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Simple Summary: Glioblastoma (GBM) is the most aggressive brain cancer in adults and there is
great interest in accurate stratification of people based on their survival after surgery. These proposed
stratification methods are inconsistent regarding the importance of tumour size. For 279 patients
diagnosed with GBM in our institute, we calculated the diameter and volume of their tumours using
their MRI scan prior to surgery and used statistical modelling to investigate (1) if tumour size was
important in stratifying survival in these patients and (2) why other proposed models may or may not
have shown the importance of tumour size. Our results showed that tumour diameter and volume
were important for predicting the outcome of patients after we considered the extent of the surgery
and that diameter was also important when all other clinical factors such as age, gender, genetic
changes, and post-operative cancer treatment were taken into account.

Abstract: Published models inconsistently associate glioblastoma size with overall survival (OS).
This study aimed to investigate the prognostic effect of tumour size in a large cohort of patients
diagnosed with GBM and interrogate how sample size and non-linear transformations may impact on
the likelihood of finding a prognostic effect. In total, 279 patients with a IDH-wildtype unifocal WHO
grade 4 GBM between 2014 and 2020 from a retrospective cohort were included. Uni-/multivariable
association between core volume, whole volume (CV and WV), and diameter with OS was as-
sessed with (1) Cox proportional hazard models +/− log transformation and (2) resampling with
1,000,000 repetitions and varying sample size to identify the percentage of models, which showed a
significant effect of tumour size. Models adjusted for operation type and a diameter model adjusted
for all clinical variables remained significant (p = 0.03). Multivariable resampling increased the
significant effects (p < 0.05) of all size variables as sample size increased. Log transformation also had
a large effect on the chances of a prognostic effect of WV. For models adjusted for operation type,
19.5% of WV vs. 26.3% log-WV (n = 50) and 69.9% WV and 89.9% log-WV (n = 279) were significant.
In this large well-curated cohort, multivariable modelling and resampling suggest tumour volume is
prognostic at larger sample sizes and with log transformation for WV.

Keywords: brain neoplasms; diagnostic imaging; glioblastoma; tumour volume; prognosis; survival
analysis
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1. Introduction

Glioblastoma (GBM) is the most common primary brain malignancy in adults and
patients have a median overall survival (OS) of 12–15 months despite intensive oncologi-
cal treatment (maximum safe surgical resection followed by adjuvant radiotherapy with
concurrent temozolomide and a further six cycles of adjuvant temozolomide–the Stupp
protocol) [1,2].

There has been significant interest in investigating which prognostic factors are impor-
tant for patients with GBM in order to better stratify patients into different risk groups due
to the increasing interest in individualised treatment strategies (‘personalised medicine’) [3].
Many such prognostic models include imaging biomarkers [4]. Magnetic resonance imaging
(MRI) is routinely performed for patients with GBM throughout their treatment pathway
and is therefore a popular modality for exploring prognostic imaging biomarkers. The
diameter of the tumour core, which is commonly defined as the enhancing and necrotic
portion of the tumour [5], is routinely evaluated in clinical practice and is amongst the most
common of the imaging predictors of OS to be investigated [6]. There are now several meth-
ods available for automated or semi-automated segmentation of GBM [7]. Tumours can be
segmented into different regions, such as the enhancing and necrotic tumour, and peritu-
moural ‘oedema’. It has therefore become more feasible to integrate various definitions of
‘tumour volume’ into prognostic models, including in larger institutional datasets [6,8,9].

Published modelling studies have yielded inconsistent data regarding the prognostic
effect of tumour diameter and volume [6,10–13]. Pre-treatment tumour size might be ex-
pected to impact on patient outcome as it could reflect the number of tumour clonogens that
require ablation by conventional cytotoxic treatments [14,15]. Some of this inconsistency
may be due to the sample sizes that are used to derive the prognostic models, since large
cohort studies of GBM have demonstrated a weak prognostic effect of tumour diameter [13]
but smaller studies have varied, with some showing positive association and some showing
no relationship between diameter and prognosis [12,16,17]. Similar inconsistent findings
are observed for tumour volume [6,18,19]. As well as variation in sample size (the afore-
mentioned studies had a median sample size of 215 and range of 30–20,821), some of the
inconsistency may reflect variations in handling continuous variables during statistical
modelling, for example leading to dichotomisation [20], assumptions of a linear relationship
to outcome [6], and use of univariable model significance to select predictors [17]. All these
choices are known to impact upon the modelling process and may impact the ability to
determine accurate prognostic effects of the candidate predictors [21,22].

