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Simple Summary: Acute graft-versus-host disease (aGvHD) remains a major cause of morbidity
and mortality after allogeneic hematopoietic stem cell transplantation (HSCT), occurring to some
degree in over 50% of patients and being a direct cause of death in about 20% of patients. This
complication occurs even despite a better understanding of donor selection and GvHD prophylaxis
regimens. aGvHD is a complex event in which multiple contributing factors are involved. We
performed RNA transcriptome analysis of 1408 genes in bone marrow samples obtained before
and after transplantation using machine learning to predict the risk of aGvHD and post-transplant
survival for a cohort of patients undergoing HSCT. Differential gene expression identified several
signaling pathways in the bone marrow microenvironment that may be major regulators of the
complex biology of GvHD, and identified targets of intervention to ameliorate the risk of aGvHD
and improve patient survival.

Abstract: Acute graft-versus-host disease (aGvHD) remains a major cause of morbidity and mortality
after allogeneic hematopoietic stem cell transplantation (HSCT). We performed RNA analysis of
1408 candidate genes in bone marrow samples obtained from 167 patients undergoing HSCT. RNA
expression data were used in a machine learning algorithm to predict the presence or absence of
aGvHD using either random forest or extreme gradient boosting algorithms. Patients were randomly
divided into training (2/3 of patients) and validation (1/3 of patients) sets. Using post-HSCT RNA
data, the machine learning algorithm selected 92 genes for predicting aGvHD that appear to play
a role in PI3/AKT, MAPK, and FOXO signaling, as well as microRNA. The algorithm selected
20 genes for predicting survival included genes involved in MAPK and chemokine signaling. Using
pre-HSCT RNA data, the machine learning algorithm selected 400 genes and 700 genes predicting
aGvHD and overall survival, but candidate signaling pathways could not be specified in this analysis.
These data show that NGS analyses of RNA expression using machine learning algorithms may be
useful biomarkers of aGvHD and overall survival for patients undergoing HSCT, allowing for the
identification of major signaling pathways associated with HSCT outcomes and helping to dissect
the complex steps involved in the development of aGvHD. The analysis of pre-HSCT bone marrow
samples may lead to pre-HSCT interventions including choice of remission induction regimens and
modifications in patient health before HSCT.
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1. Introduction

Acute graft-versus-host disease (aGvHD) is the leading cause of non-relapse mortality
(NRM) in patients after allogeneic hematopoietic stem cell transplantation (allo-HSCT),
with 6-month NRM occurring in up to 18% of patients with high-risk aGvHD [1,2]. For
several decades, donor selection algorithms and prophylactic post-transplant chemotherapy
regimens, with the later addition of calcineurin inhibitors, remained the standard approach
to reduce the risk of aGvHD. Despite these routine but imprecise prevention strategies,
nearly 40% to 60% of allo-HSCT recipients develop aGvHD, and even patients predicted to
be at a low risk of developing severe aGvHD may still develop dire, treatment-refractory,
and life-threatening disease [3,4].

The pathophysiology of aGvHD involves the activation of donor T-cells, macrophages,
monocytes, and neutrophils, and the condition arises when these donated immune cells
attack host tissues (e.g., the skin, gastrointestinal tract, and liver), resulting in potentially
life-threatening complications [3,5]. These complications range from mild to severe, with
the incidence, severity, and morbidity of aGvHD increasing with greater donor-to-host
human leukocyte antigen (HLA) disparity. Historical methods for diagnosing aGvHD
include symptom evaluation to assign a clinical grade and tissue biopsy to exclude other
causes of pathology. However, these strategies are often difficult to quantify, invasive, and
lack specificity [6]. The ability to predict the development of aGvHD may allow for a better
selection of patients and donors, and the choice of conditioning and immunosuppression
regimens. Previous studies in predicting aGvHD focused on the characteristics and effects
of donor cells rather than the host microenvironment [7]. Several studies identified that both
donor and host characteristics are associated with an increased risk of aGvHD and, more
recently, an effort has been made to identify biomarkers associated with or predictive of
the development of aGvHD before the onset of clinical manifestations [8–10]. For example,
the Mount Sinai Acute GvHD International Consortium (MAGIC) algorithm probability
(MAP) uses two biomarkers measured pre- and post-transplant to detect changes in the
gastrointestinal tract as a response biomarker and correlated these findings with NRM [11].
Still, no method using one or a combination of biomarkers has yet been widely adopted for
the prediction or characterization of aGvHD [7,12].

