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Simple Summary: This study aimed to pinpoint immune-related genes that show heightened activity
in cancerous tissue and explore their correlation with cell infiltration in the tumor microenvironment
using bioinformatics analysis. By examining gene expression from both stomach cancer and adjacent
healthy tissues, we aimed to uncover their significance in cancer development and their impact
on the body’s immune response. We identified several genes, including FN1, COL1A2, THBS2,
COL3A1, COL5A1, and BGN, which appear to be associated with poorer outcomes for stomach
cancer patients. These genes also demonstrate connections to specific immune cells within cancerous
tissue. Understanding the role of these genes in the immune response to cancer could facilitate
the development of novel treatments and enhance prognostic capabilities for individuals with
stomach cancer.

Abstract: Objective: Gastric carcinoma (GC) is the fifth most commonly diagnosed cancer and
the third leading cause of cancer-related deaths globally. The tumor microenvironment plays a
significant role in the pathogenesis, prognosis, and response to immunotherapy. However, the
immune-related molecular mechanisms underlying GC remain elusive. Bioinformatics analysis of
the gene expression of GC and paracancerous healthy tissues from the same patient was performed
to identify the key genes and signaling pathways, as well as their correlation to the infiltration of
the tumor microenvironment (TME) by various immune cells related to GC development. Methods:
We employed GSE19826, a gene expression profile from the Gene Expression Omnibus (GEO),
for our analysis. Functional enrichment analysis of Differentially Expressed Genes (DEGs) was
conducted using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes database.
Results: Cytoscape software facilitated the identification of nine hub DEGs, namely, FN1, COL1A1,
COL1A2, THBS2, COL3A1, COL5A1, APOE, SPP1, and BGN. Various network analysis algorithms
were applied to determine their high connectivity. Among these hub genes, FN1, COL1A2, THBS2,
COL3A1, COL5A1, and BGN were found to be associated with a poor prognosis for GC patients.
Subsequent analysis using the TIMER database revealed the infiltration status of the TME concerning
the overexpression of these six genes. Specifically, the abovementioned genes demonstrated direct
correlations with cancer-associated fibroblasts, M1 and M2 macrophages, myeloid-derived suppressor
cells, and activated dendritic cells. Conclusion: Our findings suggest that the identified hub genes,
particularly BGN, FN1, COL1A2, THBS2, COL3A1, and COL5A1, play crucial roles in GC prognosis
and TME cell infiltration. This comprehensive analysis enhances our understanding of the molecular
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mechanisms underlying GC development and may contribute to the identification of potential
therapeutic targets and prognostic markers for GC patients.

Keywords: gastric adenocarcinoma; bioinformatics analysis; tumor microenvironment; gene expression
omnibus; survival

1. Introduction

Despite marked geographical and regional variations in the frequency of gastric cancer
(GC), there has been a consistent decline in its incidence in Western countries in recent
decades. Nevertheless, GC continues to hold its position as the fifth most commonly
diagnosed cancer and ranks as the third leading cause of cancer-related deaths globally [1].

GC originates from the gastric epithelium and develops through a stepwise pro-
gression via precancerous conditions, such as chronic gastritis, advancing towards early
carcinomas that infiltrate the mucosa and submucosa. GC has a multifactorial etiology.
Endogenous risk factors, such as genetic predisposition, and exogenous factors, like chronic
H. pylori-induced gastritis or the increased intake of nitrates, play pivotal roles in its
development [2].

The treatment of gastric adenocarcinoma is stage-dependent and involves various
multimodal approaches. In recent years, with advancements in endoscopic intervention
capabilities, endoscopic submucosal dissection (ESD) and endoscopic mucosal resection
(EMR) have emerged as the preferred methods for treating early stage GC, while surgical
intervention remains the therapy of choice for more advanced cases [3,4]. Despite progress
in understanding the pathogenesis and pathophysiology of GC, perioperative therapy
primarily relies on systemic chemotherapy regimens, such as fluorouracil, oxaliplatin,
docetaxel, and leucovorin (FLOT) or epirubicin, cisplatin, and capecitabine (ECX), leading
to considerable side effects. While neoadjuvant and adjuvant chemotherapy represent
essential approaches, immunotherapy plays a limited role in GC treatment compared
to many other cancer types [4]. As an example, recent investigations propose that the
combination of pembrolizumab and chemotherapy may represent a therapeutic approach
for individuals diagnosed with locally advanced or metastatic HER2-negative gastric or
gastroesophageal junction adenocarcinoma [5]. Additionally, nivolumab has exhibited
superior overall survival when administered alongside chemotherapy compared to sole
chemotherapy in previously untreated patients with an advanced gastric, gastroesophageal
junction, or esophageal adenocarcinoma [6].