There are a number of ways to select predictors for multivariable prognostic modelling
and to evaluate the uncertainty or instability that might arise from choosing predictors in
small samples or using univariable significance [21,22]. This includes the use of internal
validation strategies such as data resampling (i.e., bootstrapping) to estimate uncertainty
in effect size and predictor selection; however, it has been infrequently assessed in the
prognostic modelling of GBM survival despite its importance [4].

Our hypothesis is that inconsistencies in the literature are secondary to varying sample
size, predictor selection strategies in multivariable modelling, and consideration of data
transformation. Rather than build the best prognostic model, our purpose was to investigate
the prognostic effect of tumour size in a large cohort of patients diagnosed with GBM and
interrogate how the choice of sample size and consideration of non-linear transformations
may impact the likelihood of finding a prognostic effect using univariable and multivariable
analysis and data resampling.

2. Materials and Methods
2.1. Ethical Approval

This was a retrospective study and therefore informed patient consent was not feasible.
Ethical approval and institutional data access were approved via the local ethical review
committee (REC ref: 19/YH/0300, IRAS project ID: 255585).
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2.2. Patient Selection and Clinical Predictor Definitions

All consecutive patients (our institute classifies patients who are 16 years and over
as adults) with histologically proven GBM according to the 2021 World Health Organisa-
tion (WHO) classification of central nervous system tumours treated at a single tertiary
referral centre between 2014 and 2020 were identified retrospectively from neuro-oncology
multidisciplinary team (MDT) records. The catchment area includes 3.9–4.4 million adults
and over this period, 3046 new primary brain neoplasms were reviewed at MDT, with
approximately 20% diagnosed with GBM or malignant glioma [23]. The inclusion criteria
were MRI performed prior to any surgery, unifocal tumour (as determined by consultant
neuroradiologist with >10 years experience), and all four of the following MRI sequences
acquired: T1-weighted (T1W), T2-weighted (T2W), fluid-attenuated inversion recovery
(FLAIR), and gadolinium-enhanced T1W (T1Gd) sequence. The exclusion criteria were an
absence of pre-operative MRI, significant degradation of imaging due to artefact presence,
or tumours being multifocal at presentation, documented isocitrate dehydrogenase (IDH)
mutation on immunohistochemistry, or cytogenetic testing.

Demographic, clinical, and cytogenetic data were obtained from the electronic health
records using in-house software. Data included patient age, sex, and type of operation.
Histopathological and cytogenetic data included histology, IDH1 and 2 mutations, and
O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation. The extent
of resection was estimated by the same consultant neuroradiologist using the immediate
(48–72 h) post-resection MRI and grouped based upon the amount of contrast enhancing
and necrotic tumour resected: (i) 100%, (ii) ≥90%, or (iii) <90%. Adjuvant treatment
was categorized as the (i) full Stupp protocol–60 Gy in 30 fractions radiotherapy with
concomitant and six cycles adjuvant temozolomide; (ii) partial Stupp–60 Gy in 30 fractions
radiotherapy but temozolomide discontinued during either the concomitant or adjuvant
treatment phase; and (iii) non-Stupp—any other treatment protocol.

2.3. Data Preparation

A summary of the data preparation and numbers excluded with reasons is shown in
Figure 1. Digital imaging and communications in medicine (DICOM) image preparation
was performed in Python 3.9 [24]. DICOM images were retrieved from the institutional
picture archive and communication system (PACS) and pseudonymised and the image
acquisition parameters are summarised in Table S1. Images were converted to the Neu-
roimaging Informatics Technology Initiative (NIfTI) file format using the dicom2nifti (v2.3.4)
package [25].

2.4. Image Pre-Processing and Tumour Segmentation

Semi-automated tumour segmentations were produced using the federated tumour
segmentation (FeTS) software, an open-source platform available for the processing and
segmentation of MRIs for patients with GBM [26]. A detailed description of the software,
including packages and libraries used in FeTS, is available elsewhere [26] and utilises
the same pre-processing steps used in the multimodal brain tumour image segmentation
benchmark (BRATS) challenge [7] and the open-source software Cancer Imaging Phenomics
Toolkit (CaPTk) [27]. The key features are outlined below.

