) [71].
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Figure 3. Stepwise treatment approach for patients with HE. Abbreviations: AEC, absolute eosino-
phil count; CBC, complete blood count; CMP, complete metabolic profile; FCM, flow cytometry 
analysis; FISH, fluorescent in situ hybridization; Hx, history; HE, hypereosinophilia; iHES, idio-
pathic hypereosinophilia; LFT, liver function test; L-HES, T-lymphocytic variant of hypereosino-
philia; M-HES, myeloproliferative variants of hypereosinophilia; MLN, myeloid/lymphoid neo-
plasms with eosinophilia; TKI, tyrosine kinase inhibitor; PE, physical examination. * Laboratory 
tests including CBC, CMP, LFT, tryptase, vitamin B12, troponin, immunoglobulin, flow cytometry, 
etc. ** Instrumental or imaging studies including electrocardiogram, echocardiogram, computed to-
mography (CT) or positron emission tomography (PET) scan, magnetic resonance imaging (MRI), 
pulmonary function tests, etc. *** Pathology including peripheral blood smear, bone marrow and/or 
tissue biopsy and associated cytogenetics, FISH, and molecular studies. Adpted from [13]. 
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tal or imaging studies including electrocardiogram, echocardiogram, computed tomography (CT) or
positron emission tomography (PET) scan, magnetic resonance imaging (MRI), pulmonary function
tests, etc. *** Pathology including peripheral blood smear, bone marrow and/or tissue biopsy and
associated cytogenetics, FISH, and molecular studies. Adpted from [13].

7.1. Conventional Therapy

The primary goal of therapy is to reduce the eosinophil count, which in turn alleviates
inflammation and its related symptoms and prevents disease progression.

In some cases, watchful waiting may be appropriate, especially for familial eosinophilia
or individuals with HEUS who remain symptom-free and show no clinical evidence of
organ involvement. These patients should be monitored regularly for clinical progression.

In rare instances in which patients have extremely high eosinophil counts (>100 × 109/L)
or exhibit symptoms like leukostasis, heart failure, or thromboembolism, emergent man-
agement may be necessary. This may involve treatments like leukapheresis or high-dose
steroids. High-dose steroids, such as prednisone given at 1 mg/kg or the equivalent,
are a fundamental component of HES treatment, especially for patients without the
FIP1L1::PDGFRA rearrangement. Steroids are believed to interfere with eosinophil pro-
duction and lead to their sequestration. Before starting steroid therapy, it is important to
exclude strongyloidiasis infection because as it could led to fatal parasitic dissemination
with steroid therapy [97]. If clinical features suggest possible infestation, then administra-
tion of ivermectin (150 ug/kg orally daily × 1 dose) is warranted [4].

Steroid treatment is very effective and often leads to a response within 48 h and is
considered as the mainstay of therapy; however, about one third of patients may still
develop resistance to steroids. Some studies have been conducted to understand the
mechanism of resistance to steroids. In 1989, one study established that abnormalities in
the glucocorticoid receptor can lead to resistance [98]. Later, Stokes et al. established that
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very high levels of IL-5 may play a role in impairment of eosinophil apoptosis leading to
resistance to glucocorticoid therapy [99]. For patients with steroid resistant disease, second
line therapy using cytotoxic agents or immunomodulatory drugs should be considered.

Imatinib, a TKI, is the first line of treatment for M-HES with FIP1L1::PDGFRA rear-
rangement and translocation involving PDGFRB [70]. These genetic alterations usually
render patients resistant to steroids. However, imatinib has shown a rapid response and
should be initiated with high-dose steroids in the first few days to prevent myocardial
necrosis [13]. Treatment should not be delayed for molecular testing. High index of sus-
picion based on clinical features such as splenomegaly, high vitamin B12 levels or bone
marrow showing dysplastic eosinophils and mast cells should prompt treatment initiation.
The efficacy of second-generation TKI has been evaluated in small studies [100]. The role of
imatinib in cases without these specific alterations is controversial with variable responses
observed. Khoury et. al. performed a small prospective study that showed the response
rate with imatinib was 54% in PDGFRA-negative M-HES and 0% among steroid refrac-
tory patients without M-HES [101]. For cases of severe eosinophilic granulomatosis with
polyangiitis (EGPA), cyclophosphamide can be added to the induction therapy regimen
along with a high-dose steroid [102].

7.2. Second-line Therapy

For second-line therapies, common options include hydroxyurea, interferon alpha, and
cyclosporine. Hydroxyurea is often used alongside other treatments to reduce eosinophilic
count for iHES or HES with overlapping rheumatological disorders, especially in steroid-
resistant cases [13,103]. Hydroxyurea reduces cytokine production by Th2 cells and has a
direct effect on eosinophils; however, its use is limited because of side effects. Cyclosporine
inhibits T-cell activation and cytokine production. Cyclosporine is also effective for L-
HES. Methotrexate serves as a steroid-sparing agent in EGPA and is better tolerated than
cyclophosphamide because of fewer side effects [104]. Cyclophosphamide is administrated
for patients with clinical presentation suggestive of eosinophilic granulomatosis with
polyangiitis [4].

7.3. Disease-Specific Treatment
7.3.1. iHES

Steroids are the first-line treatment of iHES with dosages adjusted according to the
patient’s clinical state. For iHES patients who cannot tolerate high-dose steroids or do
not respond well to first-fine therapy, additional medications should be considered (e.g.,
hydroxyurea, interferon-alpha or low-dose hydroxyurea). Other second-line choices in-
clude alemtuzumab, cyclosporine, or 2-chlorodeoxyadenosine; however, there is risk of
cytotoxicity.