The term tumor microenvironment (TME) refers to the intricate relationships between
host cells and malignant cells that develop as a result of tumor cell infiltration [7]. Tumor
cells induce substantial molecular, cellular, and physical alterations within the tissues
they invade. While the composition of the TME differs among various types of tumors,
common characteristics encompass immune cells, stromal cells, blood vessels, and the
extracellular matrix (ECM) [8]. The heterogeneity of the TME in GC, particularly with
regard to the complexity of the immunological aspects [9], contributes to the lack of
widespread acceptance and success of immunotherapy, such as in non-small cell lung cancer
or renal cell carcinoma. Therefore, further exploration of the TME and the identification
of the key genes related to immune infiltration has garnered significant attention and
may serve as a crucial step toward decoding this complexity and the development of new
therapies. Through the analysis of the TME, it is hoped that, in the future, it will be possible
to predict which GC patients will benefit from immune–oncology treatments and which
will not.

Microarray technology, coupled with bioinformatics analysis, has been extensively
employed to scrutinize genetic variations across genome sequencing [10]. Despite nu-
merous studies employing these methodologies to explore the clinical relevance of TME
infiltrates [11,12], a comprehensive understanding of the diverse array of cells infiltrat-
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ing the TME remains elusive. Notably, a recent bioinformatics investigation unveiled
Stromal-Related Gene Signatures that are intricately linked to macrophage infiltration [13].

The aim of our study was to identify immune-related genes that are overexpressed
in cancerous tissue and investigate the relationship of these genes with cell infiltration
in the TME through bioinformatics analysis. Subsequently, we determined which of
these genes play a significant role in the pathogenesis and progression of GC, potentially
serving as targets for pharmaceutical therapies. In our study, we utilized GSE19826 [14], a
gene expression profile retrieved from the Gene Expression Omnibus (GEO), for analysis.
Subsequently, we conducted a functional enrichment analysis of Differentially Expressed
Genes (DEGs), using both the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database. We identified hub DEGs demonstrating high connectivity.
Following this, we delved into assessing the infiltration status of immune cells in GC using
the Tumor Immune Evaluation Resource (TIMER) [15]. Finally, we attempted to establish
correlations between these hub DEGs and immune cells, revealing pertinent associations in
our research.

2. Materials and Methods
2.1. Microarray Data

The expression profiles of genes associated with gastric adenocarcinoma were obtained
from the GEO database (https://www.ncbi.nlm.nih.gov/geo/, accessed on 1 December 2023).
One gene expression profile was derived from human gastric adenocarcinoma samples.
The GSE19826 series [14] includes 12 samples of GC human tissue and 12 samples of
corresponding non-cancerous human tissue from the same patients, along with 3 samples
from healthy individuals serving as controls. We utilized the 12 cancerous and 12 non-
cancerous samples from the same patients for our analysis. The populations of cancer
tissues at each TNM stage were homogenous. Based on the annotation information from the
platform, probes were converted into corresponding gene symbols. Additional information
regarding the basic characteristics of the patients can be directly acquired from the gene
expression profile [14].

2.2. Identification of DEGs between Normal and GC Tissue

The GEO2R tool, available within the GEO series (https://www.ncbi.nlm.nih.gov/
geo/geo2r/, accessed on 1 December 2023) [16], was employed to discern DEGs between
non-cancerous tissue and GC tissue samples. Genes lacking corresponding gene symbols
and those represented by multiple probes were excluded independently. A threshold of
|Log2FC| > 1.5 and an adjusted p < 0.05 were applied as criteria for statistical significance.

2.3. Functional Enrichment Analyses of the GC-Related DEGs

In order to explore the biological roles of the identified DEGs within cellular com-
ponents (CCs), molecular functions (MFs), and biological processes (BPs), the ‘pathfindR’
package [17] was employed to conduct enrichment analyses using GO and the KEGG
pathways [18]. The ‘pathfindR’ package was chosen on the basis that it does not solely
rely on direct enrichment analysis and thus provides a more comprehensive perspective.
Depending solely on a list of significant genes might not provide sufficient information to
fully comprehend the underlying disease mechanisms.

2.4. Construction of PPI Network and Identification of Hub DEGs

Furthermore, the GC-associated DEGs identified through the aforementioned methods
underwent analysis in the STRING online analysis tool (http://string-db.org, Version: 11.5,
accessed on 1 December 2023) [19]. This step was aimed at predicting potential protein
interactions among the encoded proteins, utilizing a medium confidence score (>0.4).
Utilizing the outcomes obtained from the STRING analysis, a PPI network involving
these genes was constructed using the Cytoscape software platform (version: 3.7.10) [20].
To pinpoint the top 10 hub DEGs associated with this network, the ‘cytoHubba’ plugin

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
http://string-db.org
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software in Cytoscape employed a hybrid computation, integrating EPC, Degree, MNC,
MCC, and Bottleneck algorithms. This methodology facilitated the further identification of
the top 10 hub DEGs.

2.5. Prognostic Value of Hub DEGs as Biomarkers in GC

The prognostic value of the identified top 10 gene hubs was assessed using Kaplan–Meier
curves from OncoLnc [21]. OncoLnc encompasses survival information for 8647 individuals
across 21 cancer investigations conducted by The Cancer Genome Atlas. These curves were
instrumental in evaluating the prognostic efficacy for patients diagnosed with GC, enabling
differentiation between those with high and low expression levels of the specified genes.