The T2W, T1Gd, and FLAIR sequences were rigidly co-registered first to the T1W
sequence, then to the SRI24 brain atlas [28], and also spatially resampled to 1 × 1 × 1 mm
voxel resolution using the Greedy registration framework [29]. Images were then skull-
stripped [30] and tumour segmentation was performed with the ‘nnU-net’ deep-learning
network and pre-trained model weights [31]. Tumours were automatically segmented
into three volumes of interest (VOIs, mm3). The three VOIs were defined as (i) necrotic
tumour–fluid signal intensity showing very high T2W signal and reduced T1Gd signal
compared to the same area on T1W images; (ii) enhancing tumour-increased signal on
T1Gd compared to the same area on T1W images and also increased T1Gd signal compared
to normal white matter regions on T1Gd images; and (iii) peritumoural oedema—high
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FLAIR and T2W signal of the entire tumour, minus the necrotic and enhancing regions
and not including ventricles or extra-axial CSF spaces [7]. Tumour masks were used to
produce two tumour volumes per patient: (1) core volume (CV, cm3)—combination of
necrotic and enhancing components and (2) whole volume (WV, cm3)—CV combined with
the peritumoural oedema (see Figure 2).

The segmentations were checked manually and corrected using FeTS. All segmen-
tations were checked by a board-certified neuroradiology fellow (5 years of radiology
experience). Independently, 50 segmentations were also checked by a consultant neuroradi-
ologist (>10 years of consultant neuroradiology experience) and the inter-rater concordance
was compared using the dice similarity coefficient [32].

Tumour diameter was defined as the maximum axial or cranio–caudal diameter of
the enhancing tumour core and was measured using the T1Gd sequence within imaging
viewing software (Impax Version 6.5.3.3009, Agfa Healthcare, Mortsel, Belgium) using
in-built callipers on a submillimetre scale (mm-converted to cm) by two radiology trainees
(1 and 2 years radiology experience) and corrected by a board-certified neuroradiology
fellow (5 years radiology experience). All manual correction and measurement were
performed without knowledge of individual patient outcomes.
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Figure 1. Flowchart summarising the preparation of imaging data for statistical analysis.
CV—Core volume; DICOM—Digital imaging and communications in medicine; FeTS—Federated
tumour segmentation software; GBM—Glioblastoma; IDHwt—Isocitrate dehydrogenase wild-type;
NifTI—Neuroimaging informatics technology initiative; PACS—Picture archive and communication
system; T1Gd—Gadolinium-enhanced T1-weighted imaging; WV—Whole volume.
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Figure 2. Definition of tumour volumes used in the study. Selected MRI axial images:
left—fluid-attenuated inversion recovery (FLAIR); middle—gadolinium-enhanced T1-weighted
(T1Gd); right—T1Gd image with overlay of core tumour segmentation (in green) and peritumoural
oedema (yellow). Core volume (CV) is defined as the enhancing and necrotic component of the
tumour (green) and whole volume (WV) is defined as the combination of core and peritumour
oedema segmentation (green + yellow).

2.5. Statistical Analysis

All statistical analysis was performed in R version 4.2.2 (31 October 2022) and overseen
by a career statistician (HM). Univariable association between CV, WV, or tumour diameter
with overall survival (OS) was investigated using Cox regression modelling. Hazard ratios
(HRs), concordance indices, and p-values for each model were used to assess performance.
Any non-linear relationships between OS and size (volume or diameter) were explored
using both logarithmic transformation and penalised spline function; the latter being
implemented using a penalised spline function within the ‘survival’ package [33]. Penalised
spline functions were used to assess for any trends in the data that might not be seen with
a linear fit, as splines allow a smooth curve to be fit to data [34]. Overfitting to the data
points is discouraged by the inclusion of a roughness penalty and the implementation does
not require any pre-specification of the number of internal boundaries or knots. Model fits
were assessed by plotting each tumour size parameter against the log-HR.

Multivariable association of CV, WV, or diameter to OS was also evaluated by (i) ad-
justing each size variable for either age, sex, type of surgery, MGMT promoter methylation
status, or adjuvant oncological treatment (i.e., size variable + one clinical variable in turn)
and (ii) adjusting size for all clinical parameters. As our aim was to assess the prognostic
effect of tumour size, in multivariable models this was assessed using the HR for each size
parameter and the Wald test p-value for the size variable’s coefficient rather than the overall
model p-value.

To assess the impact that either log transformation and/or sample size could have
on detecting a prognostic effect of tumour size on OS, we conducted a resampling study.
Using different sample sizes (50, 100, 150, 200, 250, 258, or 279), bootstrapped samples
were generated from the original dataset with replacement. For any multivariable models
that were adjusted for MGMT methylation status, the maximum sample size was 258 (not
279) due to the number of cases with a known result. Bootstrapping was carried out for
1,000,000 repetitions at each sample size and for each of the tumour size variables and a Cox
regression model for each tumour size variable, both with and without log transformation,
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was created. For univariable models, the percentage of models in which the overall model
Wald test p-value <0.05, <0.01, and <0.001 was calculated across the 1,000,000 repetitions
per sample size. For multivariable models, the percentage of models in which the Wald
test p-value for the coefficient of tumour size (rather than the overall model Wald test
significance) <0.05 was calculated across the 1,000,000 repetitions per sample size. The
effect of sample size was assessed with two-sided Kolmogorov–Smirnov tests to compare
the p-value distributions from resampling at varying sample sizes.