Advancements in machine learning are generating interest in developing an integrated,
data-driven approach to predict and manage medical events [13,14]. The ability to measure
gene expression in various cell populations using transcriptome analysis allows for the
exploration of cell pathways involved in various biological events, which is critical as
aGvHD is a complex event in which multiple contributing factors are involved. Machine
learning employs data-driven statistical modeling approaches that can identify underlying
patterns without predefined assumptions. Transcriptome analysis with machine learning
has been used to identify gene expression profiles (GEP) including both upregulated and
suppressed genes associated with an event. Transcriptome analysis has been used in the
analysis of gastrointestinal aGvHD and cutaneous chronic GvHD (cGvHD), identifying
potential pathways of T-cell activation that differ from those observed in other inflammatory
disease of these organs [15,16].

Given the severity of aGvHD as one of the most fatal complications following allo-
HSCT, there is a significant need for better and more objective means for the diagnosis and
prediction of aGvHD. Using expression data collected by targeted RNA next-generation
sequencing (NGS) of bone marrow (BM) samples obtained before and after transplantation,
we explored the potential of RNA data using machine learning to predict aGvHD and
overall survival (OS).
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2. Materials and Methods
2.1. Patients

This is a retrospective, single-center study of patients undergoing allo-HSCT between
1 November 2019 and 31 August 2022, allowing for at least 6 months of follow-up for
the determination of late-onset aGvHD and survival at the time of database closure (29
May 2023). Patients eligible for this study included all patients with either malignant or
nonmalignant hematological disease who underwent allo-HSCT and had BM samples
analyzed by RNA gene expression using next-generation sequencing (NGS). Institutional
Review Board (IRB) approval for this study was obtained from WCG IRB (Pro2020-1406).
The study was conducted under the International Conference on Harmonization Good
Clinical Practice Guidelines and according to the Declaration of Helsinki. The requirement
for patient informed consent (verbal or written) was waived by the IRB as this project rep-
resented a non-interventional study using routinely collected data for secondary research
purposes.

Eligibility for transplantation, choice of conditioning and GvHD prophylaxis regimens,
and donor and graft sources were not prescribed for enrollment into this study and were per
the discretion of the physician caring for the patient. All patients met standard eligibility
criteria for allo-HSCT at this center, including age below 80 years, Karnofsky performance
status ≥70%, having a readily available HLA matched or mismatched related or unrelated
donor (URD), and with appropriate pulmonary, cardiac, hepatic, and renal functions.
Stem cell grafts were collected using standard techniques, and no processing of grafts
(other than cryopreservation for donor management purposes and red cell depletion of
ABO major incompatible bone marrow grafts) was performed. The collection goal for
peripheral blood stem cell (PBSC) grafts was >4 × 106 and <10 × 106 CD34+ cells/kg. The
target for bone marrow harvesting was >3 × 108 nucleated cells per kilogram, but cell
quantities above or below this target were infused without adjustment in number. URD
grafts were obtained through the National Marrow Donor Program or similar registries.
Per institutional practices, male sex and younger age were given priority in donor selection.
Day 0 was defined as the day the cell product infusion was completed.

Patients received pre-transplant conditioning using non-myeloablative (NMA), reduced-
intensity (RIC), or myeloablative conditioning (MAC) regimens (Supplemental Table S1) [17].
In general, patients over 60 years of age were conditioned with RIC or NMA regimens.
GvHD prophylaxis regimens were determined by the conditioning regimen and donor se-
lected (Supplemental Table S2). Most patients undergoing transplantation using grafts from
URD or HLA-matched related donors received a regimen of tacrolimus and methotrexate.
A regimen of cyclosporine, sirolimus, and mycophenolate mofetil (MMF) was used for
all patients receiving HSC from a non-haploidentical donor after a NMA regimen with
single-fraction total body irradiation (TBI, Supplemental Table S1). All patients receiving
HSC from related haploidentical donors received a standard regimen of cyclophosphamide,
tacrolimus, and MMF (Supplemental Table S2). Two patients treated for aplastic anemia
received a GvHD prophylaxis regimen of cyclosporine and methotrexate. Abatacept (Sup-
plemental Table S2) could be added to the GvHD prophylaxis for recipients of haploiden-
tical or unrelated donors. Rabbit anti-thymocyte globulin (ATG, Supplemental Table S2)
was added to the regimens for recipients of HLA-matched siblings or unrelated donors
receiving busulfan-based MAC regimens and all recipients of reduced-intensity busulfan.