2.6. Correlation Analyses between Hub DEGs and Infiltrating Immune Cells

The potential associations between the hub DEGs and infiltrating immune cells within
the TME were explored using Spearman correlation analysis performed in R [22] using
TIMER [15]. TIMER is an open-source server used for a comprehensive analysis of tumor-
infiltrating cells in various cancers.

2.7. Expression of Hub Genes in Normal or GC Tissue

The expression analysis of hub genes between normal or GC samples was conducted
by Student’s t-test. A p-value < 0.05 was considered significant.

3. Results
3.1. Identification of DEGs between Normal and GC Tissue

In GSE19826, a total of 153 DEGs were confirmed in the cancer tissue, including
91 down-regulated genes and 62 up-regulated genes (Figure 1). The genes are more pre-
cisely listed in Supplementary Table S1.
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3.2. Functional Enrichment Analyses

The enriched BPs included collagen fibril organization, skin development, endodermal
cell differentiation, neuron projection development, skeletal system development, cardiac
right ventricle morphogenesis, protein ubiquitination, negative regulation of the apop-
totic signaling pathway, phospholipid efflux, and blood vessel development (Figure 2a,
Table 1a). The CCs were endoplasmic reticulum lumen, collagen-containing extracellu-
lar matrix, extracellular matrix, endoplasmic reticulum–Golgi intermediate compartment,
microfibril, extracellular exosome, very-low-density lipoprotein particle, endocytic vesi-
cle lumen, high-density lipoprotein particle, and Cul3-RING ubiquitin ligase complex
(Figure 2b, Table 1b). The enriched MFs included platelet-derived growth factor binding,
extracellular matrix structural constituent, protease binding, integrin binding, transcription
cis-regulatory region binding, tau protein binding, heparan sulfate proteoglycan binding,
proteoglycan binding, extracellular matrix structural constituent conferring tensile strength,
and fibronectin binding (Figure 2c, Table 1c). The KEGG pathway analysis revealed en-
richment in protein digestion and absorption, ECM–receptor interaction, focal adhesion,
platelet activation, proteoglycans in cancer, the AGE-RAGE signaling pathway in diabetic
complications, amoebiasis, diabetic cardiomyopathy, the relaxin signaling pathway, and
the Wnt signaling pathway (Figure 2d, Table 1d).
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Figure 2. (a) Enrichment analysis of gastric cancer-related DEGs. GO analysis: enriched biological
processes; (b) functional enrichment analyses GO: cellular components; (c) functional enrichment
analyses GO: molecular functions; (d) KEGG pathway enrichment analysis.

3.3. Construction of PPI Network and Identification of Hub DEGs

A PPI network was created using the DEGs associated with GC (Figure 3). Concur-
rently, the identification of highly connected DEGs was performed through the utilization
of five computational methods within the Cytoscape software platform (Figure 4a–e). This
analysis involved the application of EPC, Degree, MNC, MCC, and Bottleneck algorithms
(Supplementary Table S2). Following this, nine hub genes (FN1, COL1A1, COL1A2, THBS2,
COL3A1, COL5A1, APOE, SPP1, and BGN) were identified from the overlap among the
top hub DEGs obtained through the application of the five methods. The differences in
expression levels of the previously listed genes between GC and normal tissues were
visualized using a heatmap (Figure 5). Additionally, we obtained the variance comparison
between GC and normal tissues (Figure 6a–i).
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Table 1. (a) Functional enrichment analyses GO: enriched biological processes. (b) Functional enrichment analyses GO: cellular components. (c) Functional
enrichment analyses GO: molecular functions. (d) KEGG pathway enrichment analysis.

(a)

ID Term_Description Fold_Enrichment Occurrence Support Lowest_p Highest_p Up_Regulated

1 GO:0030199 collagen fibril organization 50.540767 10 0.065658240 5.736930e-08 5.736930e-08
BMP1, COL1A1, COL1A2,
COL3A1, COL5A1,
COL5A2, ADAMTS2

2 GO:0043588 skin development 41.876636 10 0.025253169 2.297293e-05 2.297293e-05 COL3A1, COL5A1,
COL5A2

3 GO:0035987 endodermal cell differentiation 32.212797 10 0.030456853 4.686940e-05 4.686940e-05 COL8A1, COL12A1,
FN1, INHBA

4 GO:0031175 neuron projection development 8.488507 10 0.010101268 1.162934e-03 1.162934e-03 APOE, MYOC, SH3GL2

5 GO:0001501 skeletal system development 22.334206 10 0.005050634 2.114611e-03 2.114611e-03

COL1A1, COL1A2,
COL10A1, FBN1, HOXA13,
TNFRSF11B, SOX4,
TEAD4

6 GO:0003215 cardiac right ventricle morphogenesis 38.069669 10 0.012719036 2.225033e-03 5.559604e-03 GATA4, SOX4

7 GO:0016567 protein ubiquitination 2.448926 10 0.010101268 2.942256e-03 2.942256e-03 NFE2L2, KLHL25

8 GO:2001234 negative regulation of apoptotic
signaling pathway 14.955941 10 0.005050634 3.680761e-03 3.680761e-03 GATA4

9 GO:0033700 phospholipid efflux 38.069669 10 0.005050634 3.707395e-03 3.707395e-03 APOC1, APOE

10 GO:0001568 blood vessel development 27.917757 10 0.025253169 4.246779e-03 4.246779e-03 COL1A1, COL1A2

(b)