7.3.2. Malignancy Associated HE

For patients who have HES associated with myeloid or lymphoid malignancies, treat-
ment should focus on the underlying malignancy and select disease-specific treatment
regimens (e.g., mepolizumab, reslizumab, and benralizumab).

7.3.3. Localized HE

If localized disease or a single organ is involved, only steroids or topical steroids
should be considered.

7.4. Novel Approaches and Clinical Trials

The studies of eosinophil-targeted regimen are limited (Table 5). Novel agents like
mepolizumab and reslizumab (humanized monoclonal anti-IL-5 antibody) and benral-
izumab (IL-5 receptor antagonist) are newly studied biologics that demonstrated safety and
efficacy for treating HE, particularly for those life-threatening situations or cases refractory
to conventional therapy. Both mepolizumab and reslizumab lead to maturation arrest of
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eosinophils and significantly reduce the eosinophil count. Benralizumab is an IL-5 receptor
alpha specific monoclonal antibody. It blocks the ligand IL-5 mediated independent path-
way by high-affinity receptor binding; it induces apoptosis of eosinophils in blood, bone
marrow and tissue via a direct antibody-dependent cell mediated cytotoxicity by bind-
ing to FcyRIII-alpha receptor of NK cells, and causing complete depletion of eosinophils,
basophils, and their precursors.

Mepolizumab was approved by the United States Food and Drug Administration
(FDA) after a phase 3 trial for EGPA [105] (www.clinicaltrials.gov NCT00086658, accessed
on 6 November 2023). It helped prolong remission and can be used as a steroid sparing
agent. However, the benefits of mepolizumab in steroid-resistant cases and M-HES has
not been seen [106]. Benralizumab was approved by the FDA for eosinophilic asthma and
showed efficacy for eosinophilic GI disease [96]. A phase 3 study of its efficacy in HES
is ongoing.

Dexpramipexole is another novel agent developed for treating amyotrophic lat-
eral sclerosis, but has been found to cause eosinopenia [107]. Ongoing phase 2 studies
showed promising results although the mechanism of dexpramipexole is uncertain [4,108].
AK002/lirentelimab is an afucosylated monoclonal antibody to SIGLEC-8 that causes mat-
urational arrest of eosinophils [109]. Additionally, a monoclonal antibody targeting IL-4
receptor α, namely dupilumab is used for certain types of reactive HE such as asthma
or active eosinophilic esophagitis (a phase 2 study) [110]. The roles of JAK2 inhibitors
(e.g., ruxolitinib) are currently under investigation in the context of M-HES (e.g., MLN
with PCM1::JAK2) and L-HES treatment [111,112]. Stafiba, a STAT5b antagonist was de-
veloped to treat patients with patients with STAT5b mutation; omalizumab, a monoclonal
anti-immunoglobulin E, is another option that targets IgE-mediated HE [66]. Similar to
mepolizumab, alemtuzumab, an anti-CD52 antibody, has been adopted to treat HES-related
symptoms with promising results [113]. The aforementioned key findings are summarized
in Table 5.

7.5. Allogeneic Hematopoietic Stem Cell Transplant

Stem cell transplant can be potentially curative for HES. Several case reports support
the efficacy of allogenic stem cell transplant [114–116]. It is usually indicated for HES with
multiorgan dysfunction or relapsed/refractory HES.

Table 5. Targeted Therapy for HE.

Pathway Name Nature/Function Reference

IL-5 inhibitor Mepolizumab and
Reslizumab

Humanized monoclonal anti-IL-5
antibody [105,106,117]

Benralizumab

IL-5 receptor antagonist, focusing on
eosinophils, basophils, and their

precursors through antibody-dependent
cell-mediated cytotoxicity

[117]

SIGLEC-8 inhibitor Lirentelimab
Afucosylated antibody against Siglec-8

leading to decrease eosinophils and
basophils and inactivate mast cells

[117]

IL-4 inhibitor Dupilumab
IL-4 antibody, reduces IL-4 and IL-13

signaling, and blocks exotaxin-mediated
tissue migration of eosinophils

[118,119]

TKI Imatinib BCR-ABL1 inhibitor [35,71]

www.clinicaltrials.gov
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Table 5. Cont.

Pathway Name Nature/Function Reference

Ruxolitinib JAK2 inhibitor [111]

STAT5 inhibitor Stafiba Actively inhibiting the SH2 domains of
STAT5a and STAT5b [120]

IgE inhibitor Omalizumab Monoclonal anti-immunoglobulin E [66]

Abbreviations: HE, hypereosinophilia; IL, interleukin; SH2, Src homology 2; SIGLEC, sialic-acid-binding
immunoglobulin-like lectins; TKI, tyrosine kinase inhibitors.

8. Conclusions and Future Direction

HE encompasses a wide spectrum of differential diagnoses of reactive, paraneoplastic,
hematological and non-hematological etiologies, proving a diagnostic challenge. The
underlying mechanism vary among variants of HE, warranting advanced biological and
molecular studies. Reactive HE should be always excluded before investigating other
causes. A comprehensive clinical investigation and laboratory studies are needed before
treatment options are selected. Be aware that secondary organ damage could occur in
patients with HES, which require immediate assessment and therapy. TKI and/or targeted
therapy should be considered in the treatment of MLN-TK as well as certain HE with
specific mutations such as STAT5b.
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