3. Results
3.1. Demographics of the Study Population

In total, 279 patients were included; 236 deaths occurred before the censor date of 31
October 2020. Demographic information for the GBM patients is summarised in Table 1.
Overall, 39% (108/279) of patients were female and the mean age was 61 years (range
31–85 years). The mean age was 62 (range 34–85 years) for female and 61 (31–81 years) for
male patients. The median OS was 12 months (95% CI 11–14 months), median follow-up
time was 45 months (maximum 70 months), and 25% (71/279) patients had a surgical biopsy
of their GBM. Overall, 20% (57/279) of patients had 100% resection of the tumour core and
21% (58/279) completed the full Stupp protocol of adjuvant treatment. The median (IQR)
CV was 28.1 cm3 (12.6–50.3), WV was 103.3 cm3 (45.6–160.1), and tumour diameter was
4.4 cm (3.3–5.4). Histograms of tumour size (Figure S1) showed that distributions of CV and
WV were slightly positively skewed and that tumour diameter was normally distributed
prior to any transformation. These data confirm that our population is representative of
patients diagnosed with GBM in other typical neuroscience centres [35].

Table 1. Summary of patient demographics and treatment (n = 279).

Demographic Value

Age, years–median (IQR) 62 (55–68)
Gender–no. female (%) 108 (39%)

Surgical treatment–no. (%)
Biopsy 71 (25%)

100% resected a 57 (20%)
≥90% resected a 86 (31%)
<90% resected a 65 (23%)

Adjuvant oncology treatment–no. (%)
No Stupp 150 (54%)

Full Stupp b 58 (21%)
Partial Stupp c 71 (25%)

MGMT methylation–no. (% of known) d 103 (40%)
Overall survival, months–median (95% CI) 12 (11–14)

Maximum tumour diameter, cm–median (IQR) 4.4 (3.3–5.4)
Core volume, cm3–median (IQR) 28.1 (12.6–50.3)

Whole volume, cm3–median (IQR) 103 (45.6–160)
a Percentage of contrast enhancing and necrotic tumour core removed; b Completed 60Gy in 30 fractions radiother-
apy with concomitant temozolomide and six cycles adjuvant temozolomide; c Completed 60 Gy in 30 fractions
radiotherapy with concomitant temozolomide and began adjuvant temozolomide; d 258 cases with the result
known; IQR—Interquartile range; MGMT—O6-methylguanine-DNA methyltransferase; CI—Confidence interval.

3.2. Segmentations and Univariable Cox Models of Tumour Size

The mean (±standard deviation) dice score for core and oedema segmentations was
0.94 ± 0.05 and 0.97 ± 0.03, respectively, which are equivalent to values published in the
BRATS segmentation dataset, in which multiple expert raters segment the same GBM
images, and our segmentation concordance was therefore within the expected variation of
inter-rater agreement [7].

Table 2 summarises the univariable Cox regression models for CV, WV, and diam-
eter, with and without log transformation. The results of the models derived from the
institutional GBM images show limited evidence for a univariable prognostic relationship
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between tumour volume or diameter and OS. C-indices for all models were 0.5 and all
hazard ratios (HRs) crossed 1.

Table 2. Summary of univariable Cox proportional hazards models for each tumour size parameter
(whole volume, core volume, and diameter) for predicting overall survival (n = 279).

Whole Volume (WV) Core Volume (CV) Tumour Diameter

WV log(WV) CV log(CV) Diameter log(Diameter)

C (95% CI) 0.5 (0.46–0.54) 0.5 (0.46–0.54) 0.5 (0.46–0.54) 0.5 (0.46–0.54) 0.5 (0.46–0.54) 0.5 (0.46–0.54)
HR (95% CI) 1 (1–1) 1.1 (0.81–1.6) 1 (1–1) 0.95 (0.71–1.3) 1 (0.93–1.1) 0.94 (0.43–2)

p value 0.784 0.475 0.539 0.704 0.745 0.875

C-index—Concordance index; HR—Hazard ratio; WV—Whole volume; CV—Core volume.