1 GO:0005788 endoplasmic reticulum lumen 13.232394 10 0.180195851 9.961557e-11 9.961557e-11

APOE, SERPINH1, COL1A1, COL1A2,
COL3A1, COL5A1,
COL5A2, COL6A3,
COL8A1, COL10A1, COL12A1, FBN1,
FN1, IGFBP4, SPP1, TIMP1, P4HA3

2 GO:0062023 collagen-containing extracellular matrix 18.207233 10 0.085860776 2.192636e-08 2.192636e-08 BGN, COL1A1, COL3A1, COL5A1,
COL6A3, FN1, MYOC, SFRP2

3 GO:0031012 extracellular matrix 22.274806 10 0.095477387 1.306355e-05 1.306355e-05 APOE, COL6A3, ELN, FBN1, FN1
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Table 1. Cont.

4 GO:0005793 endoplasmic reticulum–Golgi
intermediate compartment 8.546252 10 0.050761421 1.484223e-05 7.398274e-05 SERPINH1, FN1

5 GO:0001527 microfibril 34.897196 10 0.015267274 5.961104e-04 9.932217e-04 FBN1, MFAP2

6 GO:0070062 extracellular exosome 3.579200 10 0.010101268 1.037442e-03 1.037442e-03 APOE, FN1

7 GO:0034361 very-low-density lipoprotein particle 29.911883 10 0.005050634 1.369197e-03 1.369197e-03 APOC1, APOE

8 GO:0071682 endocytic vesicle lumen 23.264798 10 0.010050251 1.381399e-03 6.434259e-03 APOE, SPARC

9 GO:0034364 high-density lipoprotein particle 27.917757 10 0.005050634 1.579702e-03 1.579702e-03 APOC1, APOE

10 GO:0031463 Cul3-RING ubiquitin ligase complex 6.158329 10 0.010101268 5.060305e-03 5.060305e-03 KLHL25

(c)

1 GO:0048407 platelet-derived growth factor binding 76.139337 10 0.055556973 2.976699e-14 2.976699e-14 COL1A1, COL1A2, COL3A1, COL5A1

2 GO:0005201 extracellular matrix structural
constituent 36.949973 10 0.106063311 6.443542e-06 6.443542e-06 COL3A1, ELN, FBN1, FN1, MUC5AC,

NID2

3 GO:0002020 protease binding 12.316658 10 0.085860776 9.474422e-05 1.288232e-04 COL1A1, COL1A2, COL3A1, FAP, FN1

4 GO:0005178 integrin binding 15.592364 10 0.025253169 1.422341e-04 1.440477e-04 COL3A1, FAP, FBN1, FN1, SFRP2,
SPP1, THY1

5 GO:0000976 transcription cis-regulatory region
binding 3.172472 10 0.010101268 6.020621e-04 6.733792e-03 GATA4, NFE2L2, SOX4

6 GO:0048156 tau protein binding 16.106398 10 0.010101268 1.568042e-03 1.568042e-03 APOE

7 GO:0043395 heparan sulfate proteoglycan binding 17.448598 10 0.005050634 1.989792e-03 1.989792e-03 APOE

8 GO:0043394 proteoglycan binding 32.212797 10 0.025253169 2.351293e-03 2.351293e-03 COL5A1, FN1

9 GO:0030020 extracellular matrix structural
constituent conferring tensile strength 41.876636 10 0.005050634 2.531860e-03 2.531860e-03 COL1A1, COL6A3

10 GO:0001968 fibronectin binding 19.941255 10 0.005050634 2.532614e-03 2.532614e-03 MYOC, SFRP2

(d)

1 hsa04974 protein digestion and absorption 21.149816 10 0.100502513 5.555187e-11 5.555187e-11
ELN, COL1A1, COL1A2, COL3A1,
COL5A1, COL5A2, COL6A3, COL8A1,
COL10A1, COL12A1
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Table 1. Cont.

2 hsa04512 ECM–receptor interaction 14.276126 10 0.061069098 1.036954e-06 1.036954e-06 COL1A1, COL1A2, COL6A3,
THBS2, FN1, SPP1

3 hsa04510 focal adhesion 8.502870 10 0.035354437 2.685352e-05 2.685352e-05 COL1A1, COL1A2, COL6A3,
THBS2, FN1, SPP1, PGF, TLN2

4 hsa04611 platelet activation 8.581278 10 0.010101268 1.964620e-04 1.964620e-04 TLN2, COL1A1, COL1A2,
COL3A1, PLA2G4C

5 hsa05205 proteoglycans in cancer 3.094333 10 0.015151902 2.490706e-04 2.490706e-04 COL1A1, COL1A2, FN1

6 hsa04933 AGE-RAGE signaling pathway in
diabetic complications 8.459926 10 0.055556973 5.189137e-04 5.189137e-04 FN1, COL1A1, COL1A2, COL3A1