Patients were hospitalized until neutrophil engraftment, control of any infectious com-
plications, and resolution of severe regimen-related complications. Patients were then seen
in post-transplantation follow-up at least weekly through day +100 after transplantation, bi-
weekly through day +180, and then at least monthly through 12 months or until resolution
of cGvHD. All patients received a standard antimicrobial prophylaxis regimen starting on
initiation of the transplantation conditioning regimen and post-transplant cytokine support
(Supplemental Methods S1). Patients were censored from follow-up for aGvHD on day
of event for death, relapse, or onset of cGvHD, or infusion of donor lymphocytes (DLI).
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Patients were censored from follow-up of survival on the day of event for death or relapse
or last visit if lost to follow-up.

2.2. Diagnosis of aGvHD

Consensus criteria were used to diagnose, stage, and grade aGvHD at least weekly
through day +100 after transplantation and then at least every other week through to
day +180, with scoring maintained in the electronic medical record [18]. Treatment for
aGvHD was not prescribed for this study and was determined by the medical team. Time to
aGvHD is the day of onset of any grade; the maximal grade and stage of aGvHD were also
recorded for this analysis. No attempt was made to analyze these RNA gene expression
data stratified relative to the timing of aGvHD onset and the day of the post-transplant
bone marrow sampling. For this analysis, the onset, presence, stage, and grade of aGvHD
were adjudicated by a single reviewer (SDR) to confirm these details but using MAGIC
criteria [19].

2.3. Sample Collection

BM samples for disease staging were usually collected per program standard practice
within 28 days before initiation of transplant conditioning and at 84–100 days after allo-
HSCT with samples outside these times also included.

Fresh BM samples were collected in EDTA tubes and transported at room temperature
for initial processing. Pre-transplant was defined as BM samples taken from patients before
the start of pre-transplant conditioning. Post-transplant was defined as BM samples taken
from patients after allo-HSCT.

2.4. RNA Extraction and Next Generation Sequencing (NGS)

BM samples were processed within 72 h of collection. RNA was extracted using an
automated Maxwell instrument (Promega, Madison, WI, USA). RNA was first converted
to cDNA using random primers. RNA samples were selectively enriched for 1408 cancer-
associated genes using the reagents provided in the Illumina® TruSight® RNA pan-cancer
panel (Illumina, San Diego, CA, USA; Supplemental Table S3). Sequencing adapters were
ligated into the resulting double-stranded cDNA fragments. The coding regions of the
expressed genes were captured from this library using sequence-specific probes to create
the final library. Sequencing was performed using the Illumina NovaSeq platform (Illumina,
San Diego, CA, USA). Ten million reads per sample were performed in a single run, and
the read length was 2 × 150 bp. For any sequence to be accepted, it must show >20%
reads with splice junction. Expression levels were measured as fragments per kilobase of
transcripts per million.

2.5. Machine Learning Algorithm for Predicting aGvHD

The RNA expression data were used in the machine learning algorithm to predict the
presence or absence of aGvHD using either random forest or extreme gradient boosting
algorithms. Patients were randomly divided into training (2/3 of patients) and validation
(1/3 of patients; Supplemental Table S4a) sets. Randomization was independently per-
formed by computer for the pre- and post-transplant cohorts and, accordingly, different
patients from each cohort could be randomly assigned to the training and analysis sets.
The Entrez symbols of the genes selected by the algorithm were search for their pathway
involvement using the KEGG database and software [20–22].

2.6. Statistical Analysis

Primary clinical endpoints are the development of grade I-IV aGvHD with censoring
for relapse or death, and OS censored for relapse. Patients’ characteristics were summarized
but not compared between the pre- and post-transplant groups (or between training or
analysis subsets). Continuous variables were summarized with median and range and
categorical variables were summarized with counts and percentages.
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We developed a machine learning algorithm that first selected the relative genes based
on the performance of each gene with cross-validation and based on stability measures
using statistical significance tests. The selected genes were then used to predict aGvHD
or survival with k-fold cross validation procedures (k = 12). A naïve Bayesian classifier
was constructed on the training of k − 1 subsets and tested on the other resting subset. We
applied geometric mean naïve Bayesian (GMB) as the classifier for prediction. The details
of this machine learning platform were previously reported [23,24].