In Figure S2a–c, each tumour size parameter (with and without log transformation)
was plotted against the log-HR. The fit of a linear function to the data was compared with
the use of splines and these suggest that there was limited evidence that the tumour size
parameters had a univariable prognostic relationship—the model closely followed the
reference line for linear and non-linear functions. These results show that within our cohort,
there was no evidence to support a univariable linear or non-linear prognostic relationship
between OS and size.

In multivariable analyses, however, there was evidence of a prognostic association
between size and OS when adjusting for clinical variables. A summary of the association of
size variables in multivariable models with OS is shown in Table 3. CV, WV, log(WV), and
diameter adjusted for type of surgery showed a statistically significant association with OS
and although not significant at the 0.05 level, the HRs for log(CV) and log(diameter) were
relatively wide, especially the latter, indicating uncertainty in the HR estimate. Similarly, for
the model adjusted for all clinical variables, only diameter remained statistically significant
at the 0.05 threshold (p = 0.032); however, the HR for log(CV), log(WV), and log(diameter)
suggested a potential prognostic effect with relatively wider confidence intervals (and less
certainty) for HR estimate of the latter two variables. The univariable and multivariable
prognostic associations of each clinical variable to OS are provided in Table S2a,b. Data
from our cohort of GBM patients does therefore suggest that size was associated with OS
in multivariable models and whilst several related parameters did not achieve statistical
significance, there was supportive evidence of a potential prognostic relationship.

3.3. Resampling Study

The results of the resampling experiments using univariable and multivariable models,
the latter adjusted for operation type and all clinical variables, are shown in Table S3a
and Table 4, respectively. In univariable models of tumour size, for all size variables,
higher percentages of models with p < 0.05 were seen as the sample size increased and for
tumour volume (CV or WV), the same was observed after log transformation, although
the change was modest. For WV, 5.14 vs. 5.60% (n = 50 vs. n = 279), for CV 5.07 vs.
8.60%, and for diameter 5.43 vs. 6.39% models had p-values < 0.05 across all repetitions
on non-transformed data. The distributions of p-values (across all repetitions per sample
size at n = 50 vs. n = 279) differed significantly on two-sided Kolmogorov–Smirnov testing
(test p-values < 0.0001). Table S3b,c also shows the percentages of models with p < 0.01 and
p < 0.001 and this shows the same overall trend for the tumour size parameters but with
successively lower percentages of models as the p-value threshold was lowered.
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Table 3. Table of the prognostic effect of each tumour size parameter (whole volume, core volume, and diameter) within multivariable models predicting overall
survival that have been adjusted for selected clinical variables (n = 279).

Tumour Diameter Whole Volume (WV) Core Volume (CV)

Diameter log(Diameter) WV log(WV) CV log(CV)

Variable HR (95% CI) p HR (95% CI) p HR (95% CI) p HR (95% CI) p HR (95% CI) p HR (95% CI) p