7 hsa05146 amoebiasis 8.292403 10 0.055556973 5.512279e-04 5.512279e-04 COL1A1, COL1A2, FN1, COL3A1

8 hsa05415 diabetic cardiomyopathy 3.323543 10 0.010101268 7.352484e-04 7.352484e-04 COL1A1, COL1A2, COL3A1

9 hsa04926 relaxin signaling pathway 4.907418 10 0.010101268 1.126101e-03 1.126101e-03 COL1A1, COL1A2, COL3A1

10 hsa04310 Wnt signaling pathway 2.507583 10 0.005050634 1.259368e-03 1.259368e-03 SFRP2, SFRP4
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Figure 4. (a) The top 10 hub DEGS with the highest connectivity extracted by Bottleneck (color depth
for ranking of hub DEGs). (b) The top 10 hub DEGS with the highest connectivity extracted by
EPC (color depth for ranking of hub DEGs). (c) The top 10 hub DEGS with the highest connectivity
extracted by Degree (color depth for ranking of hub DEGs). (d) The top 10 hub DEGS with the highest
connectivity extracted by MCC (color depth for ranking of hub DEGs). (e) The top 10 hub DEGS with
the highest connectivity extracted by MNC (color depth for ranking of hub DEGs).



Cancers 2024, 16, 1280 13 of 23Cancers 2024, 16, x FOR PEER REVIEW 13 of 23 
 

 

 
Figure 5. Heatmap showcasing distinctly the gene expression alterations between GC samples and 
their respective normal tissue counterparts. K represents normal gastric tissue, and G represents GC 
tissue. 

3.4. Survival Analysis of Hub DEGs in GC 
Our results indicate that patients with an elevated expression of six hub DEGs, 

screened out by the five methods mentioned above, were associated with a poor survival 
rate. The corresponding Kaplan–Meier curves can be seen in Figure 7a–i. Patients with an 
increased expression of FN1, COL1A2, THBS2, COL3A1, COL5A1, and BGN showed a 
poorer prognosis. 

3.5. TME Evaluation in GC 
We investigated the correlation between the expression of the aforementioned se-

lected genes, which were associated with survival, and the infiltration of cancer-associated 
fibroblasts, CD8+ activated dendritic cells, macrophages, and myeloid-derived suppressor 
cells (MDSCs). BGN demonstrated a direct correlation with cancer-associated fibroblasts, 
as well as M1 and M2 macrophages. Conversely, it exhibited an inverse relationship with 
MDSCs and activated dendritic cells (Figure 8a). FN1 exhibited a positive connection with 
cancer-associated fibroblasts and M2 macrophages while demonstrating a negative corre-
lation with activated dendritic cells (Figure 8b). THBS2 showcased a positive correlation 
with M1 and M2 macrophages and cancer-associated fibroblasts. In contrast, it showcased 
a negative correlation with activated dendritic cells (Figure 8c). COL1A2 displayed a pos-
itive association with M1 and M2 macrophages and cancer-associated fibroblasts. Con-
versely, it exhibited a negative association with activated dendritic cells (Figure 8d). 
COL3A1 demonstrated a positive correlation with M2 macrophages and cancer-associated 
fibroblasts. It also showcased a negative correlation with activated dendritic cells and 
MDSCs (Figure 8e). COL5A1 depicted a positive association with M2 macrophages and 
cancer-associated fibroblasts. Simultaneously, it portrayed a negative association with ac-
tivated dendritic cells (Figure 8f). The Pearson correlation curves can be seen in the Sup-
plementary Figures. 

Figure 5. Heatmap showcasing distinctly the gene expression alterations between GC samples and
their respective normal tissue counterparts. K represents normal gastric tissue, and G represents
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3.4. Survival Analysis of Hub DEGs in GC

Our results indicate that patients with an elevated expression of six hub DEGs,
screened out by the five methods mentioned above, were associated with a poor sur-
vival rate. The corresponding Kaplan–Meier curves can be seen in Figure 7a–i. Patients
with an increased expression of FN1, COL1A2, THBS2, COL3A1, COL5A1, and BGN showed
a poorer prognosis.