3. Results
3.1. Clinical Characteristics

Samples for analysis were available for 167 patients (Table 1), with pre-transplant
samples available for 132 patients collected at a median of 29 days before transplantation
(range, 14–170 days) and post-transplant samples available for 119 patients collected at
a median of 84 days (range, 29–141 days). Patient and donor demographics, transplant
diagnoses, conditioning and GvHD regimens, and use of ATG or abatacept are summarized
(Table 1, Supplemental Table S4a–c). The median follow-up for the entire group at time
of analysis was 344 days (range, 7–925 days). Thirty-six patients suffered disease relapse
at a median of 87.5 days (range, 27–718 days) after transplantation. Fifty-nine patients
expired of disease relapse or complications of treatment at a median of 165 days (range,
7–560 days).

Table 1. Patient characteristics.

Characteristics
All Patients

N = 167
n (%)

Pre-Transplant
Patients
N = 132

n (%)

Post-Transplant
Patients
N = 119

n (%)

Recipient age, median years (range) 63.0 (20.8–79.0) 64.0 (20.8–79.0) 63.7 (20.8–79.0)

Recipient sex
Male 89 (53) 71 (54) 62 (52)

Indication for allo-HSCT
ALL 20 (12) 15 (11) 15 (13)
AML 57 (34) 40 (30) 47 (39)
CML 3 (2) 2 (2) 3 (3)
MDS 44 (26) 37 (28) 31 (26)
Myelofibrosis/CMML 32 (19) 27 (20) 19 (16)
SAA 4 (2) 4 (3) 1 (1)
NHL 7 (4) 7 (5) 3 (3)

Graft source
Bone marrow 130 (78) 30 (23) 23 (19)
Peripheral blood 37 (22) 102 (77) 96 (81)

HLA compatibility
Unrelated donor HLA match 84 (50) 64 (48) 65 (55)
Unrelated donor HLA mismatch 17 (10) 13 (10) 13 (11)
HLA matched related donor 14 (8) 11 (8) 9 (8)
Related donor, haploidentical 52 (31) 44 (33) 32 (27)

Donor age, median years (range) 28.3 (14.0–63.7) 28.1 (17.6–63.7) 28.0 (14.0–59.0)
Donor age < 35 years 120 (72) 98 (74) 89 (75)

Donor sex
Male 109 (65) 82 (62) 77 (65)

Conditioning regimen
Myeloablative 43 (26) 30 (23) 33 (28)
Non-myeloablative 47 (28) 41 (31) 31 (26)
Reduced intensity 77 (46) 61 (46) 55 (46)
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Table 1. Cont.

Characteristics
All Patients

N = 167
n (%)

Pre-Transplant
Patients
N = 132

n (%)

Post-Transplant
Patients
N = 119

n (%)

aGvHD prophylaxis regimen
PtCy 73 (44) 62 (47) 49 (41)
TacMTX 75 (45) 55 (42) 58 (49)
RapaCspMMF 19 (11) 15 (11) 12 (10)
Addition of abatacept 21 (13) 18 (14) 16 (13)
Addition of anti-thymocyte globulin 38 (23) 26 (20) 31 (26)

Diagnosed with aGvHD
Stage 1–4 109 (65) 87 (66) 80 (67)
Stage 3–4 7 (4) 6 (5) 1 (1)

Site of aGvHD
Gastrointestinal 65 (39) 51 (71) 49 (40)

Lower 17 (10) 12 (30) 10 (8)
Upper 48 (29) 39 (41) 39 (32)

Liver 5 (3) 4 (3) 4 (3)
Skin 63 (38) 54 (41) 51 (43)

Allo—allogeneic; ALL—acute lymphoblastic leukemia; AML—acute myeloid leukemia; CML—chronic myeloid
leukemia; CMML—chronic myelomonocytic leukemia; CSPMMF—cyclosporine and mycophenolate mofetil,
MDS—myelodysplastic syndromes; NHL—non-Hodgkin’s lymphoma; PtCy—post-transplant cyclophosphamide;
RapaCSPMMF—rapamycin, cyclosporine, and mycophenolate mofetil; RIC—reduced intensity conditioning;
SAA—severe aplastic anemia; TacMTX—tacrolimus and methotrexate.