Age 1.01
(0.92–1.10) 0.91 0.86

(0.39–1.88) 0.70 1.00
(1.00–1.00) 0.90 1.09

(0.78–1.5) 0.61 1.00
(1.00–1.01) 0.56 0.93

(0.7–1.23) 0.6

Gender 1.00
(0.92–1.10) 0.93 0.87

(0.40–1.89) 0.73 1.00
(1.00–1.00) 0.99 1.09

(0.78–1.5) 0.61 1.00
(1.00–1.01) 0.71 0.91

(0.69–1.22) 0.54

Type of surgery 1.14
(1.02–1.26) 0.016 2.4

(0.96–5.98) 0.063 1.00
(1.00–1.00) 0.013 1.90

(1.28–2.82) 0.001 1.01
(1.00–1.01) 0.018 1.29

(0.93–1.79) 0.13

Adjuvant oncology treatment 1.00
(0.91–1.09) 0.93 0.82

(0.37–1.79) 0.61 1.00
(1.00–1.00) 0.99 1.05

(0.75–1.47) 0.76 1.00
(1.00–1.01) 0.67 0.92

(0.69–1.23) 0.58

MGMT methylation 1.02
(0.93–1.12) 0.70 0.96

(0.43–2.18) 0.93 1.00
(1.00–1.00) 0.98 1.10

(0.78–1.5) 0.60 1.00
(1.00–1.01) 0.71 0.94

(0.70–1.26) 0.68

Age + Gender + Surgery + Oncology +
MGMTa

1.12
(1.01–1.25) 0.032 2.3

(0.91–6.01) 0.076 1.00
(1.00–1.00) 0.24 1.45

(0.98–2.14) 0.06 1.00
(1.00–1.01) 0.072 1.24

(0.89–1.7) 0.20

Each row of the table presents the results from the Cox proportional hazards models that include the tumour size variable specified by the column name (either diameter, core, or whole
volume or their log-transformed versions) and the clinical variable indicated in the ‘Variable’ column. The stated hazard ratios (and 95% confidence intervals) refer to the selected tumour
size variable and not the clinical variable indicated in the ‘Variable’ column. The stated p-values refer to the Wald test for the regression coefficient of the tumour size variable and not
the overall multivariable Cox model significance/p-value. HR—Hazard ratio; CI—Confidence interval; CV—Core volume; WV—Whole volume; MGMT—O6-methylguanine-DNA
methyltransferase; an = 258, cases with known MGMT result.
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In the multivariable resampling experiment, increasing sample size increased the per-
centages models, either adjusted for operation type or all clinical variables (see Table S4a–d
for results for multivariable models adjusted for other clinical predictors), in which the
tumour size variable’s Cox regression coefficient had a Wald test p-value < 0.05. The impact
of increasing sample size was much greater than compared with univariable modelling.
Again, the distributions of p-values (comparing n = 50 vs. n = 279) differed significantly
on two-sided Kolmogorov–Smirnov testing (all test p-values < 0.0001). Log transforma-
tion consistently increased the percentages of multivariable models with WV regression
coefficient Wald test p-values < 0.05 (Table 4).

Table 4. Percentage of multivariable models, either adjusted for operation only (left) or adjusted for
all clinical variables (right), in which the tumour size variable’s regression coefficient has a Wald-test
p-value < 0.05 during the resampling study.

Adjusted for Operation Type Adjusted for Age + Gender + Surgery + Oncology + MGMT

Sample
Size

Tumour Diameter Whole Volume
(WV)

Core Volume
(CV) Sample

Size
Tumour Diameter Whole Volume

(WV)
Core Volume

(CV)

Diameter log(Diameter) WV log(WV) CV log(CV) Diameter log(Diameter) WV log(WV) CV log(CV)

50 19.01 14.78 19.45 26.30 17.15 11.93 50 19.53 16.39 14.95 15.54 14.87 12.93
100 31.24 21.54 32.15 47.22 28.95 16.28 100 26.74 20.39 16.13 20.97 19.15 13.78
150 42.94 28.75 44.56 64.84 40.92 21.16 150 35.14 26.01 18.29 27.80 25.15 16.32
200 53.50 36.03 55.58 77.80 51.63 26.03 200 43.47 32.24 20.47 34.84 31.77 19.38
250 62.47 42.82 65.10 86.42 61.30 30.92 250 51.34 38.30 23.06 41.89 38.19 22.67
279 67.16 46.66 69.87 89.94 66.05 33.61 258 a 55.67 41.79 24.57 45.72 41.89 24.50

The percentages in the table cells represent the percentage of resamples in which the Wald test p-value for the
regression coefficient of the selected tumour size variable (each column) was <0.05. The left side of the table shows
the results when each tumour size variable was adjusted only for the type of operation (i.e., size + operation
entered into the Cox model) and the right side of the table shows the results when size was adjusted for all clinical
variables stated. CV—Core volume; WV—Whole volume; MGMT—O6-methylguanine-DNA methyltransferase;
a Maximum sample size limited to 258 due to the number of cases with a known MGMT result.

Figure 3a–c shows the distributions of the p-values extracted from models during
the univariable models in the resampling experiment. For CV and WV but not diameter
there was modest a downward trend as the sample size increased, suggesting that this
increased the probability of seeing a prognostic effect. Figure 4a–f shows the distribution
of p-values across resamples for the regression coefficients of each tumour size variable
within multivariable models, which have either been adjusted for only operation type
(Figure 4a,c,e) or adjusted for all clinical variables (Figure 4b,d,f) at different sample
sizes. These charts showed a much greater downward trend for all size variables and the
consistent effect of log transformation in shifting the p-value distribution of WV downwards
in multivariable modelling. Overall, results from univariable and multivariable resampling
indicated that increased sample size for all size parameters and, in the case of WV, log
transformation increased the chances of showing a significant univariable and multivariable
association with OS.
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Figure 3. Three sets of boxplots showing the distribution of p-values (y-axis) extracted from each
univariable model for tumour diameter: (a) whole volume (b) or core volume (c) vs. overall survival
created across the 1,000,000 repetitions for each sample size (x-axis). Boxes outline the interquartile
range of p-values from the resampling experiment, with median values indicated by the central
thick black line. Tails represent 1.5 × the interquartile range of the distribution (outliers not shown).
Models with and without log transformation are shown side by side (see figure legends). The dotted
horizontal lines represent the p-value thresholds for statistical significance (0.05).
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Figure 4. Six sets of boxplots showing the distribution of p-values (y-axis) for the Wald test of
the regression coefficient of tumour diameter (a,b), whole volume (c,d), or core volume (e,f) in a
multivariable Cox model vs. overall survival created across the 1,000,000 repetitions for each sample
size (x-axis). The left column of graphs (a,c,e) shows results from models including the selected
tumour size variable and operation type only and the right column (b,d,f) shows results from the
multivariable model with all clinical variables and the selected tumour size variable. Boxes outline
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the interquartile range of p-values from the resampling experiment, with median values indicated by
the central thick black line. Tails represent 1.5 × the interquartile range of the distribution (outliers
not shown). Models with and without log transformation are shown side by side (see figure legend).
The dotted horizontal lines represent the p-value thresholds for statistical significance (0.05).