3.5. TME Evaluation in GC

We investigated the correlation between the expression of the aforementioned selected
genes, which were associated with survival, and the infiltration of cancer-associated fibrob-
lasts, CD8+ activated dendritic cells, macrophages, and myeloid-derived suppressor cells
(MDSCs). BGN demonstrated a direct correlation with cancer-associated fibroblasts, as well
as M1 and M2 macrophages. Conversely, it exhibited an inverse relationship with MDSCs
and activated dendritic cells (Figure 8a). FN1 exhibited a positive connection with cancer-
associated fibroblasts and M2 macrophages while demonstrating a negative correlation
with activated dendritic cells (Figure 8b). THBS2 showcased a positive correlation with
M1 and M2 macrophages and cancer-associated fibroblasts. In contrast, it showcased a
negative correlation with activated dendritic cells (Figure 8c). COL1A2 displayed a positive
association with M1 and M2 macrophages and cancer-associated fibroblasts. Conversely, it
exhibited a negative association with activated dendritic cells (Figure 8d). COL3A1 demon-
strated a positive correlation with M2 macrophages and cancer-associated fibroblasts. It
also showcased a negative correlation with activated dendritic cells and MDSCs (Figure 8e).
COL5A1 depicted a positive association with M2 macrophages and cancer-associated fi-
broblasts. Simultaneously, it portrayed a negative association with activated dendritic cells
(Figure 8f). The Pearson correlation curves can be seen in the Supplementary Figures.
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Figure 6. (a) The expression pattern of APOE in normal and GC tissue. (b) The expression pattern
of BGN in normal and GC tissue. (c) The expression pattern of COL1A1 in normal and GC tissue.
(d) The expression pattern of COL1A2 in normal and GC tissue. (e) The expression pattern of COL3A1
in normal and GC tissue. (f) The expression pattern of COL5A1 in normal and GC tissue. (g) The
expression pattern of FN1 in normal and GC tissue. (h) The expression pattern of SPP1 in normal and
GC tissue. (i) The expression pattern of THBS2 in normal and GC tissue.
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Figure 7. (a) Kaplan–Meier plot for APOE in GC. (b) Kaplan–Meier plot for BGN in GC. (c) Kaplan–
Meier plot for COL1A1 in GC. (d) Kaplan–Meier plot for COL1A2 in GC. (e) Kaplan–Meier plot for
COL3A1 in GC. (f) Kaplan–Meier plot for COL5A1 in GC. (g) Kaplan–Meier plot for FN1 in GC.
(h) Kaplan–Meier plot for SPP1 in GC. (i) Kaplan–Meier plot for THBS2 in GC.
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Figure 8. (a) Correlations between BGN and infiltrating immune cells and CAFs. (b) Correlations
between FN1 and infiltrating immune cells and CAFs. (c) Correlations between THBS2 and infiltrating
immune cells and CAFs. (d) Correlations between COL1A2 and infiltrating immune cells and CAFs.
(e) Correlations between COL3A1 and infiltrating immune cells and CAFs. (f) Correlations between
COL5A1 and infiltrating immune cells and CAFs.
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4. Discussion

The aim of this study was to identify the key genes involved in the pathogenesis and
treatment of gastric adenocarcinoma, particularly linking these genes with components of
the TME. This endeavor aimed to ascertain whether these genes and their corresponding
proteins could serve as therapeutic targets through immunotherapy. Our study involved
analyzing a publicly available GEO dataset to identify DEGs between human GC tissues and
non-tumor tissues. A pool of 153 DEGs was identified as potential candidate biomarkers.

The analysis of the enrichment function unveiled the mechanisms driving the DEGs.
Gene Ontology profiling highlighted substantial associations of DEGs with CCs, including
the endoplasmic reticulum lumen, endoplasmic reticulum–Golgi intermediate compart-
ment, and processes within the extracellular matrix, such as collagen fibril organization
and the structural constitution of the collagen-containing extracellular matrix, implying
that these genes may play a role in the progression of GC. Furthermore, DEGs were found
to be involved in specific biological processes, such as endodermal cell differentiation,
neuron projection development, and skeletal system development, as well as functions like
platelet-derived growth factor binding, protease binding, integrin binding, and skin devel-
opment. Additionally, our Kyoto Encyclopedia of Genes and Genomes analysis unveiled
their involvement in pathways such as protein digestion and absorption, ECM–receptor
interaction, focal adhesion, platelet activation, proteoglycans in cancer, the AGE-RAGE
signaling pathway in diabetic complications, amoebiasis, diabetic cardiomyopathy, the
relaxin signaling pathway, and the Wnt signaling pathway. Specifically, COL1A1, COL1A2,
COL6A3, THBS2, FN1, and SPP1 were found to be associated with both focal adhesion and
ECM–receptor interaction pathways. Cell–matrix adhesions are crucial for fundamental
biological processes. At these focal adhesions, actin filaments connect to integrin receptors
through a complex network of junctional plaque proteins [23,24]. Interactions between
cells and the extracellular matrix involve transmembrane molecules like integrins and
possibly proteoglycans, CD36, or other cell surface-related components. These interactions
directly or indirectly govern cellular activities, such as adhesion, migration, differentiation,
proliferation, and apoptosis [23,24]. Signaling pathways involving proteins like FAK initiate
downstream effects that trigger the reorganization of the actin cytoskeleton. Notably, the
active form of FAK, pFAK, has been linked to a poorer prognosis in patients diagnosed with
GC [25]. These findings highlight the emerging significance of the ECM in the pathogenesis
and progress of GC.