3.2. Prediction of aGvHD Using Post-Transplant Samples

Of the 119 patients with post-transplant BM samples available, 80 patients developed
aGvHD of any stage (Table 1) at a median of 37.5 days. Using post-transplant BM RNA data,
the machine learning algorithm selected 92 genes (Table 2) for predicting aGvHD in the
training set with an AUC of 0.999 (95% confidence interval [CI], 0.992–1.007; p = 0.03), 100%
sensitivity, and 98.1% specificity (Figure 1a). In the validation set, the machine learning
algorithm showed an AUC of 0.721 (95% CI, 0.542–0.900; p = 0.03), 76.9% sensitivity,
and 63% specificity using a cut-off score of 0.423 (Figure 1b). The genes selected by the
algorithm for predicting aGvHD appear to play roles involved in PI3K/AKT signaling,
MAPK signaling, FOXO signaling, and cancer-associated microRNA.

Table 2. 92 Genes Predicting aGvHD in Post-transplant Samples.

92 Genes Predicting GvHD

1–23 24–46 47–69 70–92

DUSP2 CDKN1A NEURL1 SUZ12

CD22 TFRC (CD71) TNFRSF17 (BCMA) TRIM33

FLNA DLL3 BCL7A CDK9

PAX8 SSBP2 YTHDF2 FLYWCH1

ARHGEF12 TRAF3 KIF5B HIST1H2BC

AKAP9 PSIP1 IRS1 MAPK1

DLL4 43717SEPT9 DGKZ RAC2

AIP SPTBN1 CENPU TCF7L2
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Table 2. Cont.

92 Genes Predicting GvHD

1–23 24–46 47–69 70–92

CDC14B HIST1H2AC STIL USP42

FOXO3 TFDP1 XKR3 FGFR1OP

EGR4 TRAF5 CCT6B MTCP1

MUTYH BACH2 CD28 PTPRO

SS18L1 TNFRSF10D OLIG1 SH3D19

PRKCG SLC45A3 CCND2 CTDSP2

HOOK3 NACA GID4 ID3

TCEA1 ASPH STYK1 SMAP1

UBE2C ZBTB16 ATF3 STL

FIGF EPHA2 FGF9 TAL1

TOP1 APOD ZNF703 DNMT3A

DTX1 KAT2B AKAP12 IKBKE

TNF ETV5 PTCRA IKZF3

CCNE1 FGF13 SMAD6 AKT3

BAIAP2L1 FLT3LG DNAJB1 HSPA4
Shown are the 92 genes identified in post-transplant marrow samples that associated with the development of
aGvHD. Genes are listed in order of expression.
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Figure 1. Receiver operator characteristics (ROC) curves for predicting aGvHD in pre- and post-
transplant patient cohorts. (a) Post-transplant aGvHD prediction using 92 genes (AUC = 0.999, p = Figure 1. Receiver operator characteristics (ROC) curves for predicting aGvHD in pre- and post-

transplant patient cohorts. (a) Post-transplant aGvHD prediction using 92 genes (AUC = 0.999,
p = 0.03) in the training set. (b) Post-transplant aGvHD prediction (AUC = 0.721, p = 0.03) in the
validation set. (c) Pre-transplant aGvHD prediction using 400 genes (AUC = 0.857, p = 0.02) in the
training set. (d) Pre-transplant aGvHD prediction using (AUC = 0.692, p = 0.02) in the validation set.
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3.3. Prediction of aGvHD Using Pre-Transplant Samples

Of the 132 patients with pre-transplant BM samples available, 87 patients developed
aGvHD of any stage (Table 1). Using pre-transplant BM RNA data, the machine learning
algorithm selected 400 genes (Supplemental Table S5) for predicting aGvHD in the training
set with an AUC of 0.857 (95% CI, 0.761–0.954; p = 0.02), 88.9% sensitivity, and 70.4%
specificity (Figure 1c). In the validation set, the machine learning algorithm showed an
AUC of 0.692 (95% CI, 0.508–0.877; p = 0.02), 76.9% sensitivity, and 57.7% specificity using a
cutoff of 0.136 (Figure 1d).