4. Discussion

We set out to explore the prognostic effect of tumour volume and diameter in our
institutional cohort of patients with GBM and specifically to show how the choice of sample
size and consideration of non-linear transformations may impact on the chances of detecting
a prognostic effect. Univariable models did not initially provide any evidence of a linear
or non-linear prognostic relationship between size and OS; however, the multivariable
models and resampling experiments showed that there is a prognostic role for tumour
size in our dataset. Tumour diameter was prognostic in multivariable models adjusted for
operation type and all clinical variables combined, whereas CV and WV were prognostic
for the operation-adjusted model and showed evidence of potential prognostic effects in
the combined multivariable model as well as the resampling experiments.

For WV, log transformation could also increase the probability of detecting a statisti-
cally significant effect, potentially due to the positively skewed distribution. WV might
play a role in prognostication even when adjusted for the extent of tumour core resection
as illustrated in our multivariable models and resampling experiments and this could
be due to WV encompassing more of the infiltrated brain tissue. However, WV is in-
frequently explored as a candidate prognostic variable in patients with GBM [6,36–38].
In 65 patients, Iliadis et al. found no significant association between WV and OS using
univariable Cox modelling [37] and it is unclear if any log or other transformation was
considered. Palpan Flores et al. investigated the equivalent of WV in 44 IDH-wildtype
GBM patients and found a significant effect of WV > 60 cm3 in univariable and multi-
variable models (adjusted HR 3.93 95% CI 1.23–10.2, p = 0.018) [38]. Other groups have
investigated peritumoural oedema alone, rather than WV, and these studies have shown
mixed results [20,36,39–41]. Fuster-Garcia et al. found no prognostic effect for peritumoural
oedema volume in 84 patients [39], whereas Wangaryattawanich et al. showed a statis-
tically significant effect for peritumoural oedema when dichotomising volume using a
threshold of 85,000 mm3 in a cohort of 94 patients [20]. Although the multivariable model
adjusted for all clinical parameters in the complete cohort did not show a statistically
significant result for log-transformed WV, the confidence interval for its hazard ratio was
relatively wide, suggesting a higher degree of uncertainty in the result. Second, the results
of the multivariable resampling for the log(WV) full clinical model suggested that at the
sample sizes used in the above-cited literature, there is a lower chance of detecting the
potentially prognostic role than in our cohort study.

For tumour diameter and CV, which are more commonly investigated [4,6], there
are several studies in similarly sized institutional datasets that did not show a prognostic
effect for either CV [12,36,42] or diameter [17,43]. However, a small positive effect size
has been shown in studies with larger datasets [13,18]. These findings support the initial
multivariable model and experiment resampling findings, which indicate that diameter
does have a small multivariable prognostic effect and that CV could potentially have
prognostic effects, after adjustment for other clinical parameters and in larger samples.
Li et al. for example found that contrast enhancing the tumour volume had a small but
statistically significant effect in a cohort of 1226 GBM patients (HR 1.004 95% CI 1.002–1.006,
p < 0.001) [18]. Senders et al. also showed a small (relative survival rate for a 10 cm
increase in diameter-0.99 95% CI 0.99–1.00) but significant effect of tumour diameter in
16,656 patients [13]. Whilst it could be argued that such a small effect size is not clinically
significant, the aim of our study was not to produce a prognostic model for clinical use
but to identify the barriers to detecting potentially significant effects in GBM prognostic
models and suggest that resampling and data transformation can have a role in highlighting
the uncertainty of predictor selection in relatively small datasets. Future studies would
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benefit from leveraging multi-institutional networks [26] or online imaging repositories to
further increase statistical power for studying clinically relevant size parameters including
volumetric assessments.