Another point to emphasize is the significant enrichment of the platelet activation
pathway in our KEGG analysis. The genes that were up-regulated were TLN2, COL1A1,
COL1A2, COL3A1, and PLA2G4C. Platelet activation and cancer share extensive and intri-
cate interactions [26,27]. These interactions are not unidirectional: the TME can activate
platelets, leading to an increased risk of thrombosis and a worse prognosis [28], while con-
versely, platelets themselves are associated with promoting tumor progression. Specifically,
when activated, they release transforming growth factor beta (TGF-β), vascular endothelial
growth factor (VEGF), and platelet-derived growth factor (PDGF) [29], which can facilitate
angiogenesis and tumoral neovascularization. COL1A1, COL1A2, and COL3A1 belong to
the group known as collagen fibers and have the potential to trigger the activation of GPV1.
Consequently, this leads to platelet activation and their degranulation. PLA2G4C encodes
the enzyme phospholipase A2γ, which hydrolyzes glycerophospholipids to produce free
fatty acids and lysophospholipids [30]. Delving into the intricacies of platelet activation
within the context of GC progression could potentially yield crucial insights into enhancing
patient outcomes and augmenting the effectiveness of immunotherapeutic interventions.

Additionally, we discovered nine major hub genes using the STRING database to
establish the PPI network and by employing five computational methods within the Cy-
toscape software platform. These genes include FN1, COL1A1, COL1A2, THBS2, COL3A1,
COL5A1, APOE, SPP1, and BGN. Further survival analysis of these genes indicates that six
(FN1, COL3A1, COL5A1, BGN, THBS2, and COL1A2) out of these nine up-regulated genes
were significantly associated with an unfavorable prognosis for patients with GC.
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The TME is a sophisticated milieu consisting of fibroblasts, endothelial cells, and
diverse immune cells [31]. The cells within the TME actively support and stimulate other
cell types and extracellular structures. This process fosters an environment that enables
tumor cells to evade host immune surveillance and develop increased resistance to cancer
therapy. Certain components of the TME deserve special attention, and our study focused
on exploring specific aspects. There is mounting evidence showcasing the functional diver-
sity of cancer-associated fibroblasts (CAFs) in studies on gastric adenocarcinoma. Typically,
the definition of CAFs serves as an overarching term referring to a heterogeneous group of
activated stromal cells. These cells exhibit functions that are distinct and set them apart
from those of normal fibroblasts (NFs) [32]. Generally, CAFs play a pivotal role in the
tumorigenesis process and cancer progression by releasing various ECM proteins and
regulatory molecules [33]. Several studies have demonstrated the capability of CAFs to
promote cancer invasion and migration through close interactions with tumor cells [33–35].
Additionally, CAFs regulate angiogenesis, immune suppression, and foster chemoresis-
tance in cancer cells [33,36]. It has been demonstrated that CAF infiltration is linked to an
immunosuppressive microenvironment and poorer survival outcomes in GC [37]. Cyto-
toxic CD8+ T cells are pivotal effectors in the anti-cancer immune response. They constitute
a critical element of cancer immunotherapy owing to their pleiotropic effects. Solid tumors
can be categorized into ‘cold’ and ‘hot’ tumors [38]. This categorization relies, in part, on
the quantity of infiltrating T cells, where a ‘hot’ tumor refers to a higher number of CD8+ T
cells, whereas a ‘cold’ tumor represents the opposite [39]. They have the ability to migrate
into the TME, and once differentiated into cytotoxic cells, they can exert cytotoxic effects
against cancer cells [40,41]. Additionally, numerous studies have associated increased CD8+

T cell infiltration in the cancer microenvironment with a better response to immunother-
apy [42]. Macrophages are among some of the most prevalent cell types found in the cancer
microenvironment [43]. These cells, known as tumor-associated macrophages (TAMs) [44],
are broadly classified into two main subtypes: M1-like and M2-like macrophages [45]. This
categorization is based on distinct genetic and functional characteristics that align with
those observed in normal macrophages. M1 macrophages respond to cytokines and bacte-
rial lipopolysaccharides, which trigger their activation. Consequently, they release various
molecules, such as nitric oxide synthase, reactive oxygen species, and the cytokine IL-12,
inducing damage to target cells [46,47]. Essentially, these cells exert an anti-cancer effect by
eliminating tumor cells [48]. Conversely, the differentiation of macrophages into the M2
phenotype is influenced by factors including CSF-1, IL-4, IL-13, and IL-10 [46,47]. These
cells contribute to anti-inflammatory responses and support tumor growth by suppress-
ing the immune system [48]. Under normal conditions, immature myeloid cells migrate
from the bone marrow to peripheral organs, where they undergo rapid maturation into
macrophages, dendritic cells, or granulocytes [49]. However, within the TME, various
factors disrupt the usual maturation process of these immature myeloid cells, leading
to the development of an immunosuppressive phenotype [50]. These myeloid-derived
suppressor cells (MDSCs) demonstrate a pivotal role in hindering adaptive antitumor
immunity by impeding T-cell activation and function while also facilitating the recruitment
and stimulation of T regulatory cells [51,52]. This orchestration by MDSCs contributes
significantly to immune evasion mechanisms within the tumor environment [51,52]. An
increased infiltration of MDSCs in GC has been associated with poorer prognosis [53]. Den-
dritic cells are among the most potent antigen-presenting cells in the immune system [54].
In a cancer context, dendritic cells participate in a process called cross-priming, wherein
they activate CD8+ T cells by presenting cancer antigens [55,56]. Subsequently, these CD8+