3.4. Prediction of Overall Survival (OS) Using Post-Transplant Samples

Of the 119 patients with post-transplant BM samples available, 87 were alive at a
median follow up of 14 months at the time of data analysis. Using post-transplant BM
RNA data, the machine learning algorithm selected 20 genes (Table 3) for predicting OS
in the training set with an AUC of 0.918 (95% CI, 0.860–0.975; p = 0.02), 86.8% sensitivity,
and 89.5% specificity (Figure 2a). In the validation set, the machine learning algorithm
showed an AUC of 0.716 (95% CI, 0.565–0.867; p = 0.02), 73.1% sensitivity, and 66.7%
specificity using a cut-off score at 0.676 (Figure 2b). The genes that are selected by the
algorithm for predicting survival included genes involved in MAPK signaling pathway
and chemokine signaling.

Table 3. 20 Genes Predicting Survival in Post-transplant Samples.

Genes Predicting Survival

1–10 11–20

ATIC TGFBI

PLAG1 BRSK1

CD36 KIT (CD117)

HSP90AB1 MSH6

DNMT1 HIST1H1D

WDR1 HEY1

CDC14A FOXO1

MALT1 PRKCA

SP3 CCNB1IP1

MAP3K14 FANCC
Shown are the 20 genes identified in post-transplant marrow samples that associated with the overall survival.
Genes are listed in order of expression.

3.5. Prediction of Overall Survival (OS) Using Pre-Transplant Samples

Using pre-transplant BM RNA data, the machine learning algorithm selected 700 genes
(Supplemental Table S6) for predicting aGvHD in the training set with an AUC of 0.910 (95%
CI, 0.847–0.973; p = 0.02), 94.9% sensitivity, and 80% specificity (Figure 2c). In the validation
set, the machine learning algorithm showed an AUC of 0.728 (95% CI, 0.559–0.896; p = 0.02),
82.8% sensitivity, and 60% specificity using a cut-off score at 0.954 (Figure 2d).
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Table 3. 20 Genes Predicting Survival in Post-transplant Samples. 

Genes Predicting Survival 
1–10 11–20 
ATIC TGFBI 

PLAG1 BRSK1 
CD36 KIT (CD117) 

HSP90AB1 MSH6 
DNMT1 HIST1H1D 
WDR1 HEY1 

CDC14A FOXO1 
MALT1 PRKCA 

SP3 CCNB1IP1 
MAP3K14 FANCC 

Shown are the 20 genes identified in post-transplant marrow that associated with the 
overall survival. Genes are listed in order of expression. 
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Figure 2. Receiver operator characteristics (ROC) curves for predicting overall survival in pre- and
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4. Discussion

In this study, we analyzed gene expression profiles of BM samples that were obtained
before and after transplantation for patients undergoing allo-HSCT. Patients were randomly
assigned into training and validation cohorts independently for the pre- and post-HSCT
samples. Using pre- and post-transplant BM samples, we developed machine learning
algorithms that selected for a number of genes to predict aGvHD and OS.

The expressions of more than 1400 genes were used in this study to evaluate bone
marrow environment in pre- and post-transplant samples. Using a machine learning
algorithm is necessary to adjust for the multiple variables that may contribute to the
prediction of the presence or absence of aGvHD and eliminate statistically insignificant
markers. A Bayesian approach is specifically appropriate to use when the number of cases
is limited. Furthermore, a Bayesian approach allows us to define the specific biomarkers
that are relevant for the classification so the classification is less of a “blackbox” as compared
with other classifiers such as random forest or extreme gradient booster. The expression of
only 20 genes were adequate for the prediction of survival using post-transplant samples,
reflecting significant changes in bone marrow that are detrimental to the survival of the
patients. Similarly, for predicting aGvHD in post-transplant bone marrow samples, only
92 genes are needed. In contrast, for predicting aGvHD and survival in pre-transplant bone
marrow samples, 400 genes and 700 genes are needed, respectively. This suggests that
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pre-transplant, there are more bone marrow microenvironment factors that play a role in
future development of aGvHD and subsequent survival.