An important consideration in regression modelling is the inclusion of any non-linear
transformation of variables [44], although this is not routinely documented in prognostic
modelling studies in GBM [4,6]. The advantages include more flexible modelling of con-
tinuous variables that might not have a simple linear relationship to the outcome but this
comes with the drawback of potentially overfitting a model to the development dataset.
In our univariable resampling study, logarithmic transformation led to a modestly higher
rate of significant models for WV and this effect was much greater in multivariable mod-
els. The results of our resampling study point to a possible explanation as to why some
prognostic models that assume linear relationships between volume and outcome return
non-significant results, particularly in the case of WV. In the present study, the WV shows a
small positive skew and large range that might explain why log transformation increased
the chances of detecting a potential prognostic relationship for WV.

Bootstrapping (resampling with replacement) as a method for exploring model uncer-
tainty has been described elsewhere in the statistics literature [21,22,44] and was used in
our resampling study to demonstrate the variability in the prognostic effect of tumour size.
By resampling a dataset multiple times, researchers can identify the uncertainty in multiple
aspects of the model-building process, such as feature selection, internal validation of
model accuracy, and model stability [21]. Our study suggests that when selecting one of
these size variables in GBM prognostic models based on univariable model significance,
there could be up to 5–10% uncertainty in whether they might be statistically significant
and therefore included in a multivariable model if using this as a selection criterion. The
uncertainty is shown to be even greater in the multivariable resampling and there could
be a large amount of uncertainty as to whether a variable is prognostic based on a limited
sample size. This is one of the reasons that this approach of univariable screening of
candidate predictors is generally not recommended for multivariable model building and
also why focusing on p-values in multivariable modelling may lose some of the important
information in estimating prognostic effects [21,22].

There are several limitations of our study. The MRI acquisition parameters were
heterogeneous, especially slice thickness, and this could have impacted upon the accuracy
of volume measurements. However, the spatial resampling of images to an isotropic 1 mm3

voxel resolution should have reduced the impact of acquisition heterogeneity. Furthermore,
the dataset represents a retrospective real-world clinical dataset, which in our institution’s
routine practice is likely to include different imaging acquisitions due to patients being
referred from other centres, with their own (varying) MRI protocols. A proportion of
our patients had to be excluded due to a lack of the necessary MRI sequences for the
deep-learning segmentation algorithm. The efficiency of a semi-automated segmentation
approach outweighed the potential limitation of a reduced sample size. We investigated
only three size variables but there are many others described in the literature. Whilst this
could be deemed a limitation of our approach, we did not aim to provide a comprehensive
study of the prognostic role of all possible tumour size parameters in GBM but to investigate
some of the methodological issues affecting this question that could be applied to any of
the other continuous measures of tumour size in GBM.

5. Conclusions

In summary, univariable models derived from our large well-curated institutional
dataset of patients with GBM showed limited evidence to support a linear or non-linear
prognostic association between size and patient outcome; however, the multivariable
models did support a prognostic role for tumour size. The diameter showed a significant
multivariable association with survival, whereas CV and log(WV) showed significant
effects when adjusted for operation type and potential for an effect in the full clinical model.
Importantly, resampling demonstrated the impact that increasing sample size and log
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transformation (for WV) had in increasing the ability to detect prognostic relationships in
univariable and multivariable models.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cancers16071301/s1. Figure S1: Histograms of tumour diameter,
core tumour, and whole tumour volumes before and after logarithmic transformation; Figure S2a–c:
Non-linear modelling of (a) tumour diameter, (b) whole tumour volume, and (c) core tumour volume
with log transformation and penalised splines; Table S1: Summary of MRI acquisition parameter per
imaging sequence; Table S2a,b: (a) Univariable and (b) multivariable association between clinical
variables and overall survival; Table S3a–c: Percentage of univariable tumour size models with model
(a) p-values < 0.05, (b) p-values < 0.01, and (c) p-values < 0.001 during the resampling study; Table
S4a–d: Percentage of resamples in which the multivariable tumour size model (a) adjusted for patient
age (i.e., age + tumour size in model), (b) adjusted for patient gender (i.e., gender + tumour size in
model), (c) adjusted for adjuvant oncology treatment received (i.e., oncology treatment + tumour size
in model), and (d) adjusted for MGMT promoter methylation (i.e., MGMT methylation + tumour size
in model) has a tumour size regression coefficient Wald test p-value < 0.05.
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