T cells undergo training and activation against the presented antigens, thereby initiating
a cytotoxic immune response against tumor components [55,56]. This response consti-
tutes a cornerstone of immunity against cancer antigens. Within the TME, various factors,
such as IL-6, IL-10, Vascular Endothelial Growth Factor, and Transforming Growth Factor
Beta, prevail [57,58]. These factors can negatively regulate the functions of dendritic cells,
potentially leading to T-cell tolerance and immune escape rather than immunity [59–61].
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FN1 is a protein-coding gene responsible for encoding Fibronectin 1 [62]. Fibronectin,
a high molecular weight glycoprotein [62], is found in the ECM. It plays crucial roles in
various cellular functions, such as cell adhesion, growth, migration, and differentiation,
contributing significantly to maintaining cell morphology [63]. Moreover, FN1 displays
chemotactic properties, attracting monocytes, and is involved in blood coagulation and
wound healing processes [64]. Other bioinformatic in silico analyses have suggested a corre-
lation between the overexpression of FN1 and a poorer prognosis of patients with GC [65,66].
Our investigation substantiated these prior findings and demonstrated a link between FN1
overexpression and heightened infiltration of the TME and M2 macrophages. Concurrently,
this gene was found to be associated with the reduced activity of dendritic cells.

COL1A2 is responsible for encoding a chain integral to type I collagen, the predom-
inant fibrillar collagen present in the majority of connective tissues [67]. COL3A1 and
COL5A1 encode the alpha-1 chains for type III and V collagen, respectively [67]. COL1A2,
COL3A1, and COL5A1 are highly prevalent structural proteins within the ECM. An ear-
lier bioinformatic analysis has also revealed the correlation between COL1A2, COL3A1,
COL5A1, FN1, and CAF infiltration in GC [66]. Furthermore, our study demonstrates
that the expression of COL1A2, COL3A1, and COL5A1 was positively correlated with M2
macrophages and negatively correlated with activated dendritic cells and CD8+ T-cell
infiltration. Hence, we suggest that these genes may play an important role in maintaining
and creating an immunosuppressive TME and subsequently promoting tumor progression.

THBS2 encodes the protein Thrombospondin-2, a member of the matricellular calcium-
binding glycoprotein family that interacts with growth factors, cell receptors, and the
ECM [68]. Its functions include regulating cell proliferation, adhesion, and apoptosis. This
gene has been extensively studied in relation to the prognosis and potential influence on
the TME of gastric adenocarcinoma [69,70]. Zhang et al. have also constructed a nomogram
centered around the expression of THBS2 [70]. Our research validates that the increased
expression of these genes correlates with a poorer survival rate linked to elevated levels of
CAFs and M2 macrophage infiltration. A negative correlation with activated dendritic cell
infiltration was also observed.

BGN is part of the small leucine-rich proteoglycans family and is responsible for
encoding Biglycan, a protein that can be modified to form a glycoprotein [71]. BGN plays
a role in cell proliferation, the migration of malignant cells, and reducing cell adhesion
by interacting with proteins in both the intracellular and extracellular matrix [72,73]. Two
in silico analyses have already demonstrated that high BGN expression is significantly
associated with poor overall survival in GC patients [74,75]. Additionally, Chen et al.
illustrated that BGN exhibited positive correlations with CD8+ T cells, macrophages, and
dendritic cell infiltration in GC samples [74]. Zhang et al. also found, among others, a
positive correlation between BGN expression and the infiltration of macrophages [75]. Our
study partially confirms the former findings. In contrast to Chen et al.’s results [74], we
observed a negative correlation with dendritic cells, potentially attributed to our focus
on activated dendritic cells. Furthermore, akin to other genes, BGN displays a distinct
positive correlation with CAFs. The aforementioned findings support the role of BGN in
the occurrence and progression of GC, particularly through its influence on the TME.

5. Conclusions and Limitations

In this study, we identified immune-related genes and investigated the relation of
the overexpression of these genes with cell infiltration in GC through bioinformatics
analysis. The pathways involving focal adhesion, ECM–receptor interaction, and platelet
activation appear to play a significant role in the pathogenesis and progression of GC,
potentially serving as targets for pharmaceutical therapies. FN1, COL3A1, COL5A1, BGN,
THBS2, and COL1A2 offer promising biomarkers for the prognosis assessment of GC
patients. Additionally, we observed a strong correlation between these genes and the
composition of the TME. However, our study has several limitations that require careful
consideration. Primarily, there is an urgent need for molecular experiments to validate our
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findings. Furthermore, our comparison was focused on paired GC tissues and their adjacent
counterparts without accounting for crucial details such as histological type, GC grade,
and the spatial relationship between adjacent and cancerous tissues. These factors could
potentially influence the expression patterns of DEGs. Moreover, our identification of DEGs
was confined to a single dataset, aiming to retain essential genes but potentially increasing
the risk of false positives. Therefore, a larger sample size is essential to authenticate and
substantiate the obtained results.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers16071280/s1, Figure S1: Pearson correlation between the
infiltration level of the tumor-microenvironment component and the expression level of the genes;
Table S1: Down-regulated genes and up-regulated genes in GSE19826; Table S2: Intersection of the
top ten Hub DEGs.
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