The post-HSCT samples showed a high correlation with the presence of aGvHD.
These samples were mostly obtained after the onset of aGvHD and, therefore, we cannot
propose that this analysis serves as a biomarker predictive for the development of this
complication of HSCT. Yet identification of the involved pathways may facilitate the
development of GvHD prophylaxis regimens beyond the currently widely used calcineurin-
based prophylaxis regimens that could be effective in suppressing the onset of aGvHD,
facilitating the development of tolerance, and reducing the risk of off-target toxicities. This
analysis may be equally valuable in dissecting the pathways involved with aGvHD, leading
to more-specific non-steroid treatments including targeted treatments to manage steroid-
resistant aGvHD (or cGvHD). Examples of such targeted therapies includes inhibition of
the Janus kinase (JAK) [25–27], Bruton’s tyrosine kinase (BTK) [28–30], and Rho-associated
coiled-coil-containing protein kinase 2 (ROCK2) [31] signaling pathways, each of which
now have FDA-approved medications for management of steroid-refractory acute and/or
chronic GvHD [32]. Our findings are in agreement with other reports such as the association
of microRNA with acute and chronic GvHD [33].

The results of the pre-HSCT sample analysis also show that transcriptome analysis of
the bone marrow microenvironment is predictive of aGvHD and OS, although we could
not define specific signaling pathways. With further investigation, it may be possible
to use transcriptome analysis to develop biomarker(s) predictive of the development of
aGvHD and OS, allowing for modifications in the planned transplant treatment plan, and
thereby improving transplant outcomes [4]. We hypothesize that transcriptome analysis
early in the course of the disease could lead to modifications in patient care during initial
remission induction and consolidation cycles before referral for transplantation. We further
hypothesize that our findings may correspond to the immune microenvironment possibly
being influenced by microbiome effects on transplant outcomes, for example, with the
potential for prevention of aGvHD [34,35]. The pre-transplant BM specimens would be
affected by therapies given in the control of disease in anticipation of allo-HSCT.

Our analysis of OS using post-transplant samples is complicated by the presence
of aGvHD in a large proportion of the patient cohort, and we cannot ascertain, using
this dataset, if the signaling pathways associated with OS are distinct from or overlap
the signaling pathways associated with aGvHD. We also did not attempt to correlate our
analysis with the onset or severity of cGvHD. That transcriptome analysis of the pre-
transplant samples also predicts OS demands further, in-depth analysis of the patient
populations being referred for transplantation, hopefully leading to improvements in the
transplant process.

Numerous investigators are exploring the gene expression profile associated with the
immunological GvHD and graft-versus-disease (GvL) events of HSCT. Such studies led to
clinical studies of JAK, BTK, and ROCK2 inhibitors, resulting in FDA approval for these
therapies [22–29]. Most of the studies, however, combine analysis of gene expression profile
of certain lymphocyte populations to explore the biology of immunological reconstitution
after HSCT, such as the study by McCurdy et al. of patients receiving PTCy for GvHD
prophylaxis using machine learning and RNASeq analysis of blood lymphocyte subsets
at day +28 after transplantation, which found 56 differentially expressed genes (DEGs)
in regulatory T cells in patients who developed aGvHD [36]. Our analysis, especially of
pre-transplant samples, may identify signaling pathways that will lead to more in-depth
analysis of the immunological events occurring during HSCT.

The primary limitation of our study is the single-center, retrospective design and
the relatively small study populations in both the training and validation cohorts. The
primary advantage in this study is the large variation in patient and treatment characteris-
tics, showing that this approach may be valid over a wide range of patients. The strong
correlation across a number of patient variables including diagnosis, donor type, transplant
conditioning regimen, and GvHD prophylaxis emphasizes the strength of our findings.
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Furthermore, our analysis of over 1400 genes is not restricted to specific signaling pathways
that have been the subject of study in the previously reported analyses of acute and chronic
GvHD. While we do not propose that eligibility for transplant should be based at this time
on testing bone marrow samples using the approach used in this study, the current study
points out the importance of the pre-transplant bone marrow microenvironment in the
potential of developing aGvHD and overall survival. Further studies are necessary and ap-
propriate to explore the bone marrow microenvironment and to improve the management
of aGvHD.

5. Conclusions

In conclusion, our study shows that targeted transcriptome analysis of pre- and post-
transplant BM samples can predict aGvHD and OS with relatively high accuracy when a
large number of genes are used. Although the accuracy of this prediction is higher when
post-transplant transcriptomic data are used, the pre-transplant BM microenvironment is
very important and relevant for the future development of aGvHD and for overall survival.
This confirms that both the host BM microenvironment and the donor cells may play a
significant role in the development of aGvHD and OS in patients undergoing allo-HSCT.
Although preliminary, our study demonstrates expression data collected by targeted RNA
NGS using machine learning can predict aGvHD and survival. Future studies are needed
to validate our findings.
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